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Abstract: In irreducible excitatory networks of analog graded-response neurons, the tga—
jectories of most solutions tend to the equilibria. We derive sufficient conditions for such
networks to be globally asymptotically stable. When the network possesses several locally
stable equilibria, their location in the phase space is discussed and a description of their

attraction basin is given. The results hold even when inter-unit transmission is delayed.
1 Introduction

In analog graded-response neural networks, each unit is described by its activation at time
t, denoted by a;(f), an output function o(a;), a decay rate «v; and a constant input K; [1].
W;; represents the connection weight between neurons j and i. The behavior of an n-neuron

network is governed by the following system of ordinary differential equations (ODEs):

(1) = —yai(t) + Ki + iﬂ/ijgj(aj(t)) 1<i<n. (1)

=1

which can be re-written in vectorial notations:
fi—‘:(t) = —Ta(t) + K + Wa(a(t)) (2)

where @ = (a1,--+,a,)" is the activation vector, I' = diag(vi,-+,v») is the decay matrix,
K = (Ki, -+, K,)7" € R" is the input vector, W = {W;;] the connection matrix, and

a(a) = (o1(a1), ,da(an))? is the output vector.
The stationary states (equilibria) of the sygtem (1) are given by the solutions of

—Tz+ K+ Wo(z)=0. (3)

—

A network is referred to as recurrent when it includes feedback loops, i.e. there exist 4y, - -,

ip in {1,---,n} such that P = W, Wy,;, --- W;

vip1 Wiyi, # 0, in other words there exists

1ip
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at least a closed directed path connecting a unit to itself. Feedback loops are referred to as
positive and negative when P > 0 and P < 0 respectively. Thus, a positive feedback Ioop

- contains zero or an even number of negative (i.e. inhibitory) weights.

Irreducible networks! that contain only positive feedback loops compose an important class
of recurrent networks. Examples and applications of such networks are presented and dis-
cussed in [2, 3, 4]. When all feedback loops are positive, the system can be transformed into
an excitatory network satisfying Wi; > 0 for all i, j by changing the sign of some of the
activations [2]. In order to obtain the appropriate transformation we have to select (arbitrar-
ily) a reference unit (for instance, the unit labeled 1) within the network. The transformed
activations are then given by A; = sign(P)a;, P being the product of the weights along any
directed path connecting unit 1 to unit 7 (all such paths have necessarily the same sign). So,
in the case of a ring network with 2NV units, all weights being negative, the transformation
i8 Agpe1 = Gan-y and Az, = —agn, n = 1,...,N. The underlying mathematics and more
general methods are given in [5] theorem 5.8 p. 330 and equation (4.1) p. 322. Special

transformations suitable for cellular neural networks can be found in [4].

-.The fact that irreducible networks with positive feedback loops can be transformed into
excitatory ones implies that such networks are almost quasi—convergeﬁt, that is, almost all
| trajectories tend to the set of equilibria [2, 3, 4]. This statement shows that such networks
do not display stable undamped oscillations which is important for artificial neural network

applications relying on convergent dynamics. However, almost quasi-convergence provides

1An irreducible network is a network in which there is at least one directed path connecting any given
neuron to any other one. Understanding the dynamics of irreducible networks is important because they
form the building blocks of recurrent networks and under appropriate conditions, the asymptotic behavior
of a network can be derived from that of its constituting irreducible networks in cascade [2].




little information about the organization of the phase portrait of the system. The main goal
of the present paper is to describe in some details the dynamics of irreducible excitatory
networks depending on the parameters range, and to provide conditions under which such
systems are either globally asymptotically stable or display multistability, and in the latter
case characterize the attraction basins of the equilibria. It is shown that the results can be

generalized for the case in which the inter-unit transmissions are delayed.

In the following we present some general properties of irreducible excitatory networks (sec-
tion 2}, and then aﬁalyze their asymptotic dynamics (section 3), and the attraction basins
of stable equilibria, and their boundaries (section 4). An example is presented in section
(section 5), and the generalization of the results when inter-unit transmissions are delayed

is discussed (section 6).
2 General properties

Throughout this paper we assume that the two following hypotheses are satisfied.

Hypothesis 1. The neuron output function o; is sigmoidal, i.e., it is a smooth strictly
increasing function, bounded between two real numbers m; < M;, such that there is a unique

point p; such that of(p;) = 0. Without loss of generality, we suppose p; = 0 for all 1.

Thus the derivative ¢! has a unique global maximum at zero, i.e. 8; = o}(0) referred to as
the neuron gain, and it decreases down to zero for large and low activations i.e.” oi(a;) — 0

as |a;| = +oo.

Examples of sigmoidal functions used in neural neiworks are tanh(f;a;), or arctan(f;a;).




Hypothesis 2. The connection matriz W = [Wi5] is positive (Wi; > 0 for all 1,7) and
irreducible i.e. it does not leave invariant any proper nontriviel subspace generated by a

subset of the standard basis vectors for IR™.

Let ¢ = (e1,---,€,)T with ¢; = 41, and K, be the cone defined as Ke={z e R": ¢z; >
0 Vi€ {l,---,n}}. Forz = (21, -,2,)7 € R” and y = (Y1, yn)T € R™, we define
an order relation associated with X, as ¢ >, y (resp. = > y) when 2 —y is in (resp. the
closure of) K, that is e;(z; — y;) > 0 (resp. €&(z: ~y:) > 0), for all s € {1,---,n}. Finally,
we define z >, y when z >, y and = # y. For the order associated with the positive cone

(e=(1,---,1)T), the index ¢ is not indicated.

Let s; = 7—1‘( o Wiym; 4+ K;) and S; = (8 Wi M; + K), and s.(K) = (s5,---,88)7

where

e 18 ifeg=1
Si“{sz- if & = —1 @

Lemma 0. Let n € IR" such that 5 >, 0. For all z € IR™ there is T — T'(xz) € IR such that

a(t,z) > s(K)—nforallt >T.
Proof. i) Let n = (n1,---,n,)7. For n>>. 0 we remark that:

&i(=7ilsi =) + 2 Wijoi(s5 — ns) + Ki) > eryami > 0 (3).

7=t

Thus if there is ¢ such that e;{a;(to,z) — (st — 7;)) > 0, then €i(ai(t, z) — (3§ —n;)) > 0 for
all ¢ 2 to.
If €;(a:(t,z) — (si—n;)) <0, for all ¢ in some closed interval [t0, 1], then ei%’@(t) > €Y. So
that:

ciai(ty, z) > €;a;(to, ) + evini(ty — to) (6)
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The above inequality shows that there is necessarily T' > ¢, such that €; (a7, z)—(si—n)) >

0.0
From the lemma we deduce that the solutions are eventually bounded within an n-rectangle:
Theorem: Boundedness. For 5 = (ng,---,n,)7 with 5; > 0 for all i, define n, =

(€71, €ntpn)* where ¢; = £1. For all € IR®, thereis T = T(z) € IR such that for

all t > T, a(t,z) is inside the n-rectangle R(n, K) defined by the points s*(K) — ..

A consequence of the uniform asymptotic boundedness of the solutions is that for all z € IR™,
there exists a unique function a(¢, z) from IR to IR”?, such that (0, z) = = and a(t, z) satisfies

system (1) for all £ € R.
3 Asymptotic behavior

All solutions eventually enter the positively invariant compact set R(7, K), so that in order

to determine the asymptotic behavior of system (1), we only need to study the behavior of

solutions in that set.

We introduce the following notations: minimal decay rate v = min,<;<a (), maximal decay

rate 7/ = max;<i<n(7:), the bounds of the output vector m = (ml,-'-,mn)T and M =

(My,-, M) withm <o(z)< M (with respect to the order associated with the positive
\- .

cone in IR") for all z € R™.

Let z = (z1, -+, 24)7 € R", we define the following n xn matrix: V(z) = W xdiag(cj(z;)) =
[Wijoi(z;)]. V{z) is an irreducible positive matrix, thus the positive real number A(z) =

max{Re() : p is an eigenvalue of V(z)} is a simple eigenvalue of V(z) [6].




Theorem: contraction. If Mz) < v for all z € R(n, K), then system (1) is globally

asymptotically stable.

Proof. Consider the map F : R" ~ R" defined by F(z) = I"Y(Wo(z) + K). i) The
set R(n, K} is invariant under F that is F(R(7, K)) C R(n, K). i) For & = (21, -+, 2,)7
and 2’ = (z1,...,2)" in R(n, K), there is y = (1, -, yn)¥ with y; € [2;,2%] such that
o(z)—o(e’) = [o(y;)(z; —2})]. Thus | F(z) - F(z')|| = I~ V(y)e—e)|| < 22|z —2'|| <
%Hw — z'||, where A = SUPLer(nx)(A(2)). Since A < v, the map F restricted to R(n, K) is
qontracting. Hence, there is a unique point 2* € R(n, K) such that F (z*) = z*, which is the
unique equilibrium point of system (1). i) The map E : z — +lz — 2*|{? is a Lyapunov

function for system (1). In fact for & = z* we have:

Ge(8) = (Bt 2) — %(t,2) (alt,z) — a(t,2%))

—( La(t,z) = a(t,2*)) (a(t, 2) — alt, z")) + (W(o(z) — o(2*)))T(a(t ,9«‘)—@(7f z"))
= (=F(a(t, 2} - a(t, fc*)))T( a(t, ) = a(t,z7)) + (V(y(t))(a(t, 2) - a(t, 2%))) 7 (a(t, z) — a(t, z7))
< —vlla(t, 2) = alt, &”)|]* + Ay(@))lla(t, 2} — a(t, =*)||?
< —lla(t,z) — a(t, 2|2 + Alja(t, z) — a(®, z)|[* <0
(7)
This is based on the fact that
(Vv)z)"z < (V(y)lz))'|e] < Aw) 2]")e| = A(y)||=|? (8)
where for z = (z1,---,2,)7 € IR*, we define |z} = (lz1], -+, |za])T, and 2%z’ denotes the

usual scalar product in R”.

The existence of the Lyapunov function ensures that all solutions tend to z*. O
Corollary 1. IfA(0) < «y then system (1) is globally asymptotically stable.

Proof. For all z € IR", we have V(z) < V(0) (componentwise order). As these are
irreducible positive matrices we have A(z) < A(0) [6]. O
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The case of A(0) > 7 requires extra conditions in order to lead to global asymptotic stability.

Corollary 2. Suppose A(0) > v and let C., = {z € IR" : A(z) = v}, if there isy € C, N K.

such that s*(K) > y, then system (1) is globally asymptotically stable.

Proof. s°(K) >». y with y € C,NK, implies that z >, y for all @ € R(n, K) for n > 0
sufficiently small.

The derivative o}(z;) is a strictly increasing (resp. decreasing) function for z; < 0 (resp.
z; > 0). Thus for z and =’ in £, if z > 2/, then V(z) < V(') (componentwise order) and

therefore A(z) < A(z'). Hence s*(K) >, y implies that A(x) < v for all z € R(n, K). O

Remark. Let u € K., the function ¢ — Alcu} from IRT into [A(0),0) is strictly decreasing,
therefore, when A(0) > v, there is a unique ¢ > 0 such that A{cu) = . Thus the intersection
C,NK., is a non empty set. It is unordered with respect to the order associated with K,

that is, there are no z and 2’ in C, K, with ¢ # =, such that either ¢ > =’ or 2’ > .

Corollary 3: saturation. If A(0) > v, and |K;| is sufficiently large for all i € {1,---,n},

then system (1) is globally asymptotically stable.

Proof. Let £ = (£1,---,&.)T € C,NK.. We have the following equivalence:

e T K; > & — Z?=1 Mjmj for ¢; = +1
KBl = { Ki < %ifi — Xj=y WigM; for e = —1 ©)
The inequalities show that when |K;| is sufficiently large, the hypothesis of the previous

corollary is satisfied. [

—

The above results provide sufficient conditions for sysﬁem (1) to be globally asymptotically

stable. They can also be used to obtain information about the equilibria when system (1} is
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multistable.

Proposition. If system (1) admits an equilibrium point z. such that there is y € CyNK.
with ©. >, y, then z. is a hyperbolic locally asymptotically stable equilibrium point and

there is no other equilibrium z such that ¢ >. z,.

Proof. The matrix A = —T + V(.) is irreducible with positive off-diagonal components.
Therefore p(A) = max{Re(x) : u is an eigenvalue of A} is a simple eigenvalue of A and we
have u(A) < =y + A(z.) < 0 [6]. This shows that all eigenvalues of A have strictly negative
real parts, which implies that z. is a hyperbolic locally asymptotically stable equilibrium
point. The second statement results from the fact that I'"'Wo(z) is contracting in the cone

T x.. O

Remark. Unstable equilibria are necessarily located in the region where \(z) >  within the
. n-rectangle R(n, K'). This region is a connected set formed by the union of {0} and the sets
{z € K. : 3y € C,NK. such that x <, y} for all e. Moreover if A0) >+ = maxi<i<a(¥i),

then any equilibrium point z. such that A(a.) > v is locally asymptotically unstable.

For the special case of vy = 7/ = 9, = +++ = 4,,, we see that a hyperbolic equilibrium point
z. 1s locally asymptotically stable (resp. unstable) if A(z,) < v (resp. A(z.) > 7). So that

stable equilibfia. are in “the corners”, and unstable equilibria in the middle region.

In order to obtain a more complete picture of the asymptotic behavior of system (1), we

present results concerning global aspects of the dynamics.

For ¢ = (zy,---,2,)7 € R* and y = (y1,+-+,ya)T € R”, we say that z is larger (resp.
strictly larger) than y, denoted z > y (resp. = > y) when z; > y; (resp. z; > y;) for all

9




1 <¢ < n. Finally z > y indicates that z > y and z # y.

We rewrite system (1) as:

da
Po=0@ - (10)

where G(a) = (G1(a),- - -, Gn(a))T, with Gi(a) = —mas(t) + K; + Zn:mjdj(aj(t)).

i=1

Cooperative system. We have %f—;(a) = Wi;o5(a;) > 0 for ¢ # j. Thus all off-diagonal
~ terms of the n x n matrix DG(a) = [0G;/8a;(a)] representing the derivative of G at a are

positive.

Such a system is referred to as cooperative [6], since increase in any of the activations a;

increments the other activations.
Irreducible system Since W is irreducible, DG(a) = —T' + V(a) is also irreducible.

The fact that system (10) is cooperative and irreducible implies that it generates a strongly

monotone flow [2, 6]:

For (z,y) € R*™, if z > y then a(t,z) > a(t,y) for all ¢ > 0. (11)

Strong monotonicity added to the boundedness of trajectories (Boundedness theorem) im-
plies that trajectories have a strong tendency to converge to equilibria, as shown by the

following results.

\

Almost quasi convergence. Almost all trajectories of system (1) approach the set of

equilibria as t — +oo [2].

-

Generic convergence. The sei of convergent solutions contains an open and dense subset
of IR™ [6].
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The above results are general properties of cooperative irreducible systems with bounded

trajectories. In the following, we derive properties more specific to system (1).

Lemma 1. There are two equilibrium points z,, and 2 such that: i) 2 <z, il)alt,z) —
Tm ast — +oo for all z < z,, and iii) a(t,z) = xp ast — +oo for all z > zu. iv) If
a(t,z) —+ @m (resp. a(t,x) — 1), as t — +oo, then a(t,z'} = zn, (Tesp. a(t,z’) — zp) as

t — +oo, for all 2’ < z (resp. z' > z).

Proof. The proof of the statements is divided into two stages. A} The existence of the
equilibrium point mm satisfying (i) is shown. The existence of the equilibrium point zas sat-
isfying (iii} follows a similar line. B) it is shown that the arguments used in the construction
of these two equilibria imply (i) and (iv).

A) Ezistence of &, satisfying (ii). In order to simplify expressions, we denote s = (=1 U( ),
| Let n € IR®, such that 5 3> 0. The proof is constructed as follows. First we show that the
- trajectory of a given initial condition z satisfying z < s — n converges to an equilibrium
point denoted by z,,(z). Then we remark that the trajectories of all initial conditions z with
z < 8 —7 converge to the very same equilibrium, that is zp(2) = z(s —7n) forall z < s—1.
Finally this result is extended to trajectories of all initial conditions < zm(s —n). In other
words 2, () does not depend on the particular choice of the initial condition = < zm(s—n).
Thus, by setting Tm = Zm(s —n) we have the equilibrium point satisfying (ii).

Let z < s — 7, then there is § > 0 such that £a(r,z) > Ip > 0 for all 0 < 7 < 6. Thus
a(t,z) is strictly increasing, and converges to an equilibrium point {6] that we denote by
Tm(z), to emphasize the fact that this point may depend on the initial condition.

The asymptotic boundedness of all trajectories (Boundedness Theorem) implies that z.,(z) >

11




s—mn. Combined with the fact that z was selected such that s — 7 > z and the monotonicity
(11) we obtain z,(z) = a(t,zn(z)) > a(t, s — n) > a(t,z). Taking the limit ¢ — +o0, we
find that a({,s—n) — z,(z). In other words, the trajectories of z and s —7 tend to the same
equilibrium, i.e. zp(2) = 2,(s —7n). Since the point z was chosen arbitrarily, it implies that
the trajectories of all initial conditions x < s — 7 tend to the equilibrium point z,,(s — n).
Let < zm(s —n), there exists y <« s — 5 such that y < z. Thus from the monotonicity
(11) we have: zn,(s —n) = a(t,zn{s — 1)) > a(t,z) > a(t,y). The result of the previous
paragraph implies that a(t,y) — zm{s — n) as ¢ — oco. Thus, taking the limit ¢ — oo,
we obtain that a({,z) — z,.(s — ) as t = oo. In other words, we have shown that the
trajectories of all ¢ such that z < z,,(s — 1) converge to z,(s — n). Thus, z,,(s — 7) is an
equilibrium point satisfying (ii). This property also implies that the equilibrium point does
not depend on the particular choice of n. Indeed, for 5’ > 0, there exists y € s —n such
that y < s — 7', so that a similar argument implies that a(t,s — %) = zm(s —n) as t — oo,
Le. (s — 1) = xm(s —n), which can thus be denoted z,,.

In a similar way, it is possible to define zs as the limit #ps(S + 1) of the trajectory of S+,
where S = s V(K), and show that this equilibrium does not depend on the particular
choice of 7, and satisfies (iii).

B) Statements (i) and (iv). From s —n <« S + 5 and the monotonicity (11), we obtain
a{t,s —n) < at, S +n). Taking the 1imif'\?{ — 00, yields the inequality in (1): z,, < zar.
We take z such that a(t,z) = 2., as t = +oo, for 2’ < z,,, there is y € IR™ such that y < Ty
and y < 2, thus 2’ is bounded by two points with trajectories tending to z.,, so that its
trajectory also converges to . This argument com;ﬁ%ﬁes the proof of (iv}) for z,,, a similar

one can be presented for zy,. O
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Remark. i) If z,, = zp then system (1) is globally asymptotically stable. ii) If ., # zar,
and both are locally asymptotically stable, then there is necessarily an unstable equilibrium

point z, with z,, € z, < 2 [6].

Sufficient conditions for global asymptotic stability similar to those provided in the previo.us
paragraphs can be formulated. For example if there is y & CoNK(-1,m—1) (resp. y €
CyNKq,..1)) such that za < y (resp. zm, > y) then system (1) is globally asymptotically

stable.

We define k = {K € IR": T'z — Wo(z) = K has a unique solution}, and Ry = R™ — . We
have already shown that & is a non-empty set since it contains all vectors X with sufficiently
large |K;|. For K € k, system (1) has a unique equilibrium point, so that necessarily

ZTm = Zpr and the system is globally asymptotically stable.

When K = Ky = —Wo(0), the origin, denoted a = 0, is an equilibrium point of the system.
If A(0) > v/, it is a locally asymptotically unstable equilibrium point, and is therefore distinct
from both 2., and z3s. Thus, system (1) has at least three distinct equilibria 2., € 0 < 7.
We‘ deduce that in this case Ry is non-empty since it contains K. In general, applying

Sard’s theorem shows that [7]:

Finite equilibria. We assume A(0) > 4/, there is a negligible subset Q of Rq such that for
al K € R = Ro — Q, system (1) has a finite number q > 1 of equilibria. All the equilibria

are hyperbolic.

From this point on, and throughout the rest of the paper, we assume K € R. We denote by

€ the set of the equilibria, by B(y) the basin of attraction of a stable equilibrium point v,

13




|
|

and by 0B(y) the boundary of B(y). B(y) is an open set. We have ,, # 23 so that there

are at least ¢ = 3 equilibria, and ¢, €K y € ap for all y € € — {Zm,za}.

As the set of equilibria is constituted by isolated hyperbolic points, the almost quasi-

convergence and the generic convergence properties can be reformulated as;

Corollary. i) Almost all trajectories of system (1) approach an equilibrium point as ¢ —
'—|—oo.
ii) The union of the basins of attraction of the stable equilibria of system (1) is an open and

dense subset of IR".

4 The basins of attraction and their boundaries

We are interested in determining the “shape” of the basins of attraction of stable equilibria.

To this end we introduce the following terminology.-

A subset H of R" is referred to as positively invariant under system (1), if for all z € H,

a(t,z) € H for all t > 0.

A subset H of R" is unordered if there are no z and z’' with either z < 2’ or 2’ > z. For

example, in IR?, the diagonal defined as{z = (z1,22) : 1 + 2 = 0} is an unordered set.

For H and H' two subsets of IR", wé sa,y- that H is below H', denoted H < H', if there are
no z € H and z’ € H' satisfying z > z’. When H is below H’, the two sets mé,y have a
non empty intersection. Furthermore, if the two sets do not contain comparable points, then
each one is below the other and vice-versa. This shows that the above definition is not very

restrictive, in the sense that it does not define an order. However, in the following we focus

14




on a special family of subsets which can be ordered.

Let H be a hypersurface i.e. codimension one manifold in IR", and assume H is unordered,
then for all z € (IR — H), there is y € H, such tilat either 2 < y or # > y. Thus,
an unordered hypersurface divides the space into the two disjoint sets of points above and
below it respectively. For example the straight line {z = (21, 32) : z; + z3 = 0} divides the
plane into regions {z = (zy,2;) : #1+ 22 > 0} and {z = (21, 22) : 2, + 2z, < 0}. This allows
to .see the following. Let H and H’ be two unordered hypersurfaces in IR®, such that H is
~ below H', then for all z € H — (H N H'), there is y € H' such that z < y. Thus the relation

H “is below” H’, denoted H < H', defines an order in the set of unordered hypersurfaces.

After these definitions, we describe the basin boundaries. No trajectory in a basin boundary
converges to a stable equilibrium point, so that the basin boundaries are necessarily contained

in the negligible subset of trajectories that do not converge to any stable equilibrium point.

Conversely, there are finitely many stable equilibria and the union of their basins of attraction
is an open and dense subset of IR", so that any neighborhood of a trajectory that does
not converge to a stable equilibrium point intersects necessarily the union of the basins of
attraction and is therefore in the boundary of at least one of these basins. Hence, the union
of the basin boundaries is exactly the negligible subset of trajectories that do not converge

to any stable equilibrium point.

From this characterization of the basin boundaries in terms of unstable trajectories, and the
fact that system (1) is strongly monotone with bounded trajectories, and possesses a finite

number of equilibria, all of which are hyperbolic, the following result can be derived:
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Basin Boundaries. The union of the basin boundaries is formed by a finite number p > 1

of Lipschitz unordered invariant hypersurfaces, denoted H <HyX---<H, [8.

Remark. The two open sets defined as {¢ : thereisy € H; withy > z} and {2
there isy € H, withy < z} are invariant. In the same way, for p > 2, the connected
components of the sets {x : therearey € H; and y € Hipy withy < z < y'} are open

invariant sets.

The union of the basins of attraction is a dense open subset, so that any open set intersects
at least the basin of attraction of one of the equilibria. If a connected open set intersects two
attraction basins, then it also intersects the boundary separating them, that is, it intersects

the union of the unordered invariant hypersurfaces. Thus we have:

Basins of attraction. Each of the invariant open connected sets defined in the previous

remark is exactly the basin of attraction of one of the.sta.ble equilibria.

Thus for the stable equilibria other than z,, and z M, the basin of attraction is caught between

two of the hypersurfaces H; and H;;1, and for the two extreme equilibrium points we have:

Upper and lower boundaries. 9B(zm) = Hy and € B(z,,) if and only if there isy € H;
such that r < y.

Similarly 0B(zy) = H, and = € B(zyy) if and only if there is y € H, such that z > y.
Proof. Lemma 1 shows that the basins of attraction of x,, and z M have no lower and upper

bound respectively. So that among the open connected sets defined by the hypersurfaces

only the one below H; and above H, can correspond to these basins. O
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Let y € £ — {&m,zr}, locally asymptotically stable. There are stable equilibria smaller and
larger than y. We select z and «' in £, such that both are stable, they satisfy z < y < 2’
and there are no stable equilibria in the ordered open intervals [[z,y]] = {¢ : 2z € ¢ € y}
and [[y, 2]l = {¢ : y < ¢ < 2'}. These intervals are invariant open subsets of IR*. There is
¢ € {1,---,p—1} such that the basin of attraction of y, B(y) is caught between H; and Hiyy,
therefore, H; and H;y, intersect [[#,y]] and [[y, 2] respectively. Each intersection contains

necessarily at least one unstable equilibrium point.

Conversely, let z, be an unstable equilibrium point, then there are i € {1,---,p}, and two

stable equilibria z and y such that z, is in the intersection [[z,v]] N H;.

These results stem from general properties of strongly monotone systems with bounded
trajectories [6] and the fact that unstable equilibria are necessarily in the hypersurfaces
H;. They constrain the location of the equilibria. For instance, there cannot be two stable
equilibria # and y such that the ordered interval [[z,y]] lies in the saturated area beyond

CyNK,, d.e for all z € [[z,y]], there is 2 € C, NK,, such that z >, 2.

Trajectories on the boundaries are unordered, that is, if there is ¢ € {1, --,p} such that
z € H;, then for all ¢ > 0, a(t,z) € H;, so that neither z > a(t,z) nor z < a(f,z). This
requires the trajectories to be oscillating in the following sense. Let z, be an unstable
equilibrium ﬁéint in the positively invariant set [[y,y]] N H;, where y and y’ are stable
equilibria. For z € [[y,y']] N H;, ¢ # z,, we have neither a(t,z) > z, nor a(t,z) < z,
(¢t > 0). Thus, the components of the vector a(t,z) — z, are not all of the same sign. We

say that a(t,z) oscillates weakly around z,.
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5 Example

The previous results describe the organization of the phase portrait of irreducible cooperative

networks in the general case. In this section, we consider an example such that the concepts -

introduced in the previous sections can be readily visualized in a simple figure. To this

end, we consider the two neuron-network described by the following system of differential

equations:
1 = —a; + 30(ay) + o(az) (12)
T = —az + 30(az) + o(a1)

where o(z) = tanh(z) = g:T_g'Z;' System (12) satisfies both hypotheses 1 and 2. The
dynamics of two-neuron networks have been analyzed previously [9, 10], so that we move

directly to the description of the global organization of the phase portrait of (12) in the light

of our general results.
FIGURE 1 HERE

The phase portrait of system (12) is presented in figure 1. There are two unordered hy-
persurfaces H, (thick solid line} and H, (thick dashed line), with H, < H,, that form the
basin boundaries of the stable equilibria. These ’.cwo hypersurfaces intersect at the origin
(0,0). They divide the phase space into\four regions (I, IT, TII and IV in TFig. 1). Region
I corresponds to points below H;. As expected from the results of the previous section,
this region is the basin of attraction of the lowest equilibrium point &,,. In the same way,

region Il represents points above H, and constitutes the basin of attraction of the highest
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equilibrium point zpr. The two other regions — III and IV — are the basins of attraction of
two stable equilibria denoted z; and z,. Points in each of these basins are above H, and

below H,.

The intersection of the hypersurfaces is an invariant set, which in the case of this example
corresponds to an equilibrium point (0,0), this point is an unstable node. The hypersurface
H, contains also two saddle points (large dots in Fig. 1) in the ordered intervals [#m, 1]
and [[2m, z2]]. Orbits connecting the saddle points to the stable equilibria are schematically
represented by the thin dashed lines. As indicated by the arrows on the solid line in Fig. 1,
trajectories of all points on Hi, except the origin, tend to one of these saddle points. Thus
H; is composed of the stable manifolds of the stable points together with the origin. In a

similar way, H; is composed of the origin and the stable manifolds of two saddle points.

In this example, all trajectories eventually tend to an equilibrium point, so that the system is
convergent. However, this is not the case in all irreducible excitatory networks, as for example
an excitatory ring network composed of more than five units can display an unstable periodic
solution. Such oscillatory solutions are necessarily confined to the boundaries of the basins

of attraction, and are not likely to be observed in practical applications.
6 Networks with delay

Finite transmission times arising in hardware implementation of analog graded-response
neural networks, as well as possible applications of networks with delay have motivated a
-number of studies on the dynamics of GRN networks with delay [11, 12, 13, 14, 15, 16, 17,

18, 19, 20]. Taking delays into account, modifies system (1) into the following system of
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delay differential equations (DDEs):

(1) = —msai(t) + K; + Zn;m;iaj(aj(t -7)) 1<i<n (13)

=
where 7;; represents the delay between units 7 and 7. Let T =--ma,xlsg-sn{rz-j : Wi; # 0}, then
S = C[~7,0] X - xC[~14, 0] is the phase space for DDE (13). For any initial condition ¢ in
5, there exists a unique solution of DDE (13) defined for all ¢ > 0. Under hypotheses 1 and
2, DDE (13) is cooperative irreducible with bounded trajectories. Therefore § ) the stability
of the locally stable equilibria is not affected by the presence of delay, 7) most trajectories in

the system with delay converge to the stable equilibria and i ) the description of the basin

boundaries given in section 4 remains valid [6, 8].
7 Discussion and conclusion

We have studied in some details the dynamics of irr‘educible excitatory networks of analog
graded-response neural networks. Understanding the dynamics of irreducible networks is im-
portant because they constitute the building blocks of other networks, and under appropriate
conditions the asymptotic behavior of a network can be derived from that of its constituting
irreducible networks (2]. The main purpose of our analysis was to provide a description of
the global organization of the phase portrait of a class of neural networks whose connection
matrix satisfies a simply verifiable constrai{it, and that appear in a number of applications
(2, 3, 4]. The results are valid irrespective of the size of the network. Besides issues related
to the global stability of the dynamics, the general “shape” of the basins of attraction of

stable equilibria in irreducible excitatory networks was discussed in some detail.

- We have provided several sufficient conditions for the global asymptotic stability of such

20

TRV




networks. These results show that in general irreducible excitatory networks are globally
asymptotically convergent when either the network is contracting, that is, the linear dissipa-
tion is stronger than the nonlinearity, or the inputs are sufficiently large, driving the system

to saturation.

It is known that even when irreducible excitatory networks are not globally asymptotically
convergent, they are still almost quasi-convergent, that is most trajectories tend to the set of
equilibria. We have derived more detailed descriptions of the phase portrait of such networks.
We have shown that generically these have a finite number of hyperbolic equilibria, with the
stable equilibria usually located in the corners, corresponding to saturated outputs, and each
unstable equilibrium point lying “between” two stable equilibria. This result is important
for applications which require the stable equilibria to be situated in the saturated zones, and
generalizes the studies of networks with high gain [1, 19]. Moreover, our study shows that
the attraction basins of the stable equilibria are caught between unordered hypersurfaces.

This indicates that attraction basins are not intertwined.

The computation of basin boundaries in specific neural networks is of great importance,
providing a numerical algorithm for this task is beyond the scope of the present work which
deals mainly with qualitative aspects of the dynamics. Still, our results have been applied
to compute numerically the i-aasin boundaries of small networks with delayed interactions,
which, despite the low number of units, are, nonetheless, infinite dimensional systems [17, 21
General algorithms for the computation of basins of attractions of neural networks as well

as other systems can be found in [22, 23] and the references therein.

In summary, the contribution of the present work is to improve our understanding of the
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qualitative dynamics of a class of networks as well as provide some bounds for network
parameters that would ensure one form of dynamics, e.g. global asymptotic stability, or
another, e.g. multistability. Specific examples that come up in applications can then be

better comprehended in the light of the general results.
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Figure 1: Phase portrait of a two neuron network

The solid and dashed thick lines Hy and H; represent the boundaries dividing the phase space
info four regions f, 11, 1T and 1V. Each of these four regions is the basin of attraction of a
stable equilibrium point (Tp,, &1, €2 and xpr). The boundaries are formed by the origin, which
is a source, and the stable manifolds of four saddle points, represented by large .dots. The
thin dashed lines correspond to the unstable manifolds of these saddle points. The arrows
indicate the direction of movement along trajectories. Abscissae activation of neuron 1: a;;

ordinates activation of neuron 2: as.
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