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An exact general formalism is derived that expresses the eigenvector
é.nd the eigenvalue dynamics as a set of coupled eqﬁations of motion in
terms of the matrix elements dynamics. Combined with an appropriate
model Hamiltonian, these equations are used to investigate the effect of
the presence of a discrete symmetry in the level curvature distribution. It
is shown that this distribution exhibits a nontrivial behavior that explains
the recent data regarding frequencies of acoustic vibrations of quartz

block.

The usefulness of the study of statistical properties of eigenvalues and eigenvectors -
of quantum systems has already been demonstrated in mdny areas of physics. A
lot can be learned, specially about symmetries, by just employing the appropriate
statistics. It has also become clear that these statistics follov universal patterns that

can be modelled by probability distributions extracted from an ensemble of random

Hamiltonians of the same class of the underlying symmetry of the system under study

[1]. This has been a field of intense investigation over the last two decades [2]. These
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activities have concentrated their effort, firstly, on what we can call the “statics” of
the problem, in which stationary Hamiltonians are considered. More recently, however,
the interest has also been directed to the dynamical aspects of the same question.

The “dynamics” consists in considering a given Hamiltonlan as a function of a
parameter (representing “time”). The statistical properties that characterize the evo-
lution is then studied as the parameter is varied. Not any kind of evolution, however,
is considered but only those that preserve the symmetry class of the Hamiltonian.
Several measures have been introduced to investigate this kind of evolution. One of
the most used ones is the probability distribution of the level curvature, which can
be thought of as ¢pcceleration” as it is defined in terms of the second derivative with
respect to the parameter. These distributions measure correlations among the set of
eigenvalues. Another measure that is commonly used is the two-point correlation func-
tion between first derivatives (“velocities”). Given some generic level, this two-point
correlation function is obtained by calculating the velocity at two different values of
the parameter [3]. Measures have also been considered to characterize the evolution of
the eigenvectors [4].

These studies started with Wilkinson's pioneering work that investigated the de-
pendence of the eigenvalues of a fully chaotic billiard as a function of its shape [3].
The plot of the trajectories of levels as a function of the parameter that controls the
shape, exhibits a typical pattern of avoided crossings. A measure of these is provided
by the curvature of the trajectory. There 1s now an analytical evidence that, in a fully

chaotic regime, the curvatures, after an appropriate rescaling, follow an universal sim-




ple distribution. The tail of this distribution has been investigated, and an asymptotic
dependence inversely proportional to the third power of the curvature was estabilished,

for fully chaotic systems that are time reversal invariant [6]. The expression

P(k)= ——— (1)
2(1 + k2)3

was then proposed for the entire domain of the curvatures k. Finally, it has been
proved that this function gives the exact distribution of curvatures, in the case of
random matrix ensembles [7].

Recently, the difficult task of checking experimentally this prediction was under-
i;aken by the experimental group of the Center for Chaos and Turbulence of Niels Bohr
Institute [8]. They studied the dependence on the temperature of the spectrum of
frequencies of quartz blocks. In previous investigations [9], they have found that the
spectra of frequencies of quartz blocks obey statistical models based on random ma-
trix theories. The dynamics (;f.lthe frequencies, as a function of the temperature, was
therefore measured for a quartz block whose statics statistical properties were already
previously settled.

The data obtained have shown a deviation from the above expected distribution.

This deviation, although slight, is significant and not yet understood. It is the purpose
- of this letter to show that the random matrix model can also exhibit the same kind
of deviation from the universal pattern. Of course, this poses the difficult problem of
reconciling the statics and the dynamics statistical aspects. We are going to discuss a

solution to this delicate question by showing that this contradiction can be explained




by the extremely sensitivity of the parametric correlations to relatively weak presence
~ of symmetries which is not detected by the statics statistical measures.

So far, all studies of parametric correlations have been concentrated on the fully
chaotic regime when the system statistics are well described by the Gaussian ensembles
of Random Matrix Theory (RMT), in particular, the Orthogonal Ensemble (GOE),
if there is time-reversal invariance. The partially chaotic situation has been little
investigated. We intend here to provide the first systematic discussion of this situation.
We start by developping the formalism and the model we are going to use. At the
GOE limit, our numerical simulations verify the above universal expression for the
level curvature distribution. As some degre of symmetry is infroduced, it is found that
the distribution starts to exhibit an unexpected nontrivial behavior that is compatible
‘with the data.

We shall now derive a set of equations to describe simultaneously the dynamics of
the energy levels and of the eigenvector components of a Hamiltonian H. It is expressed
in terms of the equations of motion of the matrix elements of A, whose dependence on
the parameter, £, representing the “time”, is supposed to be given. Our starting point

is the general matrix equation
H = UHpU, ,. (2)

where H is a N x N real symmetric matrix, Hp is the diagonal matrix constructed with
the N eigenvalues, and U is the unitary matrix whose columns are the NV eigenvectors.

Assuming that Hp and U also depend on the parameter ¢, differentiating Eq. (1) with




respect to ¢ we get
H =UHpU' + UHpU' + UHpU', (3)

where the derivative is indicated by a dot. Multiplying (3) by U' from the left and by
U from the right, and defining the anti-hermitian matrix § = Ul = —[/'J = —51

we obtain the equation of motion
Hp+ (S, Hp] = UTHU. (4)

From (4), a system of coupled equations for the evolution of the eigenvalues and
the eigenvector components is derived in terms of the matrix elements “velocities”,
H;;, that are assumed to be known. The equations for the eigenvalues come from the
diagonal part of this matrix equation while its off-diagonal part provides the equations

for the eigenvectors components. Explicitly, we find

N
= > ClH,C}, (5)
t,j=1
and
N
Z Z CiH CT . (6)
j=1

In deriving (6), use has been made of the anti-hermicity property of 5. This set of
coupled equations is one of the main results of this paper. All calculations, numerical
‘and analytical, will be based on it. The problem is completly determined once the

initial values are given.




Higher order terms can be obtained by taking the derivative of these equations.

Thus the equations for the “accelerations” (related to the level curvature), are given
by
N N )
Bi=Y ClH;Cl+ Y (ClHyCl+ ClHCY) (7)
=1 ij=1 ‘

By choosing a particular model, i.e., the dependence of the matrix element on
the parameter ¢, the equations derived above can be used in several contexts. For
example, they can be used to construct an alternative method of matrix diagonalization.
By requiring the matrix elements to satisfy appropriate Langevin equations, these
équa.tions lead to Dyson’s Brownian motion model [10]. Here, we concentrate on the

simple model given by
H = H,cost+ Hysint , (8)

where H; and H; are a couple of fixed, i.e., parameter independent, random matrices
taken from the same matrix ensemble, and ¢ is the parameter. If in (8) H, and H;
are taken from the same Gaussian ensemble, the evolution Wi}l preserve the probability
distribution, so that H will remain in the same ensemble.

We shall work with the Gaussian ensemble that interpolates between GOE and two
decoupled GOE’s. This ensemble has been already employed with a very satisfactory
result in the analysis of data relative to symmetry breaking {11,12] in nuclear [13] and

acoustic systems [9]. It can be defined by the following operator equation [14]

H:PHGOEP+QHGOEQ+/\(PHGOEQ+QHGOEP), (9)




M
where P=3 P, Q=1~Pand B,=li><i|,i=1,.. ., N are projection operators,
=1 .
0 < A <1 is the parameter that controls the transition, and H%F denote a GOE

matrix whose elements follow a joint probability distribution given by
P (H°F)  exp [—atr (HGOE)2] , (10)

with o being an arbitrary scaling parameter. With the above definitions, A = 1 corre-
sponds to the GOE case, while A = 0 corresponds to block diagonal random matrices,
made up of two GOE matrices of sizes M x M and (N — M) x (N — M).

In the GOE limit (A = 1), the distribution of level curvatures is expected to follow
the universal form ( 1) after a suitable rescaling of variables. This rescaling is obtained in
two steps. First, the levels are unfolded which means that a neﬁv spectrum is generated

by the transformation

om
zi="| dEp(E) forl=1,..,N, | (11)

—po
\

- where 5 (£} is the averaged level density. Then the parameter ¢ itself is replaced by a

new dimensionless parameter 7 related to ¢ by [15]

dr )
d—t: V(&%) , (12)

where the average of the velacity is made over the whole set of eigenvalues or, equiv-
alently, over the ensemble. The level curvature is then defined in terms of these new

scaled variables as

k:%iﬁ:wé% "_%2?3 19)
7
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The behavior of the distribution, Eq. (1), for large curvatures can be traced to the
level spacing distribution. In fact, large curvatures can be considered, approximately,
as inversely proportional to the small level spacing s. Thus if we assume s o« 1/k and

use the fact that, in the GOE case, P (s) is linear in s, we obtain

~E, (14)

P (k) ~ P(s)

ds
dk

as predicted by(1). As a consequence, as symmetry is introduced by decreasing the
parameter A, one would expect a reduction on the probability of large curvatures with
the distribution becoming narrow. We shall see that this will happen only for strong
decoupling.

To perform the numerical analysis, it is crucial to have a reliable expression for
the average density. As we have considered in the calculations only the symmetric
situation in which N = 2M, we have an exact expression for the density. It is given
by the Wigner’s semicircle I;,w' [16], with an appropriate scaling in order to give the

correct value of the second moment of the eigenvalue

In the Fig. 1, we show the nice fit obtained with this expression. This density was
used in the calculations of the curvatures. .

Qur main result is presented in Fig. 2. To avoid density effects, the statistics
calculations envolved few eigenvalugs, actually 4, right in the middle of the spectra. We

see that the curvature distribution shows a nontrivial behavior characterized by initially

becoming wider, with an increase of the probability of large curvatures and, then, as
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the chaoticity parameter A is further reduced, the distribution becomes progressively
narrower. The case A = 0.22 is particularly important because it has the same shape of
the data in Ref. [8]. In Fig. 3, we display, for this special case, A = 0.22, the calculated
level spacing distribution compared with the Wigner surmise. Here also there is a
departure from the theoretical prediction for large separation but it is not so easily
seen.

To understand these results, we first remark that there is no reason to expect all
statistical measures to respond uniformly to the variation of X or, in physical terms,
to the presence of symmetries. We can argue that the universal distribution is the
result of the competition between level repulsion (a short range correlation that acts
to increase the curvature), and the crystal lattice [1] nature 61" Wigner-Dyson spectra
(a long range correlation that favours straight line trajectories and therefore small
curvatures). As the decouplli-ng of the spectrum into two épectra starts, the long range
correlation seems to be relaxé‘d first leading to a wider distribution. By continuing
to increase the decoupling, the lével repulsion is then reduced, giving rise to smaller
curvatures.

In conclusion, we have performed an analysis of the result of Ref, [8] concerning
the full removal of the intrinsic tﬁvo—GOE symmetry ( Dj symmetr_')‘r) inherent in the

quartz block. Our results indicate that the precision of such symmetry removal can be

assessed through the sensitivity exhibitted by the curvature statistics.
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Figure Captions

FIG. 1. Densitiy of levels: comparison of the calculated histogram with the semi-circle
law (15)(solid line). The calculation correspond to matrices of dimension N = 100, and

A=0.032.

FIG. 2. Level curvature distributions: comparison of the calculated histograms with the
theoretical prediction {1}(solid line). The calculations correspond to matrices of dimension

N = 100, and for the values of A indicated in the figure.

FIG. 3. Level spacing distribution: comparison of the calculated histogram with Wigner
surmise (solid line). The calculation correspond to matrices of dimension N = 100, and

A=0.22.
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