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Abstract

We show that the angular distribution of nuclear scattering amplitude behaves like the zeroth
order Bessel function with a fixed frequency at extremely forward angles even if there exists no
genuine forward glory scattering. A semiclassical interpretation of this behaviour is provided
in terms of the effect of scattering in the shadow of nuclear rainbow. We also discuss that the
bombarding energy-dependence of the amplitude of the sum-of-difference cross section at very
small angles provides a possibility to judge whether the genuine forward nuclear glory scattering

is taking place or not.
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1 Introduction

In the beginning of 90s Ostrowski e al. {1] claimed that a forward nuclear glory scattering

was experimentally observed through the sum-of-difference analysis( SOD analysis ) of the very

~ precise data of the cross section of the elastic scattering between two 12C nuclei in a very forward

angular region at energies not far above the Coulomb barrier. If this can be confirmed, it will
be very useful to comprehend the mechanism of heavy ion collisions at low energies. Also, it
will provide a useful information on the interaction between heavy ions or between a particle
and nucleus similarly to the nuclear rainbow scattering(2-4] and the backward nuclear glory
scattering[5, 6].

The forward nuclear glory scattering is an analogue of a caustic in geometrical optics and the
phenomenon that the classical differential cross section diverges towards zero degree because of
the three-dimensional geometry of the scattering[9]. A characteristic feature is that the nuclear
scattering amplitude plotted as a function of the scattering angle behaves like the zeroth order _
Bessel function with a fixed frequency at forward aﬁgles. This behaviour can be understood by
a semiclassical theory which leads to an analytic expression of the scattering amplitude. The
fixed frequency of the nuclear scattering amplitude at forward angles is associated with the
glory angular momentum, which is the angular momentum where the deflection function passes
smoothly through zero degree[7].

Until the middle of 80s, it had been thought to be impossible to experimentally observe
the forward nuclear glory scattering in heavy ion collisions, because the Rutherford scattering
amplitude rapidly diverges at small angles. In order to avoid this difficulty, a generalized optical
theorem( GOT )[11-13] was introduced and a method based on it, i.e. the sum-of-difference
cross section( SOD or ogop ) analysis[10], has been invoked to identify the forward nuclear glory
scattering and to extract a total reaction cross section from the data at forward angles.

Combining this method and semiclassical analyses, we suggested in our previous papers
[14, 15] that the forward nuclear glory scattering is not taking place in almost any heavy ion

collisions at low energies even if the forward angular distribution seems to indicate the occurrence



of the forward nuclear glory scattering, and proposed an alternative mechanism, i.e. the shadow
effect of a nuclear rainbow, which leads to a very similar angular distribution[15]. In this paper,
we present the detailed formalism of this new mechanism, and extend the argnments in Ref.
15

In Sects. 2 and 3, we briefly explain the forward nuclear glory scattering and the sum-of-
difference cross section analysis, respectively. In Sect. 4 we perform a semiclassical analysis
of the scattering of « particles from *°Zr to show that no genuine forward glory scattering is
taking place, i.e. no glory angular momentum appears in the real space, despite the angular
distribution at forward angles behaves very similarly to that for the forward glory scattering.
There we remark that a nuclear rainbow appears at a small positive angle. In Sect. 5 we derive a
semiclassical formula of the nuclear scattering amplitude for that case, and show that it is given
in terms of the zeroth order Bessel function whose frequency is given by the nuclear rainbow
angular momentum instead of the glory angular momentum. We show that this analytic formula
well explains the main features of the forward angular distribution given by the partial wave sum,
thus the origin of the name of the glory in the shadow of nuclear rainbow. In Sect. 6 we show
that the same formula quantitatively fails to describe a heavier system, i.e. the elastic *¥Q+-*3Ni
scattering at Epq.p = 63.4 MeV, which could be thought to be an another example of this
noble phenomenon and discuss possible origins of the failure, i.e. the validity of the underlying
assumptions. In Sect. 7 we argue that the energy dependence of the amplitude of the sum-
of-difference cross section at an extremely small angle could be used to extract directly from
experimental data a critical energy discriminating two different mechanisms, i.e. the genuine
forward nuclear glory scattering and glory in the shadow of nuclear rainbow, which have very.
simnilar angular distributions. In Sect. 8 we summarize the paper. An appendix is added to
explain the derivation of the semiclassical expression of the nuclear scattering amplitute in the

uniform Bessel approximation.



2 Forward nuclear glory scattering

Features of the angular distribution of heavy ion elastic scattering can be well understood
based on a semiclassical theory, which leads to various types of analytic expressions of the
scattering amplitude depending on the deflection function ©(A), which is the scattering angle
as a function of the incident angular momentum £( A = £+ 1/2 ) or the impact parameter.

Features of the angular distribution of heavy ion elastic scattering can be well understood
based on a semiclassical theory by referring to the deflection function ®()), which is the scat-
tering angle as a function of the incident angular momentum 4( A = £+ 1/2 ) or the impact
parameter.

A genuine forward glory scattering occurs if the deflection function smoothly crosses —2nm
radian, n being an integer, at a finite angular momentum. If there exists a classical trajectory
of the projectile that is scattered to zero degree from the target, the classical differential cross

section

oes(0) (2. 1)
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diverges because of the geometrical property of the scattering, i.e. the axial symmetry[9]. This
is why the glory scattering is a caustic.

The incident angular momentum where the deflection function crosses zero degree is called
a glory angular momentum. Denoting it by A, = ¢, + 1/2, the angular distribution for the
forward nuclear glory scattering can be given analytically in the semiclassical approximation

[14] as

f(6) ~ 22 ( om0 :
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where k, ©'(A), |S(A)| and §()) are the incident wave number, the derivative of the deflection -
function with respect to the angular momentum A, the reflection coefficient and the phase shift
of the partial wave £ = X\ — 1/2, respectively. Eq. (2. 2) shows that the forward nuclear glory
scattering is characterized by the angular distribution which behaves like the zeroth order Bessel

function with a fixed frequency given by the glory angular momentum.



3 Sum-of-difference cross section

The sum-of-difference cross section is defined by [10--13]

m do do
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where (g—‘l) Ruth, and (j—g)ela, are the Rutherford and the elastic scattering differential cross

sections, respectively. They are given in terms of the scattering amplitude f(#), the Rutherford

scattering amplitude fo(6) and the nuclear scattering amplitude fy(6) as

do | do
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where 7, oy and 5( ) are the Sommerfeld parameter, the phase shift of the Rutherford scattering
for the fth partial wave and that for the scattering by the shori-range nuclear interaction,
respectively. The latter includes the effect of the deviation of the Coulomb interaction from the
point-charge interaction. It has been shown in Ref. [10, 11] that osop is related to the total

reaction cross section og and the nuclear scattering amplitude fy(f) as
dr . 9 1 !
osop(fa) = or = <~ |fn(fo}|sin |argfy (o) — 200 +2?71ﬂ8111§ — AI'(6p) — AN'(6) (3. 6)
with

AN'(6)) = 2« fo 0°| Fn(8)]% sin6de (3. 7)
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where AN’ and AT’ are correction terms. They become small as 8y approaches zero degree and

can be ignored in the small angle region which we consider in this paper [10].




The osop rapidly oscillates with 6y. Its envelope also slowly oscillates around tlie total
reaction cross section. The former arises from the interference between the nuclear and Ruther-
ford scattering amplitudes, and the frequency of the oscillation is mainly determined by the
Sommerfeld parameter 7. On the other hand, the latter oscillation is caused by the angular
distribution of the nuclear scattering amplitude |fn(8p)| [10]. If one can observe precisely the
elastic scattering differential cross section for heavy ion collisions in some forward angular re-
gion, the total reaction cross section and the absolute value of the nuclear scattering amplitude
at very forward angles can be directly obtained from experimental data through the SOD anal-
ysis in a model-independent way, in other words, withoﬁt going through any optical potentials
[1, 16]. The informations on the nuclear scattering amplitude can then be used to learn the
scattering mechanism such as the occurrence of forward nuclear glory scattering. Incidentally,
if the interest is not to study the forward nuclear glory scattering, it is better to choose lower
bombarding energy and the scattering system with a large product of atomic numbers in order

to more easily perform the SOD analysis.
4 Semiclassical analysis of elastic a+%Zr scattering

The authors in Ref. [10] discussed the possibility of a forward nuclear glory scattering in the
B0 + *8Ni collision at Ecm. = 48.4 MeV based on optical model calculations using a realistic.
optical potential deduced from the measured elastic scattering angular distribution. They drew
the conclusion that a forward nuclear glory scattering is taking place in this scattering by noticing
that the envelope of the ogpp at forward angles behaves like the zeroth order Bessel function with
a fixed frequency and that this frequency corresponds to the glory angular momentum, where
the classical deflection function calculated for the real part of the optical potential smoothly
crosses zero degree. On the other hand, the authors in Ref. [1] studied the elastic scattering
between two '2C nuclei at forward angles. They claimed that a forward nuclear glory scattering
is taking place in this system based on the observation that |fx(6)! significantly exceeds zero as
6o — 0 and exhibits an undulating envelope at forward angles. Refs. [1] and [10] are common

in attributing the evidence of the forward nuclear glory scattering to the envelope of the SOD



having the nature of the zeroth order Bessel function with a fixed frequency.

Before we discuss these systems, we present in this section a semiclassical analysis of the
a+%07r elastic scattering at Erq.p = 40 MeV in order to discuss whether the envelope of the
SOD having the nature of thé zeroth order Bessel function with a fixed frequency automatically
means the occurrence of the forward nuclear glory scattering. We base our arguments on the
optical model anélysis using the optical potential which was obtained by fitting the experimental
angular distribution[17]. We show that the SOD can have a very similar angular distribution to
that in the presence of a forward nuclear glory scattering even if it is actually not taking place.

Fig. 1 shows the angular distribution of the SOD. The solid curve was obtained following
the definition of o50p given by Eq. (3. 1). On the other hand, the dashed curve was calculated

based on the semiclassical formula(1]

osop(bo)

=gp — %lfN(a =~ 0°){Jo{Aof) sin {arg fn(8 = 0°) — 2009 — 2n 1nsing} (4. 1)

by assuming that either a forward nuclear glory or some new phenomenon, which is yet unknown
but which has a very similar angular distribution, is taking place in this system and ignoring
the correction terms in Eq. (3. 6). We used the result of quantum calculations for a8 = 0°),

and calculated the total reaction cross section o'z by
iy
R =g ;(2“ DA - 18 (4.2)

The frequency parameter Ay has been chosen to reproduce the angular distribution of the nuclear
scattering amplitude at forward angles with |fw(6 =~ 0°){Jo(Ao8). The resultant value is 19,
which coincides with a nuclear rainbow angular momentum as we show later. We see that the
solid and the dashed curves agree very well up to 4 degree. This will mean that one can ignore
the correction terms in Eq. (3. 6) in this angular region. It also means that the analytic
semiclassical formula Eq. (4. 1) works pretty well with an appropriate choice of the frequency
parameter Ag. The important thing in connection with the occurrence of a forward nuclear glory

scattering is that the envelope of the SOD can be well represented by the zeroth order Bessel




function with a fixed frequency. The question is whether this necessarily means the occurrence
of a forward nuclear glory scattering as has been claimed in Refs. [1] and [10].
In order to answer this question, we show in Fig. 2 the deflection function for this system.

The solid curve has been calculated by

_ 0 Red(N)

O(A) 5

= Q(Re 5£+1 — Re (55) (4 3)

with quantum mechanically calculated phase shifts d;. It strongly oscillates in low partial waves,
and makes a sudden jump from negative to positive values at the partial wave £ =~ 13 as one
increases £. As has been discussed in Ref. [14] the strong -oscillation and the sudden jump in the
deflection function are caused by the interference between the so called barrier and the internal
waves[5, 19]. On the other hand, each deflection function for the barrier( the long-dashed curve
) and internal waves{ the dot-dashed curve ) is a smooth function of the angular momentum[18].
In order to confirm this assertion of the interplay between the barrier and the internal waves,
Fig. 3 shows separately the reflection coeflicients for the barrier({ the long-dashed curve ) an.d
the internal{ the dot-dashed curve ) wave components as functions of the angular momentum. It
shows that the barrier and the internal waves dominate low and high partial waves, respectively.
The transient partial wave is around 13. Each component is a smooth function of the angular
momentum. The total semiclassical scattering amplitude( the solid curve ), on the other hand,
strongly oscillates for small angular momenta because of the interference between the barrier
and the internal waves. Notice that the semiclassical calculations agree very well with quantum
mechanical calculations shown by the closed circles.

Returning to Fig. 2, an important observation is that neither the internal nor the barrier
wave deflection functions cut zero degree. We therefore conclude that the genuine forward
nuclear glory scattering is not taking place in this system. It is then quite puzzling that the
angular distribution of the SOD still behaves like that for the forward glory scattering. In next
section, we provide an explanation of why the envelope of the SOD, i.e. the forward nuclear
scattering amplitude behaves as though there existed a forward nuclear glory scattering even if

the deflection function excludes its presence.



In passing, the ratio of the elastic to the Rutherford scattering cross sections is between 0.95
and 1.05 at each angle between 1 and 7 degree. We also calculated the ratio of the sum-of-
difference cross section osop to the integrated cross section of the Rutherford scattering from
b to m. We found that the ratio increases from 1072 to 10~! as 8, increases from 1 to 10
degree. This gives a measure of the precision required for experimental measurements in order

to perform the sum-of-difference cross sections analysis[15].

5 Glory in the shadow of a nuclear rainbow

A clue to understand why the envelope of the SOD behaves as though there were a forward
nuclear glory scattering despite its absence can be obtained by noticing that the deflection
function for the barrier waves shown in Fig. 2 has a nuclear rainbow at A = 19, which coincides
with Ag used to obtain the dashed curve in Fig. 1. For comparison, we show in Fig. 1 the dotted

and dot-dashed curves, which represent
dn . L
or+ - |fn (0 = 0°)[Jo(Ao8) (5. 1)

with Ag = 19 and 13, respectively. The former is the envelope of the dashed curve. Though it
isl not easy to judge the superiority of 19 or 13 from the SOD analysis alone, our analysis of the
nuclear scattering amplitude at forward angles clearly prefers to the former. Another imi)ortant
issue is which of 19 or 13 better describes the glory minimum, which is the angle where the
envelope of the SOD converges. Another important issue is which of 19 or 13 better describes
the first node of the envelope of the SOD, which corresponds to the first rainbow-shadow glory
manimum [15]. It is given by

00 = 3m/4X (5. 2)

based on Eq. (3. 6) and the properties of the Bessel function[10]. The actual SOD does not
clearly show this minimum, but is distorted there because of the effects of the correction terms.
We can still see some trace of the glory minimum in Fig. 1. It shows that 19 is better than 13

in this sense too. In this section, we show that the shadow of a nuclear rainbow, which appears
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near zero degree, leads to an angular distribution which resembles that for a forward nuclear

glory scattering by using the uniform semiclassical approximation[8, 9].
5.1 Integral representation of nuclear scattering amplitude

The scattering amplitude is given by Eq. (3. 3) as the partial wave sum. In order to derive
its analytic expression, we first convert it into an integration form by using the Sommerfeld-
Watson transformation which leads to the following Poisson sum formula[25],

1

f(a)=E > /0 AT ()P AN N Py | 1o (cosf) (5. 3)

m=—co

where A = £+ 1/2. We left out the —1 term in Eq. (3. 3) which can be omitted as long as
6 is not exactly zero degree (23, 27]. For simplicity, we consider the case where the deflection
function ©(A) never exceeds 7 so that we can ignore m # 0 terms in Eq. (5. 3). Furthermore,
since we are interested in the forward scattering, we replace the Legendre polynomials by their

asymptotic forms using the Bessel function [24]

[ 8 . - 1
Py_1/2{cos 8) ~ MJO(/\B) (0<f<m— X) (5. 4)

and use the integral representation of the zeroth order Bessel function in inserting it into Eq.-

(5. 3). The scattering amplitude is then given by

10~ (2a) [ a8 [T annisoygeen 6. 5

where |
WA\ $,60) = 25()) + Adcos (5. 6)
[S(M)] = exp{-2Imdy()\)} §(AY =o(A) +Re dy(N) . (5. 7).

In this paper we discuss the case, where the nuclear rainbow angle is positive and close to '
the zero degree. We approximate the deflection function near the zero degree by a quadratic

function around the nuclear rainbow angle #yz,

1
&(\) = Ong-+ 5@}{;R(A — )\NR)Q (Oyp >0) (5. 8)
1
vr = 0"(Ayg)>0 AR = Inp + 5 (5. 9)
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where {yr and ©”()\) are the nuclear rainbow angular momentum and the second derivative of
the deflection function with respect to A, respectively. In the WKB approximation the deflection
function ©(A) is related to the phase shift by ©()\) = 2%5()\) so that the (X, ¢,0) in Eq. (5.
6) in the vicinity of the nuclear rainbow angular momentum is given by

1

S'G%R(z\ —Ane)® +Mcosd . (5. 10}

P(A, $,8) = 26(Anr) + Onr(A — Anr) +
5.2 Evaluation of the A-integration

We evaluate the integral over A in Eq. (5. 5) by the stationary phase approximation [23].

The stationary phase angular momenta A, are given by

3
A A=As

As = ,\s(e,qs)z,\mi?;\/

1
= 9NR+§" RO —Ang)2 +6cosdp =0 (5. 11)

2(0yr + O cos o)

. (5. 12)
NR

Eq. (5. 12) is applicable in the angular region smaller than the nuclear rainbow angle, i.e.
¢ < Ong, where both 8y g + 0 cos ¢ and @ are positive. In the following we discard the term
with minus sign in front of the ¢ in Eq. (5. 12). The reason will be discussed in Sec. 5-4.

Since the main contribution to the integral over A now comes from the vicinity of the nuclear
rainbow angular momentum Ayg, the scattering amplitude f(#) can be regarded as the nuclear
scattering amplitude fx(#). The contribution from the Rutherford scattering to forward angles
is automatically removed in this stationary phase approximation[14], because the Rutherford
scattering to forward angles originates from higher partial waves. Expanding (A, ¢,8) in the
Taylor series about the stationary phase angular momentum A, up to the cubic term, we can

write the nuclear scattering amplitude as

Y L 260\ r)
Fn () ik sin!:?/g dbAs|S(As e e

3
X exp{z'{)wgﬂcosqbfas(BNR+9(:osqb)—I—% KTR]}

® . 0-‘3 " 1 1" 3
< fo d)\exp{a[«-? RO\~ ) + 3040\~ Awn) ]} (5 13)
where o, = X\s(8, ¢) — Anvr. We have also replaced A|S()\)| by its value at the stationary phase

angular momentum by assuming that it is a slowly varying function of A. We now change the
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integration variable A to z = A — Ayg and replace the resulting lower limit of the .integra.tion
from —Ang to —oco. This replacement will be a good approximation because P(A, ¢, 8) changes
rapidly for partial waves far from the stationary phase angular momentum and consequently
their contributions will almost cancel out each other[23]. The integral over A in Eq. (5. 13)

then becomes an Airy function[24]

f dz e 49=) = 95(3¢) "1/ Ai[(3a) 1134 (5. 14)
—o0

Thus, the nuclear scattering amplitude is given by the integral over ¢ as,

2 [ 46 20,0, 9)150:(0,9))

X  exp {z’[Zd(ANR) + Angrfcosg + (Onr + 8 cos oy (6, @) + 9~§r—Ra§(9, qﬁ)]}

" -1/3 " -1/3
x {_12\@} Ai [{_g_R} (Owg +0cosg)| (5. 15)
5.3 Semiclassical expression and its limiting case

We evaluate the integral over ¢ in Eq. (5. 15) in the uniform Bessel approximation[9].
The details are given in the appendix. Here we only quote the final analytic expression for the

nuclear scattering amplitude,

Avef (O H? 2i6(An g ) :
fu6) ~ T2 9( : ) 2w {AJ,(B)JO(ANRB)+zA_(6)J1()\NR9)}

A:6) = VATIS0 |A1[( 52) ™ +.) | |
s aFisoiail(Sae )"1/3(91\;3—9)] - (5. 16)

Let us now consider the limiting case, where the nuclear rainbow angle 8y is close to Zero

degree and the curvature of the deflection function at the nuclear rainbow angular momentum
is large. In this case, the imaginary part of the stationary phase angular momentum A, given
by Eq. (5. 12) is small enough to be ignored and one can approximate both AY and A; by Ang.
Eq. (5. 16) then leads to

-1/3 .
@) ~ =\ 55 2) IS r) | ONR B (8)Jo(AnrS) +iB—(8)J1(Awr6)}
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BL(0) = Ai{ (—'f;ﬁ) T o 9)} + Ai{ (-%\’—R) T o 9)} . (5. 17)

We further consider a scattering angle § which is much smaller than the nuclear rainbow angle
xR, and approximate Aila(Onr+6)] ~ Aila(Oyr—8)] ~ Ai[adxg]. Thus, the nuclear scattering

amplitude in the very forward angular region can be expressed as

1

2T A 7, : er \"13 -1/3
F(6) ~ ZT2NE m|s<m)rem(m)(%) A[(—gﬂ) HNR]JO(ANRB) (5. 18)

Fig. 4 compares the angular distribution of the modulus of the nuclear scattering amplitude
for the a+%0Zr elastic scattering at 40 MeV calculated quantum mechanically( the solid curve )
and semiclassically based on Eq. (5. 17)( the long-dashed curve ). The semiclassical calculations
well reproduce the results of quantum mechanical calculations at angles smaller than 11 degree,
where a nuclear rainbow appears for the barrier waves. The angular distribution of the nuclear
scattering amplitude given by the semiclassical formula Eq. (5. 17) follows the zeroth order
Bessel function with a fixed frequency, which is determined by the nuclear rainbow angular
momentum. . This offers an explanation of the quasi glory phenomenon at forward angles in
terms of the shadow scattering of a nuclear rainbow appearing near the zero degree.

In Fig. 4 the long-dashed curve systematically underestimates the solid curve in the angular
region between the nuclear rainbow and the Coulomb rainbow, which appears at 19 degree.
This underestimation will be related to the change of the stationary phase angular momenta A,
from the dark-side( § < 11° ) to the bright-side( § > 11° ) regious. In order to describe the
nuclear scattering amplitude in the bright-side of the nuclear rainbow, one needs to improve the
stationary phase positions and Eq. (5. 17). Beyond the Coulomb rainbow angle the long-dashed
curve not only underestimates the magnitude but also the oscillation pattern is different from
the solid curve. A proper treatment of the cubic rainbow(28] is needed in order to perform a

semiclassical analysis including this region.
5.4 Decomposition into the near- and far-side components

In this section we present a semiclassical interpretation of Eq. (5. 16). In the semiclassical

theory, the zeroth order Bessel function with a fixed frequency appearing in the analytic expres-

13




sion of the scattering amplitude is usually thought to be caused by the interference between the
far and near side components of the scattering waves[26].
The deflection function for the a+%9Zr elastic scattering shown in Fig. 2 appears to have no

far side component in the partial wave region which mainly contributes to the forward scattering

in question. However, we must note that the stationary phase angular momenta are complex

{ see Eq. (5. 12) ). In other words, the stationary phase positions are hidden in the shadow
region of the rainbow angular momentum.

In this subsection we show that the characteristic oscillation pattern due to the shadow.of
the nuclear rainbow can be expressed in terms of the interference between the far and near side
components generalized to the complex angular momentum plane.

We consider a general case instead of introducing the quadratic approximation for the de-
flection function near the nuclear rainbow angular momentum as has been done in Eq. ( 5. 11

). The stationary phase angular momenta are given by

o

I =0O(A;) +8cosgp=0 . (5. 19)

A=Ag
As will be discussed in the appendix, the main contributions to the ¢-integral in the nuclear

scattering amplitude come from 0 and 7. Hence, Eq. (5. 19) leads to

—0 for ¢ =0
Ah) = ’ . .
(A7) { 4o forg=n (5. 20)
If one can associate these stationary phase angular momenta, AZ, with the angular momenta
corresponding to the far { near ) side components of the scattering waves, the following standard

expression of the nuclear scattering amplitude will follow from Eg. (5. 16) in the angular region,

where € is not so small{ 8 > 1/Ayg ) [23, 26].

mwie) = 0+ 5570
(=) e LR AN WOE 8)
w0 = St 0Nk
P(F,0) = 2603F) F A Ee (5. 21)

where fj(v-")(@) and f 1(\,_)(6) are the near and far side components, respectively.
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We can show that this is actually the case in the following way. We first use the following

asymptotic forms of the Bessel and the Airy functions[24}

1 | ey, iex ~i
Biz) ~ (D D) R~
_2,3/2

1
2ﬁz1/4e ’

{eF-%) — x5} (5. 22)

Ai(2) (5. 23)

In Eq. (5. 23) we chose the damping form to describe the shadow effect. Substituting these

asymptotic forms into Eq. (5. 16), we obtain

= As 2 —\ T (8)
Inlf) ~ z'k\/sinﬂ{[Q ;(,R(QNR+9)];/2} 1S(AS)le
! AL 12 S| +(0)
ik\/sint?{[QG%R(BNR_Q)]W} |S(AT e
e 2 " —]_/2
V.(8) = 20(Ang)F  \wrf = Zﬂﬁ(%) (QNR:FQ)BM . (5. 24)

In deriving the last expression, we took the second derivative of Eq. (5. 10) with respect to A

to obtain
" (A 0,¢) = Oxg - (A= Anr) =O'(A) . (5. 25)

The derivative of the deflection function at the stationary phase angular momentum is thus

given by

O'(\s) = Olyg - (As ~ Awr) = €551 /20% p(Bp + 6 cos §) . (5. 26)

This leads to the factors in front of the absolute values of the scattering matrix in Eq. (5. 24).
We now rewrite the arguments of the exponentials in Eq. (5. 24) using the stationary phase
angular momentum A¥. Substituting the expression for the stationary phase position A, given

by Eq. (5. 12) into Eq. (5. 10), one obtains

I

—1/2
¢(AS,9,¢)=26(.\NR)+/\N39cosq5ii—§-( 12"3) (Ong +0cos ¢)? . (5. 27)

"The comparison of Egs. (5. 24) and (5. 27) requires to choose the positive sign in the stationary
phase position A; in Eq. (5. 12). Note that the upper indices + and — in AT originate to
distinguish the ¢ =0 and ¢ = contributions, but are not related to the + in Eq. (5. 12). We

thus see that Eq. (5. 16) is nothing but the standard expression given by Eq. (5. 21). This

15




shows that the usual understanding of the oscillation pattern in the forward glory scattering in
terms of the interference between the near- and far-side components still holds for the new type

of glory phenomenon caused by the shadow of rainbow discussed in this paper.

6 Semiclassical analyses of '*0 + *®Ni elastic scattering
at E.,, = 48.4 MeV

6.1 Influence of absorption potential on the deflection function

We now discuss the 80 + ¥Ni elastic scattering at Ee,. = 48.4 MeV. We assume the same
optical potential as that in Ref. [10], which was originally given in Ref. [20]. The corresponding
reflection coefficient is shown in Fig. 5 as a function of the angular momentum. The émooth
variation from a small value at the zero angular momentum to unity at high angular momenta
and the rapid increase around the grazing angular momentum, where the reflection coefficient

becomes 1/v/2, indicate that this scattering is dominated by the Coulomb interaction and the

strong absorption. Fig. 6 shows the corresponding-deflection function. It markedly differs from-

that shown in Fig. 3 of Ref. [10], which has been obtained by ignoring the imaginary part of the
optical potential. Contrary to that in Ref. [10], our deflection function takes 180° at the zero
angular momentum and decreases with increasing angular momentum, and does not go through
zero degree at any finite angular momentum. The discrepancy between our deflection function
and that in Ref. [10] can be attributed to the important role played by the imaginary potential.
Fig. 7 shows the deflection function calculated for several strengths of the imaginary potential.
As the strength of the imaginary part of the optical potential is reduced, the deflection functioﬁ
approaches the classical one. The strong oscillaf;ion appearing in the angular momentum region
between 25 and 35 is caused by the interference between the barrier and internal waves, The
figure clearly shows that the deflection function under a strong absorption is totally different from
that in the absence of absorption. The imaginary part of the optical potential plays a crucial
role to reduce the influence of the internal waves and to make the barrier waves dominate[15]
in whole angular region. The deflection function for small partial waves changes from internal

wave dominated negative value to barrier wave dominated positive value as the absorption gets
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stronger. It will be worth noticing that the deflection function shown in Fig. 6 resembles that

for the barrier waves which dominate the scattering under strong absorption( see Fig. 5 in Ref.
[5]. ).

6.2 Comparison between quantum mechanical and semiclassical calculations

In Fig. 8 we compare the forward angular distribution of the modulus of the nuclear
scattering amplitude calculated quantum mechanically( solid curve ) and semiclassically based.
on Eq. (5. 17)( dashed curve ) for the same heavy ion elastic scattering as shown in Figs. 5 and 6.
Note that the nuclear and the Coulomb rainbow angles are 46 and 49 degrees, respectively, in our
deflection function shown in Fig. 6 which takes the effect of absorption into account. The angular
region shown in Fig. 8 therefore corresponds to the dark-side region of the nuclear rainbow. To
the contrary, this angular region corresponds to the bright-side of both the Coulomb and the
nuclear rainbows for the deflection function calculated classically in Ref. [10] by assuming only
the real part of the optical potential( see Fig. 4 in Ref. [10] ).

It seems reasonable to consider this angular region by dividing into two parts, i.e. the
angular regions smaller and larger than 30 degree, according to the behaviour of the angular
distribution obtained by the quantum mechanical calculations. The large angle region, where
a subtle undulation appears, is characterized by a rather steep increase of the modulus of the
nuclear scattering amplitude with the scattering angle. The semiclassical calculations( dashed
curve ) well reproduce the magnitude of the quantum mechanical calculations( solid curve ) in
this angular region, so that the nuclear scattering amplitude at angles between 30 degree and -
the nuclear rainbow angle can be interpreted as the shadow of the nuclear rainbow scattering.

On the other hand, the strong oscillation in the solid curve at small angles could also be
interpreted in terms of the glory in the shadow of rainbow. In fact the dashed curve which
has been calculated based on this idea, i.e. Eq. (5. 17), has a very similar oscillation pattern
with a frequency corresponding to the nuclear rainbow angular momentum A ~ 34( see Fig.
6 ). A problem is, however, it severely underestimates the magnitude compared to the solid

curve. The magnitude of the semiclassical amplitude is only about 30 % of that of the quantum |
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mechanical one at around zero degree. Two reasons can be_considered for this discrepancy. One
is that the approximation AF(0) ~ Ang used to obtain Eq. (5. 17) is not applicable to this
forward scattering. The other is a diffraction effect[27], which has been ignored in deriving the
semiclassical formulae Eqs. (5. 16) and (5. 17). We discuss the former problem in the next

subsection.
6.3 Validity of the approximation A\* x Ayg

As shown in Eq. (5. 12}, the stationary phase angular morﬁenta AZ(9) differ from Ayp by a
purely imaginary quantity which is determined by the nuclear rainbow angle and the curvature
of the deflection function at the nuclear rainbow angular momentum. Therefore AT significantly
deviates from Ayp if the nuclear rainbow angle is large and/or if the curvature of the deflection
function at the nuclear rainbow angular momentum is small. For the a+%7Zr elastic scattering
at 40 MeV discussed in Sects. 4 and 5, the nuclear rainbow angle 8y and the curvature of the
deflection function at the nuclear rainbow angular momentum ©"(Ayg) are 11.5 ° and 0.136,
respectively. The modulus of the deviation of )\Si from.)\NR at the zero degree, where it gets
maximum, is 1.71 and its ratio to Ayg is 0.090. In the 30+%8Ni elastic scattering at By, =
48.4 MeV, Oy g and ©"(Ang) are 46.8° and 0.036, respectively. Hence, deviation of AE(0°) from
Ang 18 large. Its absolute value and the ratio to Ay g are 6.73 and (.196, respectively.

The success of our semiclassical calculation to reproduce the quantum mechanical caleula-
tions at forward angles for the a+*0Zr elastic scattering at Bz, = 40 MeV suggests that one
can replace AF by Ag if the ratio |\ — Ag|/Ag is less than about 0.1. This surmise is consis-
tent with the observation that the semiclassical formula given by Eq. (5. 17) well reproduces.
the magnitude of the nuclear scattering amplitude for the 20 + 58Ni elastic scattering in the
angular region between 30° and the nuclear rainbow angle, where the ratio |AZ ~ AR|/AR is less
than 0.12. How to evaluate the v 2Z |S(AF)| for complex A¥ is an open question. Incidentally,
this is related to the problem of deviation of the phase of SOD between the semiclassical and
quantum mechanical calculations discussed in Ref. {15].

In this section we discussed the forward nuclear scattering amplitude for the 80 + 58Nj
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elastic scattering at E.p,. = 48.4 MeV. In this scattering, the strong Coulomb repulsion pushes
the nuclear rainbow angle far away from the zero degree and also reduce the curvature of the
deflection function at the nuclear rainbow angle. Consequently, the glory in the shadow of
rainbow is suppressed. It is better to choose the scattering between relatively light heavy ions or
between « particles and heavy-nuclei, which has a relatively weak Coulomb repulsion, to observe

the glory in the shadow of rainbow.
7 Energy-dependence of the forward nuclear glory scattering

It is an interesting question to look for a method to distinguish the genuine forward nuclear
glory scattering from other mechanisms which lead to a resembling angular distribution at a
given energy. We have already mentioned that low energy collisions, where there exist three
active classical turning points for each partial wave, cannot be simply understood as a forward
glory scattering, because the interference between the internal and barrier waves leads to a
complicated oscillation in the total deflection function. Another interesting observation is that
the nuclear rainbow angle gradually decreases with increasing bombarding energy and becomes
negative at some critical energy on causing glory angular momenta if one plots the smooth part
of the deflection function. This behaviour is demonstrated in Fig. 9, where we show the smooth
part of the deflection function for the @ + *°Zr elastic scattering at several bombarding energies.
It was obtained by first calculating the deflection function quantum mechanically for an optical
potential scattering and then keeping only the smooth part at high angular momenta. The top
and the bottom figures have been obtained by using the energy-dependent phenomenological and
energy-independent optical potentials shown in Table 1, respectively. The former was determined
by fitting the experimental angular distribution of the elastic scattering [17] at each energy up
to Erqp.=141.7 MeV, and by extrapolating the potential parameters to Ez,p =200 MeV[18]. The
latter was identified with the phenomenological optical potential at 99.5 MeV.

We obtained the deflection function for the barrier waves practically in this way from quan-
tum mechanical calculations. The deflection function for Er,, = 200 MeV is smooth from the

beginning reflecting the fact that there exists only one physically important turning point for

¢
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each partial wave, and the decomposition into the barrier and internal waves looses meaning at
this energy. The figure shows that the nuclear rainbow angle reaches zero degree, in other words
a forward nuclear glory shows up in the classical deflection function, at about 80 MeV for the first
time as the bombarding energy is increased. The deflection functions for the energy-dependent
and the energy-independent potentials have a similar global behaviour. Fig. 9 indicates that
the bombarding energy dependence of the amplitude of the SO might become a criterion to
distinguish the genuine forward nuclear glory scattering from other mechanisms leading to a
similar angular distribution. In this section, we address to this possibility.

When the forward nuclear glory scattering takes plé,ce, the amplitude of the SOD is given

semiclassically by
B e oSt 7.1
where Ay, |S(A)] and ©'(X) are the glory angular momentum, the reflection coefficient as a func-
tion of the angular momentum A and the derivative of the deflection function with respect to
A, respectively. Fig. 10—A( the top figure ) shows the energy-dependence of the glory angular
momentum Ag. Closed and open circles were obtained from the corresponding deflection func-
tions in the top and the bottom of Fig. 9, respectively. Closed and open diamonds denote the
grazing angular momenta Ag. = £, + 1/2, for which |S(A,)| = 1/+4/2, in quantum mechanical
calculations with the energy-dependent and the energy-independent optical potentials, respec-
tively. In addition to the 7 energies in Fig. 9, the figure contains two higher energy points, i.e.
at 260 and 300 MeV.
It is interesting to notice that the grazing angular momentum is almost the same for the

energy-dependent and energy-independent optical potentials, while the glory angular momen-

tum noticeably differs for two potentials. However, the deviation between the glory and the

grazing angular momenta are within 5% even for the energy independent potential. Thus, we

approximate the glory angular momentum by the grazing angular momentum, i.e. Ag = Agr.

We assume that the grazing angular momentum is roughfy given by

kRp=n+/n?+ X2, , (7. 2)
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where n and Rp are the Sommerfeld parameter and the relative distance between the a-particle
and %°Zr at the position of the Coulomb barrier, respectively. Eq. (7. 2) leads to
Vg ) 1/2

bl

Agr = kRp (1 _1B (7. 3)

E
where E and Vg = ZpZre®/Rp are the bombarding energy in the center of mass system and
the Coulomb barrier height at Rp, respectively. ZpZr is the product of the atomic numbers of
the projectile and target. If the bombarding energy is high enough to ignore Vg /F, the grazing
and the glory angular momentum will be proportional to % as has been argued in Refs. [21, 22].

The dashed curve in Fig. 10—A has been obtained based on Eq. (7. 3), by using Rp =
9.43 fm and Vg = 11.2 MeV for the optical potential at Ez.p = 99.5 MeV( & = 4.19 fm™1 ),
respectively. Although the dashed curve has a similar energy-dependence as open circles, the
former significantly overestimates the latter. In order to obtain the glory angular momentum
with the correct magnitude shown in Fig. 10—A, we introduce an effective radius R, in such a
way that A, at 99.5 MeV is correctly reproduced when Ay, and Rp in Eq. (7. 2) are replaced
by Ay and R;. We then keep R, energy independent and use Eq. (7. 2) to obtain the energy
dependence of the glory angular momentum with the correct magnitude. The glory angular
momentum thus obtained is given by

1/2
Ag = kRpz 1 (1 - w%) T = %]-3- - (7. 4)
9

and is shown by the solid curve in Fig. 10—A, which agrees very well with open circles. In
passing, we notice that Fig. 3 in Ref. [5] shows that the backward glory angular momentum
and the nuclear rainbow angular momentum are very close to the grazing angular momentum
and that they have a very similar energy-dependence.

It is not easy to derive an analytic expression for the derivative of the deflection function
directly from the semiclassical phase shift in WKB approximation for general cases. One of the
authors( M. S. H. ) derived in Ref. [22] the following analytic expression of the derivative of the
deflection function at the glory angular momentum ©'(;)

— ZP‘_'/';’TE‘2

0~ Z (r. 5)
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by using a high-energy approximation for the nuclear phase shift and by assuming a constant
value for the glory impact parmater b, = Aj/k. In Eq. (7. 5) a is the surface diffuseness
parameter of the real part of the optical potential whose shape is assumed to be of Woods-
Saxon type. Eq. (7. § ) indicates that ©'(A,) has. k~3-dependence. Replacing Ag in Eq. (7. 5)

by Egs. (7. 3) and (7. 4), we obtain two alternative expressions for the r.h.s. of Eq. (7. 5)

1V, Ve\~1/?
EEB(I - f) (7. 6)
and
—1/2
L %(lm%) . (7. 7)

respectively. Fig. 10~B shows the energy-dependence of the derivative of the deflection func-
tion at the glory angular momentum. Closed and open circles have been calculated quantum
mechanically for the energy-dependent and independent optical potentials, respectqively. They
are almost the same at each energy. The dashed and solid curves are given by Eqs. (7. 6) and
(7. 7), respectively. Both the solid and dashed curves reproduce very well the closed and the
open circles, though the latter is better, except for those at 79.5 MeV, which seems to lie on the
borderline. This means that Eq. (7. 5) well describes the energy-dependence of the derivative
of the deflection function at the glory angular momentum. Also, both the solid and the dashed
curves behave like ck~3( dotted curve ), ¢ being a constant.

Fig. 10—C shows the energy-dependence of the reflection coefficient at the glory angular
momentum |S(Ay)|. Closed and open circles have been calculated quantum mechanically for
the energy-dependent and independent optical potentials, respectively. If the approximation
Ag = Agr is adequate, the reflection coefficient at the glory angular momentum is expected
to have a very weak energy-dependnece around 1/+/2( dashed curve ). On the other hand, it
is also expected to have a exp (—c/k)-dependence, ¢ being a constant( dotted curve ), in the
high-energy approximation[22]. However, neither the closed circles nor the open ones obey these
expectations concerning the energy-dependence. We therefore fitted the open circles by the

following two functions

|S(Ag)| = exp (aEb(l - %)c) _ (7. 8)
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and
|S(Ag)| = exp (a’Eb' (1 - x%) d) : (7. 9)
The obtained parameters are ( a, b, ¢ ) = ( 0.654, —0.335, —6.35 ) and { &', ¥, ¢ ) = ( 0.675,
—0.339, —5.58 ). They are almost the same, so that we draw in Fig. 10—C only one curve( the
solid curve ) to represent them.
Substituting |S(Ag)| = 1/v/2, Egs. (7. 3) and (7. 6) into Eq. (7. 1) in the cases where
the approximation A; =~ X, is reasonable, we obtain the analytic expression for the forward

amplitude of the SOD as follows

| £ (0)] N ( hra )1/2 14 VB>3/4 1/4( VB)3/4
47r—k = 4rRp e E (l iy x E 1-— 5 , (7. 10)

where p is the reduced mass. On the other hand, substituting Eqs. (7. 4), (7. 7) and (7. 9) into
Eq. (7. 1) when Ay # Ay, we obtain the following modified analytic expression for the forward

amplitude of the SOD

Ifn(0)| _ 4nRp( 2hma \/? Vg 3/4
TR e (mva) E”4(1—m§) SO

3/4
. E1/4(1-x%’-) S()] - (7. 11)

Eq. (7. 11) reduces to Eq. (7. 10) if x in Eq. (7. 11) is nearly equal to 1. Furthermore, if Vz/E
is small enough to be ignored, Egs. (7. 10) and (7. 11) lead to EY/%-dependence of the forward
amplitude of the SOD, which has once Been obtained by using the high-energy approximation
in Ref. [22].

We now compare the predictions of the analytic expressions Egs. (7. 10) and (7. 11) with
the direct quantum mechanical calculations. Fig. 11 shows the bombarding energy-dependence
of the amplitude of the SOD at very forward angles for a-+0Zr elastic scattering. Closed and
open circles have been calculated quantum mechanically with the energy-dependent and the
energy-independent optical potentials, respectively. The dashed and the solid curves are given
by Egs. (7. 10) and (7. 11), respectively. Despite that the solid curve has been obtained by

using Ag, |©'(A,)| and |S(A,)| which can reproduce respective quantum mechanical caleulations,
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it significantly overestimates open circles at energies higher than 90 MeV, where the forward
nuclear glory scattering is actually taking place. Moreover, the ratio of the deviation between
the solid curve and the open circles to the latter increases from 8% to 28% when the bombarding
energy is increased from 100 MeV to 300 MeV. This suggests that Eq. (7. 1) derived in the
stationary phase approximation cannot give the correct magnitude of the forward nuclear glory
scattering amplitude and is not adequate to make a quantitative analysis. This failure could be
understood as follows. The analytic expression Eq. (2. 2) has been obtained in the stationary
phase approximation based on the assumption that the deflection function around zero degree '

can be well approximated by a linear function as
O\ =0 (M)A -2y . (7. 12)

©'()g4) contains the information of how many partial waves around the glory angular momentum
contribute to the forward scattering causing a caustic. As Figs. 9 and 10—B show, the slope of
the deflection function at the glory angular momentum decreases with increasing bombarding
energy, and more partial waves around the glory angular momentum contribute to the very
forward scattering. However, the deflection function deviates from Eq. (7. 12) in heavy ion
scatterings and scatterings between o-particles and nuclei at high angular momenta, because
the Coulomb rainbow angle becomes close to zero degree. A reason why Eq. (7. 1) gives
systematically larger SOD amplitude than the quantum-mechanical calculations( open circles )
will be that Eq. (7. 1) includes false contributions from very high partial waves which should
not play a role in the actual forward nuclear glory scattering. In order to make a quantitative
analysis of the forward nuclear glory scattering amplitude, we need a more elaborate analytic
expression which takes the above effect into account.

Another problem of Eq. (7. 11), which led to the solid curve in Fig. 11, is a slightly
inconsistent treatment of Ag/k, ©'()g) and [S(A,)]. Though the energy dependence of the
former two has be treated based on the approximation Ay & Ay, we used the more detailed
energy dependence for A;. The dashed curve in Fig. 11 is more consistent in that respect. An

interesting observation is that the energy dependence of the dashed curve looks similar to that
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of the open circles, though the magnitude is very different.

We now reanalyse by keeping only the energy dependence of Eq. (7. 10). The dotted and
dot-dashed curves in Fig. 11 have been obtained by assuming c; EY/4(1 — Vg /E)3/* and ¢y E'/4
for |fx(0)/k|. The coefficients ¢; and ¢y have been determined to reproduce the open circle at
99.5 MeV. The upper part of Fig. 12 shows how the value of ¢; varies when one changes the
normalization point from 99.5 MeV to the other energies. The lower part of Fig. 12 shows the

corresponding x? values defined by

‘ |fn(0) /K| — cL EY4(1 — Vg /E)3/% |2
Xz:} In(0)/k . (7. 13)

where the sum over 4 runs over all data points. Fig. 12 clearly shows that the reaction mechanism
changes around 80 MeV. It is interesting to notice that this energy is close to the first kind
of critical energy discussed in Ref. {18], where the corresponding grazing partial wave looses
its potential pocket. Judging from these analyses, we consider that the bombarding energy-
dependence of the forward amplitude of the SOD gives a criterion of the occurrence of the

genuine forward nuclear glory scattering.
8 Summary

We discussed the nuclear scattering amplitude in elastic heavy ion scattering and in the
scattering of o particlés from nuclei at extremely forward angles through the SOD analysis.
We showed that the envelope of the SOD in the very forward angular region, or the angular
distribution of the nuclear scattering amplitude, behaves like the zeroth order Bessel function
with a fixed frequency even if no forward nuclear glory scattering is taking place in the classical
sense.

For the a+%Zr elastic scattering, we gave a semiclassical interpretation of this new phe-
nomenon in terms of the shadow effect of the nuclear rainbow scattering. We named this glory
in the shadow of nuclear rainbow and derived an analytic expression of the corresponding nu- _
clear scattering amplitude in the uniform stationary phase approximation Eq. (5. 17). We also

showed that the standard interpretation of the characteristic oscillation pattern in terms of the
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-interference between the far and near side components holds for this phenomenon, too.

The elastic 180 + 58Ni scattering shows a similar behaviour of the nuclear scattering ampli-
tude, and could be understood as another example of this new phenomena. However, the same
semiclassical formula did not work so well compared to the case of a+%0Zr elastic scattering.
We showed that the absorption plays a crucial role in this scattering. A simultaneous treat-
ment of the refractive and diffractive effects will be needed to properly describe this system.
Another reason of the failure of the present semiclassical formula for this systém is that the
strong Coulomb repulsion pushes the nuclear rainbow angle far away from the zero degree and
reduces the curvature of the deflection function at nuclear rainbow angular momentum Ayg.
They invalidate the approximation to replace the complex stationary phase angular momentum
given by Eq. (5. 12) with Ayg, which has been used in deriving Eq. (5. 17).

The analysis of these two systems implies that scattering systems with a weak Coulomb
repulsion is preferable if one wishes to extract informations on the nuclear interaction between
heavy ions or between « particles and nuclei through the SOD analysis. We should notice also
that a large value of Sommerfeld parameter facilitates the SOD analysis. Consequently, the
scattering between light heavy ions or between « particles and heavy-nuclei at energies not far
above the Coulomb barrier are good candidates to observe the glory in the shadow of nuclear
rainbow |

Our study shows that the angular distribution which behaves like the zeroth order Bessel
function with a fixed frequency cannot be a definite evidence of the genuine forward nuclear glory
scattering. A natural question is then how one can distinguish the genuine forward nuclear glory
scattering from the other mechanism leading to a similar angular distribution. In this connection,
we studied the energy dependence of the amplitude of the SOD at very forward angles and of the
corresponding deflection function by taking the a+%0Zr elastic scattering from 40 to 300 MeV
as an example. We have shown that one can extract a critical energy, above which the typical'
angular distribution having the properties of the zeroth order Bessel function can be associated
with the genuine forward nuclear glory scattering, by studying the energy dependence of the

amplitude of the SOD at extremely forward angles.

26



Acknowledgments

M.U. and N.T. thank the late Prof. Dr. T. Yamaya and Dr. H. Ishiyama for useful dis-
cussions. M.U. acknowledges support from Fundacao de Amparo 4 Pesquisa do Estado de Sio
Paulo ( FAPESP }. M.P.P and M.S.H acknowledge support from the Brazilian National Research
Council ( CNPq ) and FAPESP. This work is also supported by the Monbusho International
Scientific Research Program: Joint Research: contract number 09044051; and in part by the
Grant-in-Aid for General Scientific Research, Contract No. 08640380 from the Japanese Ministry

of Education, Science and Culture.

Appendix: Derivation of the semiclassical formula
for the nuclear scattering amplitude Eq. (5. 16)

In this appendix, we derive the semiclassical expression of the nuclear scattering amplitude
given by Eq. (5. 16) in the uniform Bessel approximation.
The first step is to change the variable ¢ and the argument of the exponential in Eq. (5. 15)

to a new variable ¢ and a simpler function by one-to-one mapping,
H
20(AnR) + AnrOcos ¢ + (Ong + 0 cos d)as(8, ¢) + ——gﬁag’(ﬂ, @) — a(@)+b(0) cosp . (A. 1)

The mapping is done such that the r.h.s. of Eq. (A. 1) has the same structure of stationary po-
sitions as the Lh.s., and that each end of the Lh.s. in Eq. (A. 1) is mapped on the corresponding

end of the r.h.s. These requirements impose the following relationships;

Ho=0=0  dlo=m=n (a.2)
250) + Awr + (O £ 0)oF(0) + NELIOF =a@) £0) , (A 3)
where
oF(O) = ¥F-wr
Ay = A(0,0=0) A =X(0,p=7) . (A. 4)
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Using Eqs. (A. 3) and (5. 12), -

a(8) £b(8) = 26(\nr) £ Avgf+ af{%(afﬁ + (Inp £ 9)}

= 26(Aygr) £ Anvrf . (A. 5)

Thus, one can obtain the functions a(#) and b(8) as

a(8) =2600wr)  b(6) = Avrf . (A 6)
Eq. (5. 15) now reads,
f (Q)N 3 L( KTR)_]-/S eZiﬁ{)\NR}/wd ei)\NRBCOSlPG(Q (}5( )) (A 7)
N ik \ sind \ 2 ad PP '

with

6(0.4(0)) =

-1/3
(%)AS(Q’QS(‘P))'S(AS(Q"’S("")))'A]" [( IQVR) (Onr+0cosd(p))| - (A 8)

The next step is to replace the function G(8, ¢(p)) by a suiﬁ:able simple function [9, 28],
G(0,d(0)) = p(0) + q(6) cosp + A, 0) sing . (A. 9)
The integral in Eq. {A. 7) then becomes
]0 " dp {p(8) + q(6) cos ¢ + e, B) sin p}ePNRISE (A. 10)

The first two terms in Eq. (A. 10) can be analytically calculated and expressed in terms of the

zeroth and first order Bessel functions, respectively[24],

p(6) /Dﬂd‘Pei'\NRgmw = wp(#)Jo(Anrf) (A. 11)

Tr .
q(@)[ dipcosp ePNRICSY  —  ira(0V T (AngE) . (A. 12)
0
We evaluate the third term in Eq. (A. 10} in the stationary phase approximation,
T . ,
[ diph{¢p, 0) sin e VRIS o B0 @) sin poeirVREICS YO (A. 13)
0
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where ¢p s the stationary phase position and is determined by
d .
&;{)\NRHCOS(,D} = —Aygfsing =0 . (A. 14)

This equation shows that the third term in Eq. (A. 10) can be ignored in the stationary phase

approximation. Consequently, the nuclear scattering amplitude takes the form of

" -—1/3 )
In(8) ~ %% ‘S“l‘i—g (_g_}i) eng(ANR){P(B)Jo()\NRQ) +"':Q(9)JI()\NR9)} - (A. 15)

We next determine the p(f) and ¢(#). Substituting the stationary phase values ¢ = 0 (¢ = 0)

and ¢ =7 (¢ = 7) into Eq. (A. 9), we obtain

p0)+o0) = SO0 [(B2) Vo) (2] ) oo
p(6) — of6) = A:|S(A:)|Ai[(—§’£)_”3(em-e)](%m) L am

We now consider the property of the mapping ¢{y) to determine the expressions of ( g% 0)
(pz

and (% ) in terms of the scattering angle, nuclear rainbow angular momentum and the.
p=m s

stationary phase angular momentum. We assume that the following equality holds in the neigh-

borhood of $p=0(p=0)and p ==n(p =)

W6) +58)cosp = 20(Awm) + Awrdcos () + TNE(\(, 6(9) ~ Awn)’

+ (Onr +0cos () (As (0, d(0))} — Avr) (A. 18)

Partial differentiation of both sides of Eq. (A. 18) with respect to ¢ leads to

o 30, 2 O 89
b0)sing = ZSNEO(0,8(0) — ) Gt - 32
Ors O . o¢
+ (Bnp + Gcosd(p)) 5% By /\sé‘smqﬁ(go)% . (A. 19)
On the other hand, Eq. (5. 12) leads to
Ods _ Tifsing ~0 . | (A. 20)

06~ [20lp(6nr +Hcos )
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The second approximate equality holds because we are considering Egs. (A. 18) and (A. 19) in

the vicinity of the stationary phase positions ¢ = 0 or . Using this approximation, we obtain

. d .
5(0,8(0)Fsin ) £ = Aatsingy | (A. 21)
where we replaced the partial differentiation 2 P by the total differentiation d¢v ie.
¢ _ d¢ (A. 22)

dp  dp
since the ¢(¢y) is the one-to-one mapping[9]. Further differentiating both sides of Eq. (A. 21}
with respect to ¢ and using again Eqgs. {A. 20) and (A. 22), we obtain

_ d(}5 2 2¢
AnRBcos = X0c08 ¢ do + As Gsmq’b (A. 23)

By putting =0 (@ =0)or¢=x ( p =7 ) in Eq. (A. 23), we obtain the derivative of ¢(¢p).

at ¢ = 0 and 7 as,

2
,ﬁe(d‘ﬁ ) = Angf (A. 24)
4o | p=o,(x)
de {ANR8}1/2
. + : A.25)
d{p p=0,(m) AS:FH ( )

We choose the positive root in Eq. (A. 25), since it is preferable if ¢(y) increases with ¢.
Substituting Eq. (A. 25} into Eqgs. (A. 16) and (A. 17), we obtain

p(6) = W[\/ﬁs/\ 1] ( %) ™ tove 1 0)
+ OISO AL [( N )_1/3(9”—9)“ (A. 26)

o) = EW [\/Ew(f\ [( 2) " own +0)
iisonia] (%)™ on -0 e

Substituting Eqgs. (A. 26) and (A. 27) into Eq. (A. 15), we finally reach the analytic expression

|

of the nuclear scattering amplitude given by Eq. (5. 16).
Finally, we wish to comment on the stationary phase evaluation of the integral over ¢ in Eq.

(A. 10). The function h{y,f) contans Airy function Ai as indicated by Eqgs. (A. 8) and (A. 9).
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It oscillates in the bright region, and could change fairly fast in the shadow region though it is
a monotonic function. These properties might affect the stationary phase evaluation of Eq. (A.

10). We defer, however, this problem to future works.
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Figure Legends

Figure 1: The osop for the a+""Zr elastic scattering( the solid curve ). Parameters of
the semiclassical calculation( the dashed curve ) are og = 1617 mb, |fx(0.02°)] = 19.88 fm,
arg fn(0.02°) = —1.328 rad. and the frequency of the zeroth order Bessel function = 19.00,

respectively.

Figufe 2: The deflection functions for the a+%Zr elastic scattering( the solid curve ) and for
the corresponding Rutherford scattering{ the dashed curve }. The former is given by Eq. (4. 3)
using the phase shifts calculated quantum mechanically. The Iong-daShed and dot-dashed curves _
show the deflection functions for the barrier and internal waves, respectively. They have been
calculated using the three-turning-points semiclassical formulae for the S-mairices[5, 19].For
barrier waves the Coulomb rainbow angle is about 18° at A = 23 and the nuclear rainbow angle
is about 11° at A = 19. The deflection function for the internal waves looses its physical meaning
for angular momenta larger than 40, since there ié no potential pocket for those high partial

waves.

Figure 3: Reflection coefficients as functions of the angular momentum. The solid, long-dashed
and dot-dashed curves are those for the total, the barrier and the internal waves, respectively. -

The closed circles have been calculated quantum mechanically.

Figure 4: The angular distribution of the modulus of the nuclear scattering amplitude for
the a+%Zr elastic scattering at Ez,. = 40 MeV. The solid curve was calculated quantum
mechanically, while the dashed and the dot-dashed curves using the semiclassical formulae Eqs.
(5. 17) and (5. 18), respectively, where the nuclear rainbow angular momentum ¢{yg = Ang —
1/2, the curvature of the deflection function at Aygp ©"(Ayr) and the reflection coefficient

|S(Anr)| have been taken to be 18.6, 0.136 and 0.700, respectively.

Figure 5: Reflection coefficients as functions of the angular momentum for 80 + 38Ni scat-

tering. The bombarding energy is 48.4 MeV in the center of mass system.
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Figure 6: The deflection functions for the 30 + 8Ni elastic scattering at E, ,, =48.4 MeV( the
solid curve } and for the corresponding Rutherford scattering( the dashed curve ). The nuclear

and Coulomb rainbow angles are about 46° at A = 34 and about 49° at A = 38, respectively.

Figure 7: Dependence of the deflection function on the strength of absorption. The scattering

system is the same as that in Fig. 6.

Figure 8. Angular distribution of the modulus of the nuclear scattering amplitude for the
same system. The solid curve has been calculated quantum mechanically, The dashed curve is
the angular distribution of the semiclassical nuclear scattering amplitude given by Eq. (5. 17),
where the nuclear rainbow angular momentum Ay g, the nuclear rainbow angle, the curvature of
the deflection function at Ay g and the reflection coefficient at Aypg are taken to be 34.4, 46.8°,

0.036 and 0.729, respectively.

Figure 9: Incident energy-dependence of the deflection function for the a+%°Zr elastic scat-
tering. The top and bottom figures are for the energy-dependent phenomenological and energy-
independent optical potentials[17, 18] shown in Table 1, respectively. The latter has been iden-

tified with the phenomenological optical potential at 99.5 MeV.
Figure 10: Incident energy-dependences of the glory angular momentum( the top figure; Fig.

10—A ), the derivative of the deflection function( the middle figure; Fig. 10—B ) and the
reflection coefficient at the glory angular momentum( the bottom figure; Fig. 10—C ) for the

a+Zr elastic scattering.

Figure 11: Bombarding energy-dependence of the amplitude of the SOD for the a-+297r elastic
scattering. The closed and open circles have been obtained from quantum mechanical calcu-
lations for the energy-dependent phenomenological and energy-independent optical potentia,l.s,
respectively. The solid and dashed curves were calculated by Eqgs. (7. 11) and (7. 10), respec-
tively. The dotted and dot-dashed curves were obtained by assuming EY/4(1 — Vp/E)3/4 and

E4 behaviours.
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Figuré 12: Critical energy for the genuine forward nuclear glory scattering. The top figure
shows the dependence of the fitting parameter ¢; on the normalization energy. The bottom figure
shows the corresponding x? value calculated by Eq. (7. 13). The system is a+?Zr scattering.
The 9 energies in Table 1 have been chosen as the normalization energy. The resultant critical

energy is indicated by the vertical dashed line.
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Table 1: Optical potential parameters for the elastic a4-%Zr scattering at each bombarding
energy and those for the elastic 20 + %¥Ni scattering at E. . = 48.4 MeV. The potential form
is given by U(r) = —Vof[(r — Ro)/ao] — iWofi(r — Rw)/aw] with f[z] = [l + exp (z)]~'. The
values of parameters with upper suffices a}, b) and ¢) are taken from Refs. [16], [17] and [19],
respectively.

Erg. Vo Ry ag Wy Ry aw
(MeV) (fm) (fm) (MeV) (fm) (fm)

a+%Zr 400 MeV® 1123 6.619 0524 1528  6.973 0.344
59.1 MeV® 1206  6.054 0.676  20.60 6.794 0.572
79.5 MeV® 1412 5490 0.821  18.49  7.058 0.565
99.5 MeV®)  133.3 5535 0.805 19.63  7.040 0.562
118.0 MeV® 1244 5624 0.792  20.55  7.036 0.566
141.7 MeV¥ 1183 5660 0.787  20.84  7.009 0573
200.0 MeV® 1050 5579 0.801  19.30  7.036 0.567
250.0 MeV?) 9312 5579 0.801  20.64  7.036 0.567
300.0 MeV®)  80.70 5579 0.801  20.93  7.036 0.567

1BO498NI  63.4 MeV® 100.0 7.790 0.55 20.0 7.790  0.55
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