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Abstract

We propose a soluble model of the nonlinear effects in the Coulomb excita-
tion of the multiphonon Giant Dipole Resonances. Analytical expressions for
‘the multi-phonon transition probabilities are derived, based on the SU(1,1)
algebra. For reasonably small magnitude of nonlinearity x =~ 0.1-~0.2 enhance-
ment factor for the Double Giant Resonance excitation probabilities and the
‘cross sections reaches values 1.3 — 2 compatible with experimental data. The

enhancement factor is found to decrease with increasing bombarding energy.
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Coulomb Excitation in collisions of relativistic ions is one of the most prbmising methods
in modern nuclear physics {1-6]. One of the most interesting applications of this method to
studies of nuclear structure is the possibility to observe and study the multi phonon Giant
Resonances [1]. The double Dipole Giant Resonances (DGDR) have been observed in a

.number of nuclei [7-9]. The “bulk properties” of the one~and two-phonon GDR are now
partly understood [1] and they are in a reasonable agreement with the theoretical picture
based on the concept of GDR-phonons as almost harmonic quantized vibrations.

Despite that, there is a persisting discrepancy between the theory and the data, observed

In various experiments [7-11] that still remains to be understood: the double GDR excitation
cross sections are found enhanced by factor 1.3 — 2 with respect to the predictions of the
harmonic phonon picture [1], [3], {12], [13]. This discrepancy, which almost disappears at high
bombarding energy, has attracted much attention in current literature [4], [14-18], [19-21];
among the approaches to resolve the problem are the higher order perturbation theory
treatment [18], and studies of anharmonic/nonlinear aspects of GDR dynamics [4], {19,20];
[21]. Recently, the concept of hot phonons [16], [17] within Brink-Axel mechanism was
proposed that provides microscopic explanation of the effect. These seemingly orthogonal
explanations deserve clarification which we try to supply here.

The purpose of this work is to examine, within a a soluble model the role of the nonlinear
effects on the transition amplitudes that connect the multlphonon states in a heavy-ion
Coulomb excitation process. Most studies of anharmonic corrections [19-21] concentrated on
their effect in the spectrum [22,23]. Within our model, the nonlinear effects are described by
a single parameter, and the model contains the harmonic model as its limiting case when the
nonlinearity goes to zero. We obtain analytical expressions for the probabilities of excitation
of multiphonon states which substitute the Poisson formula of the harmonic phonon theory.
For reasonably small values of the nonlinearity, the present model is able to reproduce the
observed enhancement of the double GDR cross sections and its energy dependence.

We work in a semiclassical approach [12] to the coupled-channels problem, i.e., the
projectile motion is approximated by a classical trajectory (straight line) and the excitation

of the Giant Resonances is treated quantum mechanically [12], [13], [14]. The use of this




method is justified due to the small wavelenghts associated with the relative motion in
relativistic heavy ion collisions. The intrinsic state |1)(f) > of excited nucleus is the solution

of the time dependent Schrédinger equation

D2 v 90 > 0 >= 5 ax(@) IN > exp(=iBx) ()
N=0

where Hy is the intrinsic Hamiltonian and V is the channel-coupling interaction, (we set
k= ¢ =1). The problem is to find the expansion amplitudes ay(?) in the wave packet
|+) as functions of impact parameter b where Ey is the energy of the state (N > with the
numbers of excited GDR phonons N. The excitation probability Wy of an intrinsic state
|V > in a collision with impact parameter b and the total cross section oy for excitation of

the state [N > are
Wy (b) = lan(c0)?, o =27 [b bW (b)db | 2)

where by, = 1.2(A}% + ALS) is the grazing impact parameter, the labels exc (sp) refer to
excited (spectator) nucleus in a colliding pair. It is convenient to treat the coupled channel

equations (1) in terms of the unitary evolution operator U; such that [ (t)) = Ur(4)]0):
d . .
iEEUI(t) = Vi (t)Us(t), Vi(t) = oty (g)eiHot, Ur(t = —o0) =1, (3)

where the time-dependent Hamiltonian H(t) = H, + V(t) that acts in the intrinsic multi-

GDR states with the GDR frequency w is given by Hy = wiNy;, Ny=3Ydld, and

m

V(t) = vi([(E1o1)' — (E100) 1 + w0 (8)(ELe) + Herm.Conj. (4)

where E1}, and El,, are the dimensionless operators acting in the space of the multi-GDR
states created by the boson operators d,, m is the angular momentum projection. The

functions vy, are given in [2], e.g.,

F Zspe'z’Y Nechezc -
n(t) = —srms, F= . 5
1) [1+ (Zre)?2)3/2 202\ A%im ., - 80MeV ( )

Here, my and e are the proton mass and charge, Z, N and A denote the nuclear charge,
the neutron number and the mass number of the colliding partners, v = (1 —v%)~12 s

relativistic factor and » is the velocity. [1].




In the harmonic approximation, the operators E1l} , El,, are linear in the GDR phonons,
E1}, = d!,. This model of “ideal bosons” coupled linearly to the Coulomb field admits well
known exact nonperturbative solution (see, e.g. [13]) for the excitation probabilities

—|ah“”"|2 ,aharm|2N

| Wy =e |aharm!2 — Z laharm|2 — 2|alarm|2 + |agarml2, (6)

' ?
N! m=0,z1

i.e., the Poisson formula with the amplitudes /"™ expressed through the modified Bessel

functions. At the colliding energies sufficiently high, the longitudinal contribution |a/erm|?

is suppressed by a factor proportional to v~2 [3]. We will work in the “transverse approxima-

tion” dropping the term |of*™|? (the results are still qualitatively valid at lower energies).

Now, we consider the nonlinear effects. Our idea is to keep the spectrum of GDR, system
harmonic with the Hamiltonian Hy = wN. That is supported by the systematics of the
observed DGDR energies, Ey, which yields E, ~ (1.75 — 2)w [1], so anharmonicity in the
spectrum is weak. This conclusion follows also from theoretical considerations [22], [23]. The
transition operators £17, E1 that couple intrinsic motion to the Coulomb field can however
include nonlinear effects: the expansion in terms of GDR bosons reads

Ell, =dl +2> dl.dl, dpn, + Z ol by + 22 3 dbdh dmydldy + . (7)
mi mima2

To keep the theory treatable, the number of the nonlinear parameters z; in (7) must be
reduced. A reasonable way to do so is to save in (7) a convergent series with the leading
term proportional to x, vis

Ell =df + mZd;d;;l iy — — Z dhdl, gl dimy + ... = dl (1 +22N)Y?, (8)

AR LY

where the single parameter z > 0 controls nonlinearity, and the problem reduces to the
harmonic one with linear coupling when z — 0. The ansatz (8) that we adopt here accounts
for many higher order contributions to (7) while leading to soluble but nontrivial model.

To solve the nonlinear problem (3) with (4) and (8) we introduce the following triad of

operators

_ 1 1
.D == E + ENd(d_l — d+1), .D

pb—ll—l

= 7 (@5 — dfy)(d s — ) +2(1/(22) + M), (9)

an—




and D* the conjugate Dt = (D")Jr with Ny = df,dyy +d*,d_;. It is easy to check that

they obey the commutation relations for the noncompact SU(1,1) algebra
[D-, D] =D, D+, D°| = -D*, [D-,D+] =2D°, (10)

The dynamics of the system can be expressed in terms of the operators D and D° (9) only.

Evolution equation (3) and its formal exact solution, the time-ordered exponential now read

U0 =203 (0D + 0 (D7 Ui, Th(0) = Teap (_i_f d’“"vf(t')) Y

where (10) and [Ng, D] = £D* has been used in (3),(4) and (8). From purely mathematical

viewpoint, the problem described by the last equation drops into the universality class of

the systems with SU(1,1) dynamics that can be analyzed by means of generalized coherent
states [24], [25]. For other algebraic approaches to scattering problems, see Ref. [26].

Due to closure of the commutation relations between the operators D7, D~ and D, the
time-ordered exponential (11) can be represented in another equivalent form that involve

ordinary operator exponentials (see, e.g., [27])
Ur(t) = exp [2\/5a(t)p+] exp [[log (1 - dzla(t)?) — ig(1)] D°] exp [-2vza*()D7] (12)

and some time-dependent complex number af(t) (star denotes complex conjugation) and
real number ¢(t) (phase) [24]. The unknown functions a(t) and $(¢) can be found from
simple differential equations which relate them to the function v1(¢) in the Hamiltonian
H(t). These equations can be restored after substituting the right hand side of Eq.(12)
into the Schridinger equation for the operator U;() {11) and collecting the terms which
have the same operator.structure. Proceeding this way, we obtain, after some algebraic

manipulations, the following Riccati-type equation for the complex amplitude a:
i(d/dt)a = vy (£)e™* + dzv (t)e “tal. (13)

¢ .
The phase ¢(t) is given by a simple integral ¢(t) = 8z [ df;Refv,(t;)a(t;)e=*"]. The
simple nonlinear equation (13) accounts for all orders of quantum perturbation theory for

the problem Eqs.(3),(4),(11). From Eq.(12), we have
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[¥(6)) = Ur(£)[0) = /42 (1 — 4aja(t)) "™ eap [2v/Fa(t)D*] |0).

It is seen from Eq.(12), that unitarity is preserved automatically within present formalism
as U}f = U, thus (¢(£)|4(t)) = 1. The expression for the amplitudes ay(¢) follows from
(12) immediately after projection of the state |15(c0)) onto the states with definite number
of GDR phonons, N.

' 1/2

Wy = lan(),  lan(o0)| = (1 - 4ala(z)P) ™ (-F(N"T*_A)Q) / (4zia@))"* (19)
Here, the quantity a(z) is the asymptotic solution to the Riccati equation (13) at t — oo
subject to the initial condition a(—o0) = 0. Eq.(14) is our final analytical result. The
constant z*/?&(z)] in (14) can be viewed as a “special function” of the two parameters,
.:1:1/ ?F/w and the adiabaticity parameter w2, It can be easily tabulated by solving (13). The
cross sections are then obtained from the usual formula (2) with using (14).

The harmonic limit of these results corresponds to the case z — 0, when the coupling
to electromagnetic field via (8) becomes linear. The last term drops from Eq.(13), and

= 22 (2)" K, () where K, is the modified Bossel

(@) ~ |oky™| = o =

00 .
—i [ w(t)e™dt

function [13], [1]. The expression for W (14) reduces at x 0 to the Poisson formula (6),
thus the harmonic results [13], [1] are restored.

At nonzero nonlinearity « > 0, the excitation probabilities Wy (14) for multiple GDR
(¥ > 1) turn out to be enhanced as compared to their values in the harmonic limit Wharm,
as illustrated in Fig.1. The deviation of the N-phonon excitation probabilities from their
harmonic values W3*™ (6) (the enhancement factor) is given by the ratio

Wy _ T +N) (1-4dea@)P)*= |a@)*
W}\zrarm - F( 1 ) ( 1 )N e—‘.z]aimrmp Iailmrm|‘2N.

2z/ \2z

(15)

The first factor in this expression reflects kinematic enhancement of the transition proba-
bilities due to nonlinearity. The last factor in (15) results from dynamical effects caused by
nonlinearity, which are incorporated in the asymptotic solution of the nonlinear equation
(13). This second “dynamical factor” depends on the bombarding energy and it gives rise

to additional enhancement in low energy domain.




The interesting feature of these results is that the enhancement factor in the cross section
re = ;2,%%.3 1s more sensitive to the bombarding energy than to the parameters of the spectator
partner. 'This is just what has been observed in experiments: the values of r£ found for

DGDR in **® Pb projectile using different targets 120Sn, 165 Ho, 208 pp, 23877 110] are close to
ro(*®Pb) ~1.33 v 1.7, (16)

bombarding energy ¢ ~ 640 Mev/per nucleon. The same picture was found in experiments
on Coulomb desintegration of 7 Au target using various projectiles 2 Ne,% Kr,197 4y, 209 B;
[9]. Nearly constant value of r, has been found in 28 Pb target [11] while scattering different

projectiles at low bombarding energy ¢ ~ 60 — 100 Mev /per nucleon. In this case,
ra(*BPb)~2 | 4 ~1.06— 1.10. (17)

Within present nonlinear model, these enhancement factors would correspond to reason-

ably small nonlinearity parameter
z(*® Pb) ~ 0.16 — 0.20.

Below, we present the exact results for the cross sections calculated according to Egs.(2),
and (14) and with solving Eq.(13) numerically. The dependence of the enhancement factor
Te = 02/03™ for the DGDR excitation on the strength of the nonlinearity z is shown in
Fig. 1 for the process *®Pb +%% Pp, bombarding energy ¢ = 0.64GeV/per nucleon. One
sees that the enhancement factor drops to unity at small values of x (harmonic limit) and
approaches the observable values at still reasonably weak nonlinearity.

We discuss now the dependence of the enhancement factor on bombarding energy. De-
viations of r5 from the sfraight line %ﬂ%&% =1+ 2z (cf. Eq.(15)) occur at both low and
high energies. At v — 1, one can solve (13) within an adiabatic perturbation theory to
see that |af > [a}*™|. Thus, r, > 1 + 2z. At higher energies, by contrast, the dynamical
nonlinear effects tend to reduce the magnitude of |e|. One can see from (13) that at v > 1,
|ee] / Qo™ ~ %%%TJ <1, and thus 73 < 14 2z. To sum up, the enhancement factor

for the DGDR excitation cross section, ry = g5/02™ drops from 2 — 2.5 (for low bombard-

ing energies £ ~ 100MeV per nucleon) to 1.2 — 1.3 (for & ~ 640 — 700MeV per nucleon)
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while fixed value of nonlinearity z is used. In Fig.2., we plotted the value of the enhance-
ment factor calculated numerically for the case of 2%8 Ph 4208 P} process as a function of the
relativistic factor 7. The magnitude of nonlinearity is kept fixed z = 0.19. One sees that
reasonably small nonlinearity reproduces correctly the observable value of the enhancement
factor and its energy dependence. -

To conclude, we presented here a simple model that accounts for the nonlinear effects
in the transition probabilities for the excitation -of multi-phonon Giant Dipole Resonances
in Coulomb excitation via relativistic heavy ion collisions. The model is based on the
group theoretical properties of the boson operators. It allows to construct the solution for
the dynamics of the multi-phonon excitation within coupled-channel approach in terms of
the generalized coherent states of the corresponding algebras. The harmonic phonon model
appears to be a limiting case of the present model when the nonlinearity parameter z goes to
zero. The model enjoys the main advantages of the harmonic case (unrestricted multiphonon
basis, preservation of unitarity and analytical results in nonperturbative domain). Therefore,
this soluble model can be viewed as a natural nonlinear extension of the harmonic phonon
model.

- The Double GDR excitation proba‘pilities and cross sections are found enhanced by
the factors which agree with experiment for reasonably weak nonlinearity z. This can be
viewed as a hint that the discrepancy between the measured cfoss—sections of double GDR
and the harmonic phonon calculations can be resolved within present nonlinear model by
means of using an appropriate value of the nonlinear parameter x for a given nucleus. The
enhancement factor drops as the bombarding energy grows. This is consistent with the data
and gives results similar to those recently obtained in a possibly different context, with a
theory based on the concept of fluctuations (damping) and the Brink-Axel mechanism [16],
(17], [28], [29]. 1t would be certainly worthwhile to establish possible connections between
the two approaches.

The work has been supported by FAPESP (Fundacao de Amparo a Pesquisa do Estado
de Sao Paulo).
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Figure Captions

Fig.1.

N- phonon excitation probabilities Wy as compared to W™ in the harmonic limit as
functions of the phonon number N (schematic plot). One sees that while both Wy and
Wherm are decreasing rapidly as IV increases, their ratio Wi /Wher™ is bigger than unity at

o0 o0
N = 2. It is seen that Wy < W™, as unitarity implies that 3> Wy = ° Wharm — 1
N=0 N=()

Fig.2.

The cross section enhancement factor ry = oy/ oh*™™ for the Double GDR excitation in
208 Pb +2%% Pb process at bombarding energy ¢ = 640M eV /per nucleon as a function of the
nonlinearity parameter x (circles, solid curve is to guide the eye). The value 1+ 2z is shown

by the dashed curve.

Fig.3.

The cross section enhancement factor re = 03/0*™ for the Double GDR, excitation in
the process *® Pb+2%8 Pp_ a5 a function of relativistic factor 7v (circles, solid curve is to guide
the eye). The value of the nonlinear parameter z is kept to be equal to 2 = 0.19. The "

constant 1 + 2z is shown by dashed line.
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