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Abstract

The interactions that bring a binary atom system to an intermediate state
molecule in the Feshbach resonance create in the dilute atomic Bose-Einstein

condensate (BEC) a second molecular condensate component. The atomic

and molecular condensates interact by coherently exchanging pairs of atoms.

We discuss a signature of this coherent inter-condensate tunneling: Josephson-
like oscillations of the atomic and molecular populations in response to a
sudden change of the detuning. The tunneling energy depends explicitly on
the volume and its dependence suggests that the ground state is a dilute BEC

with the liquid-like property of a self-determined density.
PACS numbers(s):03.75.F1, 05.30.Jp, 32.80Pj, 67.90.+z
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As dilute gases, the atomic Bose-Einstein condensates [1}- [3] are amenable to atomic ma~
nipulation and observation techniques. As superfluids [4], these dilute condensates exhibit
an unusual degree Qf flexibility, promising novel studies of macroscopic quantum coherence.
For instance, the notion that external fields can alter the inter-atomic interactions [5] sug-
gests the study of condensates with inter-particle interactions that can be experimentally
controlled [6]. Of the proposed schemes, the low energy Feshbach resonance [7] — [12] has
attracted much attention and experimental efforts recently led to the observation of such
resonances [13]- [16]. In this letter, we point out that the Feshbach resonance affects the .
condensate system more profoundly than altering an effective inter-particle interaction: the
molecules, formed in the intermediate state of the binary atom resonance, occupy a second
condensate component in the many-body BEC system. The atomic and molecular conden-
sates interact in part by coherently exchanging pairs of atoms. This interaction implies
interesting and unusual properties, of which we discuss two particularly relevant examples:
(i} The molecular condensate, even. if it is small in the off-resonant regime, can reveal its
presence by means of Josephson-like oscillations of the atomic and molecular populations
in response to a sudden change of the detuning. (ii) Close to resonance, the coherent inter-
condensate tunneling binds the dilute many-body BEC to a system with the liquid-like
property of a self-determined density. Thus, not only can macroscopic quantum coherence
be observed differently, its manifestation can be truly novel.

In the low-energy Feshbach resonance, trapped alkali atoms interact in an external mag-
netic field B. A rearrangement of the electronic spins brings the binary atom system to an
intermediate bound molecular state. As states of different spin arrangement, the detuning
¢, which is the energy difference of initial and intermediate states, depends on the magnetic
field strength (e proportional to the deviation of |B| from its resonant value). The magnetic
field then provides the knob to alter and control the effective binary atom interactions.

The low-energy binary atom interactions are described by an effective scattering length
that includes a resonant term. However, in spite of the BEC’s diluteness, the particles in

a near-resonant condensate do not interact as binary atoms. One indication that a binary
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collision description becomes problematic, is the vanishing of the resonance width in the

limit of zero relative velocity. As a consequence, the resonant contribution of the effective

scattering length, ~ €', diverges and the two interacting atoms can spend an infinite time
in the molecular state as ¢ — 0.

Thus, rather than starting from the @ priori assumption of an effective scattering length,

we include the molecular states explicitly in the many-body description [17]. In second

- quantization, the coupling to the closed channel that creates the intermediate state molecule

“in the binary atom system gives the following contribution to the Hamiltonian:

~
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where 1,5,1 and ?,@m denote the field operators of the atoms and the quasi-bound molecules,
respectively, and « represents the molecular coupling matrix element, which is energy in-
dependent in the relevant low-energy limit. In the binary atom system, Eq.(1) reproduces
the correct resonant behavior. In the many-body system, we account for the elastic atom-
atom, molecule-molecule and atom-molecule interactions by means of the corrresponding
_interaction strengths, A,, A, and A [18]. Measuring energy relative to that of noninter-
acting atoms, the detuning ¢ makes its appearance as the single molecule energy, and the

many-body Hamiltonian is
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where the position dependence of the field operators is understood. Bose-Einstein conden-
sation is generally characterized by a non-vanishing order parameter, (1,@) = ¢ # 0, which
“we refer to as the condensate field. We obtain the time evolution of the fields most easily
from the Heisenberg equations, z'hv,za = [1,@,1, H 1, ih'czm [¥m, H]. Under the assumption of

complete coherence, e.g. (7,5&1[;&) ~ ¢2, appropriate for the dilute zero temperature conden-




sates, the expectation value of the Heisenberg equations yields coupled non-linear equations

of motion that replace the single-condensate Gross-Pitaevskii equation.[19]~ [20]:
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In the above equations, n, and n,, denote the atomic and molecular condensate densities:
e = |¢a|* and nym = |#m/>. The a coupling terms describe coherent inter-condensaté”
exchange of atom pairs. The source term ad?/+/2 experienced by the molecular field, in-"
dicates that the molecular condensate forms dynamically {22] in the presence of an atomic |
condensate.

The current experiments resonate on molecular states of high vibrational quantum num-
ber v. Consequently, interactions that change the molecular state (decreasing v) are par-
ticularly relevant. The “fragility’ of these molecules is expressed by high rate constants ¢,
and ¢y, for state-changing collisions with atoms and other molecules (estimates [23] give

1, as compared to c,, ~ 107 ¥cmBsec™ for alkali atom state

tma ~ 107° — 107 emBsec™
changing collisions). For non-condensed systems, the loss-processes can be accounted for by
a rate equation, M, = —[Cpofa + CmmMn]nm. For BEC systems, the same collisions affect
the coherent dynamics. A lowest-order perturbation treatment modifies the q'ﬁm—equa,tion by

rendering the interaction strengths absorptive: A — A — ificm o/2 and Ay — A — them m /2.

In the off-resonance limit, which we define here as € >> An and € >> A,n, where n de-

notes the atomic condensate particle density, n = n,+2n,,, the molecule fraction is small and

the state-changing molecular collisions destroy the condensate slowly. In spite of the small-
ness of the molecular condensate, the dynamical response to a sudden change of the magnetic -
field strength (i.e. detuning) carries a detectable signature of its presence: Josephson-like

oscillations of the atomic and molecular populations. In this limit, propagation of the atomic

condensate is hardly affected by the molecular condensate: ¢, ~ /nexp(—il,nt/h). In the

same approximation, the molecular condensate field evolves according to a linear equation:




hdm = |e(t) + In — 1122 Pm + Zn exp(—2iAnt) , (4)
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where 7, denotes the decay rate of a single molecule imbedded in the atomic condensate:
Ym/f = cman. Under a sudden change of the detuning, from ¢ = ¢;, to ¢ = €7 at ¢ = 0, the

molecular field, initially at ¢, (¢ = 0) = ¢y, evolves as

G (t) = oo €XP [—%(ZAan)] + [P0 — doo] X €XD [—%(Ef + )\n)] exp (—2—";;-) . {9)
where ¢ is the molecular field value at large times, t >> (A/Ym), doo = —an/[v2(e; +
An — 2Xan — ©Ym/2)] & —an,/(v/2¢f). The molecular population oscillates with angular
frequency €; + An — 2X,n = €5, and magnitude 2|@oo(Po — Poo)| €XP(—Vmt/2h), damped out
on the scale of the lifetime of a single molecule. At a later time, the system has relaxed
to its ‘quasi-equilibrium’ and the molecular field takes on its stationary value, ¢. For
more general variations of the detuning in the off-resonance regime, populations oscillate if
|é/€l << 7m/R, or, since the detuning is proportional to the magnetic field variation from
its resonant value By, if |B/(B — By)| << Ym/F. In the opposite limit, |é/e] << Ym/h,
the system follows its equilibrium value adiabatically: ¢,(t) = —~an(t)/v/2¢(t). For sudden
near-resonant detuning changes [24], the qualitative picture remains: damped population
oscillations appear, while molecular decay depletes the condensate, as illustrated in Fig.(1).
The oscillations can be detected by near-resonant imaging of the molecules, as they give a
modulation to the image intensity that oscillates at the same frequency. The cause of thes'e
oscillations, coherent inter-condensate boson exchange, is akin to Josephson inter-condensate
tunneling but.differs from it in a fundamental aspect: each tunneling event combines two
atomic bosons to form a single molecular condensate boson. This difference spectacularly
aﬂters the near-resonant stationary state properties, as we show below.

We assume that boson decay is negligible on the time scale of observation, and that
the system has reached its quasi-equilibrium {25]. The tunneling energy contribution,
(Hat—mat) = (0/V/2) [ d®r {¢%,¢2 + c.c.}, depends on the relative phase of both conden-
sates. This energy also exhibits an explicit dependence on the volume. To see that, we write

the energy per atomic particle, /N, of a homogeneous BEC, confined to a volume £
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where N, (N,,) denotes the average number of atoms (molecules). Since (N,/N) = 1 —
2(Nm/N), the energy is a simple function of the molecule fraction. The ground state fraction
follows from minimizing £/N. In Eq.(6), the interaction contribution is proportional to N/,
the tunneling contribution to \/m, and the detuning term does not depend explicitly of *
the volume. |

In the ultra-dilute limit, Q >> N(A./a)?, where A, is representative of the interaction

strengths (A;, A and A}, the interaction energy ~ A.(N/Q) can be neglected. Close 6

resonance, |e| << am , the detuning is also negligible and the molecule fraction that
minimizes the energy is (IV,,/N) & 1/6 — a third of the atoms is converted to molecules. How-
ever, the pressure of the on-resonant ultra-dilute system, P = —9E/0Q = —a~/nn/(3v/3),
is negative and the system is mechanically unstable. Interestingly, this instability does not
imply collapse. As the system responds to the negative pressure by decreasing its volume,
the interaction energy (~ Q7!), growing faster than the tunneling energy (~ 2~/?), can sta-
bilize the system. In Fig.(2), we show the energy as a function of the atomic particle density.
For near-resonant detuning, the tunneling energy dominates in the ultra-dilute limit, causing
the energy to decrease with increasing density. In the high density limit, << N()\./a)?,
the interaction energy dominates and, for the interaction strengths of Fig.(2), the energy
increases linearly with density. In between, the energy reaches a minimum in the density
region ~ (cr/Ar)?, where interaction and tunneling energies compete. The minimum sug-
gests that the unconfined physical system relaxes to its lowest energy state by adjusting
its volume to take on the density of minimum energy. Such self-determined density is a
typical liquid-like property, but the calculated values for scattering lengths and a-parameter
(e.g. for Na) give self-determined densities that are not greater than the current atomic

trap condensate densities: ~ 10'* — 10"cm 3. The low value is interesting, as the Feshbach




resonance could give the first example of a rarified liquid. The importance of the low density
lies in the fact that a liquefied condensate could survive spin flip and recombination long
enough for the system to be studied. Finally, we note from Fig.(2) that the self-determined
density depends on the detuning, so that a variation of the detuning causes the liquefied
condensate to readjust its volume.

A direct observation of the liquid-like behavior suggests itself: after switching off the

trapping potential, the liquefied condensate remains as a droplet. Eventually, the droplet

-would fall under gravity. For this and other reasons, it might be desirable to study the

system in a trap. The distinct density profile of a trapped liquefied condensate provides an
alternative signature. Here we consider a shallow trap with a liquefied condensate that is
large enough to justify a Thomas-Fermi description. The local density then follows from

equating a local chemical potential to the difference of the system’s chemical potential and

_ the potential energy. The chemical potential depends on density and detuning, up(n,e€).

~ Furthermore, not all atomic particles experience the same external potential: we assume an

.. optical trap in which the atoms experience a trapping potential V (r), but the molecules do

not. Alternatively, we may pretend that all atomic particles experience the V' (r)-potential,
as long as we subtract the molecule contribution by assigning a local detuning € — 2V (x) to

the molecules. The Thomas-Fermi equation then reads:
plnye—2V)=pp -V | (7}

which has to be solved for the density at each position within the droplet, while requiring

the pressure to vanish at the boundary (hence the density abruptly decreases from its self-

“determined value to zero at the edge). If the liquefied system is not too compressed, the

energy per particle of a homogeneous system can be approximated as

10— e (B2 o

where the self-determined density n;, the minimum energy e, and the compressibility «
(k1 = —QAP/ON = n30*(E/N)/On?) all depend on the effective detuning. The chemical

potential u(n; €}, corresponding to Eq.(8), u = 8E/ON, is
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b= et 1 (n—ns)+ 3 (n-—’ns)Q' (9)
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Finally, in a shallow trap of potential variation significantly less than «,/n;, the spatial

variation of the effective detuning may be neglected, ¢ — 2V = ¢, and Eq.(7) gives:

nir) = 2 [2 /1 66,V — V(r)]] , (10)

where V,, denotes the potential at the equipotential surface of the boundary. The trap'
compresses the middle of the droplet causing a density increase that is determined by the .'
compressibility. Note that a measurement of the profile determines the compressibility.

In summary, we have pointed out that the ground state of a Feshbach resonant BEC
is a hybrid atomic/molecular condensate. The atomic and molecular condensates interact™
by coherently exchanging pairs of atoms, and we have discussed two of the most important
implications of this manifestation of quantum coherénce: Josephson-like population oscilla-
tions in response to a sudden change of the detuning, and the near-resonant liquefaction of
the condensate ground state.

One of us, E.T., thanks P. Milonni for interesting discussions. The work of M. H. was
supported in part by the Brazilian agencies CNPq and Fapesp. and of A. K. in part by
the U.S. Department of Energy (D.O.E.) under cooperative research agreement DEFC02-
94ERA418.




REFERENCES

[1] M. H. Anderson, J. R. Ensher, M. R. Mathews, C. E. Wieman, and E. A. Cornell,
Science, 269, 198-201 (1995). |

[2] K. B. Davis, et al., Phys. Rev. Lett. 75, 3969-3973 (1995).

[3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett, 75, 1687-
1690 (1995); C. C. Bradley, C. A. Sackett and R. G. Hulet, Phys. Rev. Lett. 78, 985
(1997).

[4] The dilute condensates are superfluid in the sense that they are characterized by a

complex field, the phase of which determines a superflow.

[5] In addition to the Feshbach resonance, other schemes have been proposed to alter the
inter-particle interactions, e.g. by means of external electric fields, see P. W. Milonni
and A. Smith, Phys. Rev. A, 53, 3484 (1996), and P.O. Fedichev, Yu. Kagan, G. V.
Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 77, 2913 (1996).

[6] In view of the BEC’s sensitivity to these interactions which determine not only the equi-
librium shape but also the stability of the condensates, such experiments can elucidate
such fundamental issues as the mechanism of collapse of unstable condensates, see, e. g
C. A. Sackett, H. T. Stoof, and R. G. Hulet, Phys. Rev. Lett. 80, 2031 (1998); M. Ueda
and A. J. Leggett, Phys. Rev. Lett. 80, 1576 (1998); Yu. Kagan, G. Shiyapnikov, and
J. Walraven, Phys. Rev. Lett. 76, 2670 (1996); E. Shuryak, Phys. Rev. A, 54, 3151
(1996); M. Ueda, and K. Huang, preprint, cond-mat/98076359 (1998).

[7] E. Tiesinga , A. J. Moerdijk, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A. 46,
R1167-R1170 (1992).

[8] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47, 4114-4122 (1993).

[9] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Phys. Rev. A 51, 4852-4861 (1995).




[10] J. M. Vogels et al.,, Phys. Rev. A, R1067-1070 (1997).

[11_]4H. M. J. M. Boesten, J. M. Vogels, J. G. C. Tempelaars, and B. J. Verhaar, Phys. Rev.
A 54, R3726-R3729 (1996).

[12] James P. Burke, John L. Bohn, preprint (1998).

| [13] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W.
Ketterle, Nature, 392, 151-154 (1998).

[14] Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen and B. J. Verhaar., o
© Phys. Rev. Lett., 81, 69 (1998).

[15] J. L. Roberts, N. R. Claussen, James P. Burke, Jr., Chris Greene, E. A. Cornell, andu“ o
C. E. Wieman, preprint (1998).

[16] Vladan Vuletic, Andrew J. Kerman, Cheng Chin, and Steven Chu, preprint {1998).

[17] This procedure was first developped in P. Tommasini, E. Timmermans, M. Hussein, and
A. Kerman, preprint, cond-mat/9804015 (1998),‘3;11(1 E. Timmermans, P. Tommasini,
R. Coéte, M. Hussein and A. Kerman, preprint, cond-mat /9805323 (1998}, R. Coté, E.
Timmermans and P. Tommasini, proceedings of E.U. meeting on ‘New Directions in

Atomic Physics’, eds. C. T. Whelan, R. M. Dreizler, J. H. Macek, and H. R. J. Walters,

to be published by Plenum Press (1999). The ideas proposed in these papers were

followed up by Piza et al., preprint (1998), and by P.D. Drummond, K. V. Kheruntsyan,
H. He, Phys. Rev. Lett. 81, 3055 (1998).

[18] The interaction strengths A are proportional to the scattering lengths, o’ and in-

versely proportional to the reduced masses, m/ , for the corresponding collision: A’ =

Amha fm! .
[19] Gross, E. P. Nuovo Cimento, 20, 454 (1961},

- [20] Pitaevskii, L. P., Sov. Phys.-JETP, 13, 451 (1961).

10




SRR

[21] Alternatively, one can work within the framework of the Gaussian approximation, and
obtain the field equations of motion from an effective Hamiltonian, see A. Kerman and

P. Tommasini, Ann. Phys. (N. Y.), 260, 250 (1997).

[22} As opposed to the usual condensate formation through relaxation. The time scales can

consequently be significantly different.

[23] These estimates follow. from calculations on hydrogen and helium, recently reported in

N. Balakrishnan, R. C. Forrey, and A. Dalgarno Phys. Rev. Lett. 80, 3224 (1998).

[24] At arbitrary values of the detuning, the oscillation frequency can be derived from the
Hamiltonian . description of the population dynamics, see Eddy Timmermans, Paolo

Tommasini, Mahir Hussein and Arthur Kerman, to appear in Phys. Rep. (1999).

[25] Alternatively, one may include the imaginary parts of the interaction strengths and

solve for imaginary eigenvalues of the equations of motion.

11




Figure Captions

| Fig.1: Plot of the particle densities: the total condensate density, n = n, + 27y, in full
line, the atomic d_ensity ne in dashed line and the molecular density n,, in dash-dotted
line. The calculation is for a homogeneous BEC that was initially in equilibrium at density
n = 10'*¢m ™ when the detuning experienced a sudden shift from € = 50An to € = 2An. The
order of magnitude of the interaction parameters, An. = A\,n = \n = ay/n = 10° Hz, and
.of the decay parameters, cmq = Cmm = 5 X 107 %cm3sec™ (while neglecting atom decay) are

realistic.

Fig.2 : Plot of the ground state energy per atomic particle as a function of the density
at different values of the detuning, e. The curves were calculated using realistic values for
the parameters, with a reference density ny ~ 10¥cm™2, and with interaction strengths
Aa = af\/Mg,Am = 2. a/\/ng, and XA = 0.2 a/\/g. The densities at which the minima
occur for the two curves of lowest detuning are the self-determined densities that a ‘free’

condensate would adopt in the ground state.
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