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In this paper, we give a simple diagrammatic identification of the unique combination of the causal n-point
vertex functions in the real time formalism that would coincide with the corresponding functions obtained in
the imaginary time formalism. Furthermore, we give a simple calculational method for evaluating the tem-
perature dependent parts of the retarded vertex functions, to one loop, by identifying them with the forward
scattering amplitudes of on-shell thermal particles. As an application of the method, we calculate and show that
the temperature-dependent parts of all the retarded functions vanish at one loop order for (1 -+ 1)-dimensional
massless QED. We further point out that, in this model, in fact, the temperature-dependent parts of all the
retarded vertex functions vanish to all orders in perturbation theory. [S0556-2821(99)06404-8]

PACS number(s): 11.10.Wx

I. INTRODUCTION

In recent years, there has been an increased interest in the
study of finite temperature field theory primarily from the
point of view of understanding the structure of the early uni-
verse as well as the properties of the quark gluon plasma, the
latter bearing relevance to experiments planned in the near
futare [1~5]. These studies, in turn, have led to a better un-
derstanding of finite-temperature field theories in general and
new structures continue to emerge.

One of the important things, in the context of finite-
temperature field theories, is to find simple calculational
rules for various quantities of physical importance. Some of
the physical phenomena of interest at finite temperature, such
as the linear response, involve retarded functions as opposed
to the time ordered functions that we are used to in quantum
ficld theories at zero temperature. As is well known [6-8],
there are two distinct ways of calculating statistical
averages—commonly known as the imaginary time formal-
ism and the real time formalism (furthermore, there are two
real time formalisms). In the imaginary time formalism, the
calculation of the retarded (or advanced) functions is quite
straightforward. We calculate the relevant vertex functions in
a Euclidean field theory with appropriate (anti) periodic
boundary conditions and then analytically continue the re-
sulting function to the appropriate axis in the complex en-
ergy plane. Furthermore, there exists a very simple method
for calculating these functions to one loop order, which re-
lates them to forward scattering amplitudes of on-shell ther-
mal particles [9]. In contrast, in the real time formalism, we
have a doubling of fields which for the n-point functions
leads to (2"—1) independent causal functions. It is, of
course, not clear a priori whether there even exists a unique
definition of a retarded n-point function in the real time for-
malism and if so, how it compares with the retarded function
calculated in the imaginary time formalism. It is worth point-
ing out here that a meaningful definition of retarded vertex
functions in quantumn field theories at zero temperature al-
ready exists and a lot of work has been done in recent times
showing how this definition, when generalized to finite tem-
perature, coincides with the quantities obtained from the
imaginary time formalism [10~13]. In this paper, we would
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like to describe a simple calculational method which gives in
the real time formalism one loop retarded n-point function
quite easily.

In Sec. II, we describe briefly a simple approach that
works well in the imaginary time formalism, at least to one
loop. In Sec. III, we explicitly -identify the diagrams that
correspond to the imaginary time retarded amplitudes and
then drawing from the results of Sec. II, present a simple
method for calculating these amplitudes in the real time for-
malism. In this approach, the temperature-dependent parts of
the retarded a-point functions are given a simple diagram-
matic representation, which expresses them in terms of Feyn-
man amplitudes with physical (retarded or advanced) propa-
gators and a single statistical factor. As an application of this
method, we show in Sec. IV that all the retarded vertex func-
tions for a (1+ 1)-dimensional fermion interacting with an
external gauge field at finite temperature vanish to one loop
order. We also extract some further properties of this model
to show, in Sec. V, that the retarded self-energy, as well as
all the other retarded n-point functions actually vanish to all
higher orders. We end our paper with a brief conclusion in
Sec. VL.

II. IMAGINARY TIME CALCULATIONAL METHOD

The calculation of an amplitude in the imaginary time
formalism is exactly similar to that at zero temperature. The
only difference is that the energy, instead of taking continu-
ous values, takes discrete values depending on the {(anti)pe-
riodic boundary condition used (7 is the temperature):

2nar

for bosons,

= 1
v @2n+ D)7 . (1)
- for fermions.

Consequently, when one has internal loops, the loop energy
variable, rather being integrated, is summed over all possible
discrete values. The sum, at one loop, gives rise to a single
statistical factor for the particle type whose energy is being
summed in the temperature-dependent part of the amplitude.
This temperature-dependent part of the amplitude can be rep-
resented as a forward scattering amplitude where the internal
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FIG. 1. The forward scattering amplitudes associated with the thermal two-point function. The momentum k of the thermal particles is

on-shell, being integrated over with the statistical factor nz(|kg|).

line is cut open to be on-shell with the appropriate statistical
factor [9] (and the permutations of the external lines which
corresponds to different cuttings of the internal lines). Cal-
culationally, this is indeed quite simple. Let us illustrate this
with the simple example of the fermionic contribution to the
self-energy of an Abelian gauge boson in 3+ 1 dimensions.
The one loop amplitude can be written in terms of two dia-
grams as it is indicated in Fig. 1 (the momentum of every
internal line that is being cut can always be redefined to be
the momentum that is being integrated which leads to the
same graph with different permutations of the external lines).

The amplitude itself can now be evaluated trivially to give

4
448 (p)=—¢? f —-———Mjw'; ne(|K0]) 8(k>~ m?)

N*(k,p) N"(k—p,p)
([<k+p>2—m2] Tta=p—ml) @

Here 8 is the inverse temperature in units of the Boltzmann
constant

nF(Ikn’)= eﬂikol_}. 1

and the tensor structure arising from the fermion loop is
given by

NA(k,p) =T yMk+p+m)y"(k+m)].

The high-temperature limit of the self-energy can now be
easily calculated and has the form

212 [ dQ [ pokrE”
11448 = f__ P - _,7#0,,]»0 , (3)
3 47\ p-k

B,A
e B pa
A H
B’V 1};# (a')

where the angular integration is performed in the

3-dimensional space and £ is a lightlike four-vector given by
E=(1k).

There are some aspects to note here. First, in the above
expression, p®=2ni#/T even though we have treated it as a
real variable. Second, even though this calculation appears to
be similar to a real time calculation, there is an essential
difference, namely, the propagators in Eq. (2) do not have
the ie term.

This can, in fact, be generalized to the n-point one loop
amplitude in a straightforward manner. For example, the
temperature-dependent part of the three-point function has
the diagrammatic representation shown in Fig. 2.

It is important to note that this method also allows us to
calculate the temperature-dependent physical amplitudes,
such as the retarded amplitudes, in a simple manner in terms
of forward scattering amplitude diagrams with physical
propagators. Thus, the temperature-dependent part of the te-
tarded two-point amplitude can be obtained by analytical
continuation of the external energy p®—E+ie. In general,
the retarded n-point amplitude is found by the analytic con-
tinuation of the energy pg-»E « T (n—1)ie (all other external

energies being analytically continued as p‘-’

ki
=12,...,n—1), where we have assumed that the vertex
with external momentum p, corresponds to the one with the
largest time in the coordinate space. Such amplitudes are,
again, straightforward to calculate. They contain physical
(advanced or retarded) propagators G, r in the intermediate
states, as illustrated in Fig. 3.

III. REAL TIME METHOD FOR RETARDED FUNCTIONS

The physical two point functions, such as the retarded and
the advanced vertex functions, are well known in terms of
the causal vertex functions. Thus, for example (X, _ is de-
fined with a negative sign),

. k H
p
(b) (©)

FIG. 2. The forward scattering amplitudes associated with the thermal three-point function. All external momenta p; are inward with
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FIG. 3. Examples of forward scattering amplitudes with physical [retarded (R) or advanced (A)] propagators.

3r(P)=2,+4+(P)+24_(p) 4

and so on. The problem, however, arises when we go to
higher point functions. Because of the doubling of the field
degrees of freedom, there are (2"—1) independent causal
n-point amplitudes. The main difficulty is to determine
which combination of these independent amplitudes will cor-
respond to the retarded amplitude that is obtained from the
calculations in the imaginary time formalism and how to
evaluate them in a simple way. In this connection, it is worth
noting from the discussion in the previous section that at the
one loop order, the temperature-dependent amplitude in the
imaginary time formalism involves only a single statistical
factor. In contrast, the temperature-dependent part of every
propagator, in the real time formalism has a statistical factor.
Consequently, every n-point causal amplitude can, in prin-
ciple, involve up to a maximum of » statistical factors. Thus,
the combination of the causal amplitudes that will corre-
spond to the calculations of the imaginary time formalism
has to be such that all the higher order statistical factors
except the linear terms cancel out in the combination. This is

|

g
Cq)= 25 b,

We also note the following general relations [8]

not hard to determine. In fact, let us start with some explicit
lower order results before giving the general result.

Our discussion will be in the closed time path formalism
even though everything can be described equally well in the
formalism of thermofield dynamics. We note that in the
closed time path formalism, the propagator has a 2X2 ma-
trix form given by

Gup(9)=GC ) +GB(q) ab==x. ©)

Here GY(q) is the zero-temperature propagator whereas
G2 (gq) corresponds to the on-shell thermal correction to the
propagator. To keep the discussion completely general, we
do not take any particular form for the propagator. Thus, G,
can represent the propagator for a boson or a fermion with
the Dirac matrix structure factored. The important thing to
note is that no matter what is the propagator being consid-
ered, the temperature-dependent part is the same for all val-
ues of the indices a, b. For simplicity of discussion, let us
introduce a diagrammatic representation for the two parts of
the propagator. Thus, a simple line would represent the zero-
temperature part of the propagator while a line with a cut
would represent the thermal correction

q
D)= 2 =)y ©

Gp=G,,—G, =G _,—G__,
- _ - _ 7
Gp=G14+—G_=Gy —G__,

which will be useful in what follows. Furthermore, we remark that in the closed time path formalism, there are two kinds of
vertices, the vertices for the — fields having a relative negative sign compared to those for the + fields.

With these observations, let us first look at the retarded two-point function in the real time formalism. We then see that the
sum of the graphs with two cut propagators vanishes (to keep the discussion general, we will use dashed external lines and

solid internal lines which can stand for any field):

Py

p

,.+<>-_;& _ o ®)

+P 4

Next, using the relations (7), we obtain the following diagrammatic equation for the sum of diagrams with a single cut line:

- —lj‘-'.Qt:P_ + ‘ _ljj'Q'i:?v
k k

R
= _-€_<>_ZP_ ©
$ .
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The graph on the right-hand side of Eq. (9) coincides with the forward scattering amplitude in Fig. 1(a) obtained in the
imaginary time formalism, by analytic continuation of p,— E+ie. Similarly, the sum of the diagrams where only the other
propagator is cut, corresponds to the amplitude shown in Fig. 1(b) (these amplitudes actually give the same contribution).
Let us consider next the sum of the three point functions in the real-time formalism. It is clear that the sum of the following
graphs with three cut propagators vanishes:
P P

IR Py

+ + + +
+ + + =0.
. (10)
+ 3 +, ul - + - -
pl,w’ ‘\t\pl ps,a’ ‘r\pl pﬂ,z’ ‘r\pl pﬂ/a‘ *$~pl

The diagrams cancel pairwise and this follows simply from the observation that a cut propagator is the same no matter what
are the indices g, b as well as the fact that the — vertices have a relative negative sign compared to the + vertices. For the same
reason, the sum of the diagrams with two cut propagators also vanishes. The sum of the diagrams with a single cut propagator,
however, do not vanish and, therefore, it is clear that the sum of this set of diagrams is likely to correspond to the temperature
dependent part of the retarded three-point amplitude obtained from the imaginary time formalism (because it will be linear in
the statistical factor). In fact, let us look at the sum of these four diagrams with a fixed single cut propagator. Remembering
that a cut propagator is on-shell and hence can be thought of as a pair of open lines (on-shell and with a statistical factor), we
can write

_*--
—e--
o

ceen

by
4 +
+1fiiiiiii§x? + * T +
pz,:.‘ k ‘s\?ﬂ lfz_a‘ k ‘t‘?l
(a) (b)

Ps

Py

_— -
—e -

Py

At
+ _ = .
Pn’a:— P tx\pl lfe,a'. e P Py o e P an
(c) '

g
— -

+
k

{d)

In order to obtain this result, we make use of the relations (7)
and note that the integrands associated with the above dia-
grams can be combined pairwise as follows:

I(a)+l(b)~G(fl—(k'*'pZ)[G(fl(k_pl)_G(%(»))ﬁ(kwpl)]
=GO, (k+p2)Gr(k—py), (12)

Loyt Ly~ =GOy (e PG (k=p1) =G (k=py)]
=~GY, (k+p;)Grlk—py).- (13)

Finally, adding all contributions, we find that
l(a)+I(b)+1(c)+1(d)~[G(fiu(k+Pz)
— GO (k+p))1Gr(k—py)

=Ga(k+py)Grlk—py). (14)

The result given in Eq. (11) coincides with that associated
with the forward scattering amplitude shown in Fig. 3(b),
which was obtained after analytic continuation from the
imaginary time formalism.

The sum of the diagrams with distinct single fixed cut
propagator would, then, correspond to different permutations
of the external lines and it is clear that the sum of all such
diagrams would exactly coincide with the diagrams obtained
in the earlier section in the imaginary time formalism. There-
fore, this set of diagrams uniquely corresponds to the re-
tarded three-point function that would be obtained from the
imaginary time formalism

TP=T,, 0, +T,, +T,__. (15)

We parenthetically remark here that this is unique to the
extent that the retarded self-energy is unique. In fact, we
know that because of the constraints among various causal
amplitudes, we can also write

065004-4
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Se=—2_,-3__. (16) However, the definition that contains the amplitude with all

+ vertices (namely, the physical amplitude) is uniquely

given by Eq. (15). Furthermore, by relating them to the for-

Similarly, for the retarded three-point amplitude, we can also ~ ward scattering amplitude, we, naturally, have a simple way
write of calculating them.

Let us next look at the retarded four point amplitude.

Once again, it is easy to see that the sum of the following

3y - - -
Fgl=-T_,,-T__,-T_, ~-T___. a7 graphs with four-cut propagators vanishes:

(18)

Similarly, it can be verified that the sum of three-cut propagators as well as the sum of two-cut propagators also vanish.
However, the diagrams with a single-cut propagator do not add up to zero. Thus, it is clear that this set of diagrams is likely
to lead to the retarded four-point amplitude that will be obtained from the imaginary time formalism. Once again, it is easy to
see that the sum of the diagrams with a fixed single-cut propagator correspond to a given forward scattering amplitude and that
distinct fixed single-cut propagators would correspond to cyclic permutations of the external lines. For example, with the help
of the relations (7), one finds that

(19)

065004-5
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FIG. 4. Forward scattering amplitudes associated with the re-
tarded four-point function. The internal on-shell momentum k is
integrated over with an appropriate statistical factor.

The right-hand side of this equation can be represented dia-
~ grammatically as the forward scattering amplitude shown in
Fig. 4(c).
Thus, this set of diagrams uniquely gives the retarded four
point amplitude as

F§4)=F+++++F+++-+F+-+++I‘+~+~+I‘++_+

+T, o+, 4T, __. (20)

Furthermore, by relating this sum to the forward scattering
amplitudes, we indeed have a simple way of calculating the
temperature dependent part of the retarded four-point ampli-
tude.

From these low order examples, it is now clear now how
to extend these results to the retarded n-point amplitude.

rs{n).—_ 2 I‘-l'l"-'-in"“ (21)

=t

Namely, we should keep the index associated with the larg-
est time vertex fixed to be the physical index (+) and sum
over all possible permutations of the thermal indices. It is
known [14] that this form of the retarded amplitude is
equivalent to the standard one given in terms of multiple
nested commutators. There is an even number of diagrams at
every order and from the properties already discussed, the
sum of all diagrams with more than one cut propagator can
easily be seen to vanish (graphs cancel pairwise). Further-
more, the sum of the single-cut propagators can then be
given a forward scattering representation which identifies
them with the imaginary time result as well as makes the
evaluation simple. By a straightforward generalization of the
previous results, we see that the rule for calculating the gen-
eral retarded n-point forward scattering amplitudes is as fol-
lows (compare with Fig. 4). Let p, be the external momenta
associated with the latest time vertex. Then, all propagators
whose momenta are flowing towards this vertex are ad-
vanced, whereas the propagators with momenta flowing out-
ward from the latest time vertex are retarded.

PHYSICAL REVIEW D 59 065004

IV. APPLICATION

As an application of this method, let us next calculate the
n-point photon amplitudes at one loop for the
(1+ 1)-dimensional massless QED. It is well known that in
the Schwinger model [15] only the self-energy is nonvanish-
ing. Thus, we are interested mainly in the thermal corrections
to these amplitudes. The simplest, of course, is the retarded
self-energy which can be obtained from the forward scatter-
ing amplitude diagrams shown in Fig. 1:

2
PE(p)=— 2 | @hn (1) 50)

( N#¥(k,p)

[(k+p)*+ie(k®+p")]
N"(k—p,p) )

(k—p)*—ie(k"~pYH])’

+ [ 22)

Here, we have

N®(k,p) =Til y*(k+p) y" k1=K (k+p) s +kE(k+p)Z

(23)

and we have defined
k& =(n"" L ")k, (24)
where € is the antisymmetric tensor with €”'=1. It is clear

that, under a suitable redefinition of variables, the second
term in Eq. (22) becomes identical to the first and the inte-
gral can be trivially evaluated to give

IR =Txp)

B e2( 1 1 )
T 27 (po+ie)--p1 (po+ie)+p1
Xj dk' sgn(kng(|k')=0,
Y (p)=Tr(p)

B &2 1 N 1
T 2w\ (pO+ie)—p' T (pO+ie)+p!

xf dk" sgn(kng(jk'])=0. (25)

Similarly, the diagrams for the temperature-dependent part
of the retarded three-point function are given in Fig. 3. These
can also be evaluated in a simple manner. Without going into
details, we give the result here, namely, there are only two
tensor structures with an even/odd number of spacelike indi-
ces. For example,

065004-6
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e2

1
CRp1.p2p3)=— P

pi{py +p3)

_-——"——“—‘+P R} 9
pTerepn PP pa)}

xfdk' sgn(kNng(|k'])=0,

Imm(l’l P2 P3)="i["—“‘1“““
kEDE 27| p;(p; +p5)

+ e+ P sPas
PTpriph TP "3’}

XJ dk! sgn(kDne([k'))=0, (26)

where P(py,p,;,p3) represents contributions obtained by cy-
" clic permutations of the external momenta, and p; = p?
*p ,' It is to be understood that p(l) and pg are accompanied
by a term —ie, whereas pg is accompanied by a term 2ie.
The calculation of the temperature-dependent part of the
retarded four-point amplitude is straightforward as well. It
corresponds to evaluating the set of diagrams indicated in
Fig. 4, where the external lines denote, in this case, photon
fields. Once again, there are only two independent tensor
structures that arise corresponding to whether there is an
even/odd number of spacelike indices with the values

e? 1
FOOOO 3 s 3 )=__ — = = = = ~
R (P12P2:P3 P =" 5 p1(py +p2)(py +ps +p3)

1
pi(pi +p3)(py +p3 +p3)

+P(pl,]72’l73ap4)]

Xf dk' sgn(k")ng(|k'|)=0,

R \P1:P2:P3:P4 2ar p;(pr+p£)(P;+P2_+P;)

1
+
pi(py +p3)(py +p; +p3)

+P(p ,PzaP3’P4)}

xfdk‘ sgn(kng(lk')=0, (27

where the appropriate i€ terms are to be understood.

The pattern is clear now. As we calculate the temperature-
dependent parts of the retarded higher-point amplitudes, only
the external factors change in a predictable manner whereas
the coefficient, namely, the integral, does not change and

PHYSICAL REVIEW D 59 065004

FIG. 5. A typical two-loop self-energy graph with a single fer-
mion line cut.

vanishes by antisymmetry. Thus, in this model, the
temperature-dependent parts of all the retarded amplitudes,
at one loop, vanish. This is indeed consistent with the con-
clusions of Ref. [16] where it was shown that the
temperature-dependent part of the effective action in this
theory does not lead to any physical effects.

Y. FURTHER PROPERTIES OF 1+1 THERMAL QED

From the results of the previous section, we note that all
the finite temperature-dependent parts of the retarded n-point
amplitudes in the (1+ 1)-dimensional QED vanish to one
loop order. This, however, does not say anything, in general,
about the higher loop amplitudes. This is easily seen from
the fact that if we were to connect any two external photon
lines, the form of the zero-temperature part of the propagator
depends on the type of vertices that it connects. And, conse-
quently, the pairwise cancellation that took place between
diagrams in the previous section no longer holds. Of course,
the temperature-dependent part of the photon propagator, as
with any other propagator, does not depend on the type of
the vertices it connects (namely, for any pair of thermal in-
dices) and, consequently, leads to a vanishing contribution.
Thus, the problematic diagrams at higher loop would appear
to be the single cut diagrams where the internal photon lines
are pot cut as in the example shown in Fig. 5. In this simple
theory, however, things are rather special. Let us illustrate
this with a general two loop diagram which would corre-
spond to connecting a pair of external photon lines in the
four-point vertex functions discussed in Sec. IIL First, we
note that in the (1+ 1)-dimensional QED, the photon be-
comes massive and as a result, the photon propagator in the
Feynman gauge would have the form

D))= ML, (28)

g>—m*+ie)’

where the photon mass can be identified with m?=e?/ 7.

The general form for a diagram with all + vertices in the
2n-point amplitude, at one loop, is easily seen to be (in this
theory, only the even point amplitudes are nonzero by charge
conjugation invariance)

2k #q M2 2
THt M2 ~ j W[k‘* (k+p])+ "'(k+"'+172n—1)+ n
FRE (e p )2 (ke oy 1)

nF(lk(’l)S(kz)
[(k+p,)*+ie]l [(k+ pyy—1)*+i€]l’
29
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If we now connect any photon line (and consider only the
zero-temperature part of the photon propagator because as
we have argued before the finite-temperature parts would
cancel pairwise among the sum of the diagrams in the com-
bination giving the retarded amplitude), then we trivially ob-
tain

77/‘1,“]' _
(g>—m?+ie)

PG s
)2T { i K 2n 0. (30)

Q2n

Here we have assumed that the photon line being connected
carries a momentum ¢ and the vanishing of the amplitude in
Eq. (30) follows from the fact that for any two arbitrary
vectors, A* and B®,

ALVB% 7, ,=0. (31)

A similar argument shows that, in this simple model, each
diagram with an internal photon line identically vanishes
and, consequently, the retarded amplitude continues to van-
ish even at higher loops. However, it is to be emphasized that
Eq. (31) only leads to the vanishing of the diagram, provided
the integral in Eq. (30) is convergent. As is well known, the
finite-temperature integrals are ultraviolet finite and hence
there is no such problem from the ultraviolet region. For a
massive photon, similarly, there is no infrared problem either
and hence the diagram, indeed, vanishes. On the other hand,
if we did not include the photon mass, these integrals would
be infrared divergent and, consequently, we cannot conclude
that each of these diagrams vanishes individually. In fact,
they do not and only when we sum the amplitude to all
orders, all such divergent terms would cancel as Eq. (30)
shows.

The discussion, so far, would seem to say that when two
external photon lines are contracted, the diagrams individu-
ally vanish for a single cut fermion line in the Feynman
gauge. This is, however, not true in a general gauge. Without
going into details, let us simply summarize here that the
g*¢” terms in the photon propagator do contribute graph by
graph. However, when their contribution is summed for a
fixed single cut fermion line, the effect is to lead to an inte-
gral which vanishes by antisymmetry (the number of alter-

PHYSICAL REVIEW D 59 065004

nating step functions becomes odd). This could also have
been inferred from the gauge invariance of this model.
Namely, we know that, in this model, any temperature-
dependent correction to any amplitude must be gauge invari-
ant and, consequently, if an amplitude vanishes in the Feyn-
man gauge, it must also vanish in any other gange. This
model, in this sense, is special and immediately leads to the
fact that in this (1+ 1)-dimensional QED, the temperature-
dependent corrections to all the retarded amplitudes vanish
to all loops. This is, indeed, consistent with the conclusions
of Ref. [16].

VI. CONCLUSION

In this paper, we have identified, in a simple diagram-
matic way, the unique combination of n-point causal ampli-
tudes in the real time formalism that corresponds to the re-
tarded n-point amplitude obtained by analytic continuation
from the imaginary time formalism. We have also given a
simple method of calculating the temperature-dependent
parts of the retarded n-point amplitudes, at least to one loop
order, by identifying them with the forward scattering ampli-
tude of on-shell thermal particles. (The extension of this ap-
proach to higher orders will be reported elsewhere.) As an
application, we have calculated and shown that all the
temperature-dependent parts of the retarded n-point ampli-
tudes for (1-+1)-dimensional massless QED vanish to one
loop. For this simple model, it turns out that the temperature-
dependent parts of all the retarded n-point amplitudes also
vanish to all loops.
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