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Abstract

We consider the Parity Nonconserving (PNC) mixing in the ground state
of exotic (halo) nuclei caused by the PNC weak interaction between outer
neutron and nucleons within nuclear interior. For the nucleus ' Be as an
example of typical nucleus with neutron halo, we use analytical model for
the external neutron wave functions to estimate the scale of the PNC mixing.
The amplitude of the PNC mixing in halo state is found to be an order of
magnitude bigger than that of typical PNC mixing between the “normal”
nuclear states in nearby nuclei. The enhanced PNC mixing in halo cloud is

proportional to the neutron weak PNC potential constant g/ only.
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I. INTRODUCTION

The parity nonconserving (PNC) nucleon interaction in nuclei caused by the PNC Weak
interaction, and PNC effects in neutron-nucleus reactions are subject of current interest for
both experimentalists and theorists [1], [2], [3], [4], [5], [6]. The overall scale of the observable
PNC effects is found to be in reasonable agreement with estimates in existing theory of the
weak interactions [1] based on the Standard Model. Complete understanding of PNC forces
in nuclear domain, which requires reliable QCD-based models of hadrons is far from being
reached. This motivates extensive studies of the strengths of the PNC forces.

So far, the PNC effects have been probed in “normal” nuclei. Physics of “exotic” nuclei
studied with unstable nuclear beams {7], [8], [9], {10], [11], [12]. [23], [14], [15]. {16], [17].
(18} appears to be one of the most promising modern nuclear area.s.‘Due to their specific
structure. exotic nuclei, e.g., halo nuclei can offer new possibilities to probe those aspects
of nuclear interactions which are not accessible with normal nuclei. It is therefore interest-
ing to examine possibilities of using exotic nuclei to investigate the effects of violation of
fundamental symmetries. i.e., spatial parity and time reversal.

Some aspects of the Weak interactions in exotic nuclei have been discussed in literature
[14]. [15] in relation to the beta decay and tb-possibilities to study the parameters of the
Cabibbo-Kobayashi-Mascawa matrix. To the best of our knowledge. however, the issue of
the PNC effects in exotic nuclei has not been addressed yet.

The aim of this work is to present a first evaluation of the magnitude of the PNC. effects
in halo nuclei. We confine ourselves to the case of nucleus ' Be, the most well studied. both
experimentally and theoretically {7], [8], [9], [12], {13] . We find that the ground state, the
2512 halo configuration. acquires admixture of the closest in energy halo state of opposite
parity. 1p;;s. This effect originates from the weak interaction of the external halo neutron
with the core nucleons in the nuclear interior. As a result, the neutron halo cloud surrounding
the nucleus acquires the wrong parity admixtures that may be tested in experiments which

can probe the halo wave functions in the exterior.
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The magnitude of the admixture is found to be ~ 10~ x gy that is an order of magnitude
bigger than the PNC effects in normal spherical nuclei. What is important to .notice is that
the enhanced effect we have found here is proportional to the neutron weak constant g
only. The value of this constant remains to be one of the most questionable points in
modern theory of parity violation in nuclear forces [5] 'The enhanced PNC mixing in halo
found here can be .therefore useful in studies of the neutron weak constant.

In the next two sectiofl.s, we recall the basic facts about the PNC weak interaction
between nucleons starting from the Hamiltonian of Desplancues, Donoghue and Holstein
(DDH). We consider the potential approximation to relate the parameters of the initial PNC
Hamiltonian to the single-particle PNC mixing effects in nuclei, and discuss the problem of
the neutron PNC constant in Sec.III. In Sec.IV, we analyze the basic effects of the halo
structure on the magnitude of the single-particle PNC mixing and make estimates. In
Sec.V, we use analytical approximation for the halo wave functions in ' Be to calculate
the matrix elements of the PNC weak interaction involving halo states and to estimate the
magnitude of PNC mixing in the ground state. Sec.VI summarizes the results and presents

brief discussion of their implications.

IT. WEAK NUCLEON-NUCLEON INTERACTION AND PARITY VIOLATING

EFFECTS. POTENTIAL APPROXIMATION

We start with writing the nuclear Hamiltonian H in the form
H=H) + Vi + weve 1)

where the first term HJ ~ Sa(Ba2/2m + Us(r,)) is the single particle Hamiltonian of the
nucleons including the single-particle piece Us of the strong interaction, Vg is the residual
two-body strong interaction. The last term, WPNC is the PNC' part of the Weak interaction
that is the source of the PNC effects.

The magnitude of the PNC effects is sensitive to both the weak PNC interaction matrix

elements between the states of opposite parity and to the nuclear structure effects given by
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‘the strong part of the Hamiltonian (1). The latter one is invariant under spatial coordinate
reflections, and if there is no weak interaction term WFNC in (1), and as such parity is
preserved, the eigenstates |¥,) of the strong Hamiltonian HY + V7 with energies E, can be
labeled by the parity quantum number {positive or negative), |¥F), |¥7). Due to presense of
PNC weak interaction WP¥C i the nuclear Hamiltonian (1), a state of definite parity, say,
|5 ), acquires very small admixtures of wrong parity configurations. This can be accounted

for by using the first order of perturbation theory with respect to WHNC;

U IWPNCI\II+)
‘If+ r_ \IJ+ + ( sl 3
J g > ! ] > g ES _ Esl

T30 (2)

Here, prime denotes the corrected wave function that accounts for the PNC interaction and
sum goes over available states of opposite parity, I@7). The magnitude of measurable PNC
° ~

effects is normally proportional to the coefficients fP¥NC [2] that determine the dominating

admixtures of the wrong parity states

(TalWEYeles)

= . 3
p= Ll (3

The natural scale of the PNC effects in nuclei under usual conditions is [1], [2]
|[fl >~ 1077 (4)

that is roughly the ratio of the strength of the Weak PNC forces ( matrix element in the
numerator of (3) ) and the strength of the strong interaction (energy denominatorr in (3) ).
In highly selective experiments, the PNC effects can be enhanced considerably as compared
to estimate (4), due to specific properties of a specially chosen nuclear system or process. To
reach high sensitivity to the wrong parity admixtures, one usually seeks possibilities to have
the denominator AFE in (3) minimal while keeping the PNC matrix element at maximum
and to improve selectivity of measurable effect. This is typical for any tests of fundamental
symimetries.

The most widely used version of the microscopic PNC interaction is the DDH Hamilto-

nian WS [1], where the PNC forces are mediated by mesons. Tts form stems from the
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analysis of interactions between intranucleon quarks via exchange of heavy bosons of Stan-
dard Model. The nonrelativistic P-odd weak interaction between nucleons approximated by

the one-meson exchange can be written in the form [2], [1]

fg7r ey g i
Whig = 4\;— (71 X To)s(61 + Go)[Br — Po, Fr] —

_M(-‘.-‘)(-* — F){PL — o, T} —
om, Tt Tef\0L = T2 )\ — P2,/
gho ' ’
=2 i1+ p) (71 - B)(& X Ga)[p1 — Pa, Fp} + W', (5)
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where the standard notations Fy(, = are used and [.,.] and {.,.} denote the

dnlF—a|
commutator and anticommutator, respectively. Here, m, m, and m, are the masses of
the nucleon, 7r- and p-meson, respectively; o {7) stand for the spin (isospin) Pauli matrices.
it = 3.7 is the isovector part of the anomalous magnetic moment.of nucleon. W' denotes con-
tributions from heavier mesons. The values of the corre:sponding weak and strong coupling
constants fr, g, g,, and hg can be found in [1], [2].

In nuclear environment, a nucleon experiences the combined action of the PNC forces (5)
from other nucleons. It is known, see, e.g., (2], that the most of P-odd effects caused by the
weak interaction WpE (5) in (1) can be successfully modeled by introducing the effective
one-body P-odd interaction, or the “weak- lﬁotential”, W,,, acting on the nucleon 1 as a
single-particle operator which arises from averaging W€ gver the states of other nucleons
Wy, = (WPNC). Within this approximation, the Hamiltonian of the weak interaction of

nucleons in a nucleus takes particularly simple form of a sum of the proton W}, and neutron

W, symmetry violating potentials

Ws Wp +Wﬂ = _'p 2\/— ( ppp P}+gn \/— {( OnPn), } (6)

where G = 107°m~? is the Fermi constant, Pp(n) and &y refer to the proton (neutron)
momentum and doubled spin respectively. The coherent contribution from all the occupied
nucleon orbitals composing the core yields the nuclear density p = 3, [toc|® in the ex-

pression {6). The dimensionless constants g;" and g of order of unity, for the proton and




neutron potentials, are related to the parameters of the DDH Hamiltonian and depend on
nuclear charge and neutron number. The single-particle approximation (6) for the PNC
weak interaction (5} turns out to be very accurate [2]. It works well even in compound
nuclear states where (6) gives the dominating results [25], [26] despite the fact that the wave

functions are of essentially many-body nature.

III. PROTON AND NEUTRON WEAK POTENTIAL STRENGTHS

- The knowledge about the proton and neutron constants g;V and g accumulated to date

can be summarized as follows:
gy =45+2 V=112 (7)

These values correspond to the microscopic paramters of the f)DH Hamiltonian described
above and they are found in reasonable agreement with the bulk experimental data on parity
violation. The above relatively small absolute value of the neutron constant that follows from
DDH analysis, results basically from cancellation between 7- and p-meson contribution to
g’ . while both terms contribute coherently to the proton constant g}". One should mention
that due to this difference between the absoulte values of the proton and neutron constants,
the proton constant tends to dominate most measurable PNC effects. especially when both
g)” can g\" contribute, provided that DDH model gives correct estimates. In this sense, one
usually measures the value of g}, and it is difficult to probe gV unless special suppression
of the proton contribution occurs, and contribution of g2 is highlighted. By contrast, the

case we consider in this work is sensitive to the value of the neutron constant only.

IV. HALO STRUCTURE EFFECTS ON THE PNC MIXING

‘The basic specific properties of the halo nuclei are determined by the fact of existence

of loosely bound nucleon in addition to the core composed by the rest of the nucleons [10]




(we will be interested here in the most well studied case of neutron halo). The matter
distribution is shown schematically in Fig.1 (part a).

In one-body halo nuclei like * Be, the ground state is particularly simple: it can be
represented as direct product of the single-particle wave function of the external neutron.
Whato, and the wave function of the core. The residual interaction V§® in (1) can be neglected
as the many-body effects related to the core excitations are generically weak in such nuclei
[29]. The problem with the .Hamiltonian (1) is reduced to a single-particle problem for the
external nucleon. The PNC potential matrix element between the ground state of halo

nucleus and a state with opposite parity is

- G - -
<wf-:aloIWPNclwha£o> = grm(wiaiol{(anpn)v pc}'¢hato>? (8)

where p.(r) is the core density. Due to relatively heavy core for A ~ 10, difference between
the center of mass coordinate and the center of core coordinate can also be neglected.

The effective potential that binds external neutron is rather shallow yielding small single-
neutron separation energy, and one can expect small energy spacing between the opposite
parity states. The PNC effects (3), (2) can therefore be considerably magnified. The spec-
trum of "' Be is shown in Fig.1(b). To evaluate the PNC mixing f#4L0 in the ground state
of this nucleus, it is enough to know the single-particle matrix element between the ground
state 2s and the nearest opposit parity state 1p, and use their energy separation that is
known experimentally.

The second effect of halo is that the value of the matrix element of the operaAtor (6}
between the halo states can be dramatically reduced as compared to its value in the case of
“normal” nuclear states. The single-particle weak PNC potential (6) in (8) originates from
the DDH Hamiltonian (5) which is two-body operator, this fact is hidden in the nucleon
density of the core p.(r). The external neutron spends most of its time away from the
core region where only it can experience the PNC potential created by the rest of nucleons.
Indeed, the dominant contribution to the matrix element of (6) between the halo states in

(8) must come from the regions where the three functions can overlap coherently: 7, (7).
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Yhato () and the core density p.o.(r). The latter one is essentially restricted by the region

of nuclear interior, r < r, thus reducing the effective volume of required interference region
to 27rd. Normalization condition implies that the extended wave function of the bound
state halo ¥, (7} must be coﬁsiderably reduced in the volume of coherent overlap %ﬂ'ré”.
By contrast, in “normal” nuclei the radii of localization of the wave functions with opposite
parity that can be mixed by the weak interaction coincide generically with the core radius
re. The resulting suppression for the PNC halo matrix element (17, (r)|Wip |t (r)) with

respect to the matiix element for the normal nuclei can be extracted from the following

simple estimate

(Vhato Wsp|¥itaio) N( Te )3

(w;ormal | WSP ' wa;:‘ormal) Thalo ‘
ofm\® 1 1 ° o)
6.fm 2530

where we have used the mean square radii of halos from Ref. [9]. This suppression factor
can cancel out the effect of the small energy separation (the denominator in Eq.(S)) and to
supress the PNC effects. This simple estimate does not account for the structure of the halo
wave functions which can be quite substantial and may even lead to further supression in

the PNC mixing. In the following, we present a detailed analysis of the related effects. In

particular. we find that the crude estimate (9) turns out rather pessimistic.

V. HALO MODEL AND EVALUATION OF THE PNC MIXING IN THE

GROUND STATE OF !'BE

The form of the single-particle wave functions of halo states can be deduced from their
basic properties [13] and their quantum numbers [9]. The results of the Hartree-Fock calcu-
lations which reproduce the main halo properties (e.g., mean square radii) are also available

[9]. We use the following ansatz for the model wave function of the 2s halo state:

Yos = st(?‘)ﬂﬂ-i[i/z.ma Ras(r) = Co(1 = (r/a))exp(~r/ro) (10)




Here, R, (r) is the radial part of the halo wave function and Q=0 is the spherical spinor.

J=1/2m
As we can neglect the center of mass effect for the heavy (A = 10) core, the halo neutron
coordinate r in Ras(r) = %x2,(7) is reckoned from the center of nucleus. The constant Ch is
determined from the normalization condition, Z‘Odr[xgs(r)F =1 (we choose the radial wave
functions to be fea,l). We have

23/20,2

(11)

.Oo -
ro/?\/45rd + 20t — 12422

The parameters 7y and the a are the corresponding lengths to fit the density distributions
obtained in Ref. [9] and the mean square radius. The value of g is practically fixed to be
a = 2fm what corresponds to the position of the node. Recently, the node position have
been restored from the analysis of the scattering process in work 113].

For the wave function 4y, = R;,, (rQi=h J2,m Of the excited state 1p, the following simplest

form of the radial wave function turns out to be adequate

Ruy(r) = Cireap(~r/ry), (12)

52 and the only tunable parameter r; is

where (' is the normalization constant O, = %r;
related to the 1p halo radius. The mean square root radii for the halo wave states (10) and

(12) are given by

6(4578 + 204 — 1242r2)\ /2 151/ |
(Tgs) =Ty ( 105r61 +ad — 15(12?‘3 Y (T¥p> = (?) ry. (13)

Z

The matrix element of the weak interaction (6),(8) between the ground state and the

first excited state reads

(25| Wy [1p) = (14)

: G 7 d pr) 1dp.(r) '
W-——.- 2 J —_— _—
o V2m !dTX2s(?) (pc(r) dr * r * 2 dr 1(r)

The core nucleon density p.(r) has been tuned to reproduce the data obtained from Ref.

[9]. We found that their results are excellently reproduced by the Gaussian-shaped ansatz

pe(r),




pe(r) = poe(r/Re)” (15)

with the values of the parameters pp = 0.2fm™3 and R, = 2fm. as shown on Fig.2.
Using the model wave functions (10),(10) and the core density (15), the required integrals

can be done analytically, and we arrive with the result

Qs Wiy} = ig =R . (16)
where
R = pgRﬁ'COCH{ 3Ly(y) ~ [3 (%)2 4 1] Ly) +
(%) 1 - Z a0 - (%) ) (17)

| where y = Zell0%0) and the functions I, are given by

ror'L

o0 n
L = [de 2er e = ay LD o ely2),
J :

where er fc(y) is the error function

erfe(y) =1 — 2 fdt exp(—t2/2).
! 77 )

To obtain the results for the PNC weak inter;u_:tion matrix element, we used the parameters
rg and r; in the halo wave functions to fit the radial densities of the halos obtained by
Sagawa [9)].

The results for the best parameters are shown in Figs. 3 and 4 for the 2s and the 1p.
halos. respectively. One sees that the agreement for the densities is very good. Below. we

use the values

ro(best wvalue) = 1.45fm,

ri{best  wvalue) = 1.80fm, (18)

to calculate the matrix elements in Eqgs. (14,16,17). The radial wave functions x are given

in Fig.5. We used also deviations of the both r5 and r; from (18) to check robustness of the
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results with respect to variations in the halo structure details. The values of the halo radii
given by (13), \/@ = 5.9fm and \/@ = 4.9fm are close to the valus of Ref. [9] 6.5fm
and 5.9fm which agree with e;perimental matter radii.

Substituting the values (18) into our expressions for the matrix elements we obtain the

following value of the matrix element (25|W,|1p) garo

<1E?JWspl23>HALo=—~iO.2 ng ev,

=—i0.2 eV (for gV ~1 ). (19)

It is seen that this value is only few times smaller than the standard value of the matrix
element of the weak potential between the opposite parity states in spherical nuclei (see
e.g.. (2]}, that is typically about one eV. This results from the wave function structure
and comes basically from the facts that the 25 wave function crosses zero line near the core
surface while the 1p radial wave function does not have‘ nodes. Thus the functions x1, and
dxas/dr look similar and are folded constructively with p.(r) in the region of interaction
(nuclear interior), see Fig.6.

The matrix element of W,p between the “normal™ nuclear states can be evaluated for
example, in the oscillator model. Taking the typical matrix element between the states 2s

and-1p and using the same formula (14), one has

w12
(1pIWp|28) 00 = —ig) Gpo (2—7;;) (20)
where w ~ 40A~Y3MeV is the oscillator frequency [27]. We used here the constant value
of core nucleon density, py ~ 0.138 fm~13 This is very good approximation for the case of
normal nucleus [25).

Recalling the energy difference between the ground state and the first excited state 1p

that is known experimentally,
|AEwacol = Epja — Esyja = 0.32MeV (21)

we obtain, using Eq.(19), the coefficient of mixing the opposite parity state {1p) to the halo

ground state 2s:
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| HALO — |<1p|Wsp123>| ~ O.ZEVQ'W

'AEHALO| - 0.32MeV
| ~ 0.6 x 1078V
~0.6x107% (for gV ~1) (22)

This PNC mixing is about one order of magnitude stronger than the scale of single-particle
PNC mixing in “normal” nuclear states that can be extracted from Eq.(20). In the case of
normal p — s mixing, we have

| 'normnll — |<1P'Wsp|23)| Gg Po( )1/2
\/_m
~0.7x 1077g"

~07x 1077 (for gV ~1) (23)

in the same region of nuclei with 4 ~ 11. The above value (2 3) for tRe normal PNC mixing
is rather universal and it is practically insensitive to variations of the details of the normal
- nuclear wave functions and core densities [25]. Comparing Eqs.(22) and (23), we obtain the

halo enahancement factor to be

HALO
|f 9. (24)

| normal |
‘This result is quite remarkable in a number of respects. First, it is seen that in experiments
when the halo wave functions in nuclear exterior are probed, the value of PNC mixing is even
stronger than in “normal” nuclei. Secondly, this PNC mixing is dominated by the neutron
weak constant g2 Such experiments with neutron halo nuclei would therefore provide
unique opportunity to probe the value of this constant. Usually, sensitivity of expériments
to the value of this constant is “spoiled” by comparably large value of the proton weak
constant g¥. cf. Egs.(6).

In order to assess reliability of the results, we have studied stability of the enhancement
factor against variations in the parameters of the halo wave functions. As one can see from
the results presented in Table I, the matrix element (19) is changed by few per cent only

when the wave functions are deformed. The enhancement factor (22) is therefore quite

stable.




VI. CONCLUSION

Having in mind fo present a first estimate of the PNC effect in halo nuclei, we have
chosen here the simplest possible case of one-body halo where the existing data allow one
to rely on simple analytical model of halo structure. In this work, we confined ourselves to
the case of exotic nucleus ' Be for which we presented detailed consideration.

The analysis presented above rests basically on the most reliably known facts: the quan-
tum numbers of the states involved, the halo radii which match the matter radii known
from experiment, and the Hartree-Fock wave functions. With these input data. the furthe_r
quantitative analysis is a straightforward analytical excersize which does not require any ap-
proximations. Stability of the results has been checked analytically. The PNC enhancement
factor of one order of magnitude allows one to to speak about qualitative halo effect that
should not be overlooked.

It is the matter of further studies to check universality of the effect while going along
the table of exotic nuclei. One sees that other exotic nuclei with developed halo structure
manifest similar properties (see, e.g., [9]). Indeed, the effect of PNC enhancement found
here results basically from the two facts:

(i) small energy separation between the mixed opposite parity states

(ii) considerably strong overlap between the mixed wave functions and the core density.

which saves part of suppression in the PNC weak matrix element.
The first of these points is rather common for nuclei with developed neutron halos.
Systematics of separation energies for single neutron [10] shows that the ground states of

halo nuclei can be distanced from the continuum by typical spacing a1, ~ (210 ha0) "2 ~

few hundreds of KeV. Even in the cases when no bound states with parity opposite to that
of the ground state occur, the PNC admixtures to the ground state wave functions must
exist. In these cases, the PNC admixtures can be evaluated by means of Green function

method.

The second point (ii) is related to the wave function structure and requires further studies.
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It would be also interesting to study the PNC effects in proton rich nuclei {16], [17]. [18].

In conclusion, we have shown in this work that the ground state of exotic nuclei with
developed halo structure contain mixing of parity violating admixtures of opposite parities.
using the nucleus " Be as a representative case. Originating at the core scale, where the halo
wave functions overlap strongly with the core nucleon wave functions, these PNC admixtures
can manifest themselves in the nuclear exterior, where the halo neutron wave functions
contain admixtures that are about one order of magnitude bigger than in the case of normal
nuclear states. Such PNC admixtures can be tested in experiments that can probe halo
wave functions in nuclear exterior. Moreover, it is important that the PNC admixtures in

~neutron halo are sensitive to the neutron weak constant g!*, thus providing a ﬁew interesting
possibility to probe this weak constant whose value is the most doubtf}il point of the present
theory of PNC weak interaction.

One of possible experimental manifestations of the discussed effect is rela,ted to anapole
moment {19]. [20] which attracts much attention in current literature [23] in view of new
experimental results (detection of anapole moment in nucleus *3C's [24]). Since the anapole
moment is created by the toroidal electromagnetic currents which results from PNC, its
value grows as the size of the system increased [20]. In the case of halo which we considered
here. the value of the anapole moment can be therefore enhanced due to extended halo

cloud. We hope to address these issues in following publications.
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TABLES

TABLE I. Stability analysis for the matrix element of W, between the halo states 21,9 and
Ip1s2. The results for the values of the parameters rg and rp differing from the best values are
shown. The central entry in the table corresponds to the best value. Tt is seen that variations in

ro and r; do not affect (2s, /21Wspilpys2) any considerably.

ro = 1.40 ro = 1.45 ro = 1.30
ry = 1.75 1.168 1.052 0.950
Py = 1.80 1.110 1.000 0.903
ry = 1.85 1.056 0.952 0.860
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Frgure Captions

Fig.1. a} Schematic plot of matter distribution in halo nuclei. The dark region corre-
sponds to the nuclear core, the grey region shows the halo neutron cloud.
b} The spectrum of the bound states !! Be.

¢) Hlustration of the single-particle PNC mixing in the ground state of 1 Be.

Fig.2. The core density distribution (logarithmic scale). The dashed line corresponds to

Ref. {9], the solid line gives parametrization (15).

. e 2 .
Fig3. The halo density in the ground state, Posiya(r) = ﬁ (R2sl/2t’1)) . The dashed line
corresponds to the Hartree-Fock calculations of Ref. [9]. the solid line gives parametrization

(10).(18).

2

Fig.4d. The halo density in the first excited state, Prprelr) = 4—1,_;_(}31‘,,1;2(7")) . The

dashed line corresponds to the Hartree-Fock calculations of Ref. [9]. the solid line gives
parametrization (12).(18).

Fig.5. Plot of the radial wave functions of the states |251/2) and |1p1/2), Xos1/2(r) =

7’R251‘_‘/2(7‘) and lel\/?(‘r) = "‘R1p1/2(‘]\)'

Fig.6 . Plot of the functions contributing to the weak PNC matrix element. The function

$(r) = Exipe(r)+ “”1:2(” +dp2"'p/j’° Xip1/2(r) {dot-dashed line) depends on r in the way similar

to xas2(r) (dashed line). The combination Xa2s172(r)pes(r) that enters the PNC matrix

element in Eq.(14) is shown by the solid line. It contributes cherently to (2s{WW,,|1p).
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