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Abstract

The structure of single-particle levels in the second minima of 237,239,241 pyy

was analyzed with the help of an axially-deformed Woods-Saxon potential.

The nuclear shape was parametrized in terms of the cassinian ovaloids. A
parametrization of the spin-orbit part of the potential was obtained in the re-
gion corresponding to large deformations (second minimum), depending only
on the nuclear surface area. With this parametrization, we were able to repro-
duce successfully the spin, parity and energies of the rofational band built on
_. the 8us isomeric state in 239Py and, also, a spin assignment for both isomeric

states in 237Pu and 241Pu was carried out.
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I. INTRODUCTION

-The theoretical description of the fission process is one of the oldest and most challenging
problems in nuclear physics. Although many aspects of the fission process have already been
clarified, a consistent description of fission has not yet been found {1}. The difficulty resides
in the fact that the fission process involves both collective aspects and single-particle effects
Sﬁperimposed on a macroscopic background.

Different aspects of fission-like properties, such as asymmetric mass division and fission
isomers, are believed to be associated with single-particle effects in the vicinity and even
beyond the fission saddle point. Therefore, a successful description of these phenomena
- depends strongly on accurate calculations of single-particle states for very deformed shapes
near and beyond the saddle point.

Previous studies on single-particle states in the second well have made use, generally, of
methods appropriate to small deformations and, then, extended to larger deformations. For
instance, Dudek and collaborators [3] have carried out a systematic work on the optimization
of the Woods-Saxon potential parameters for deformed A > 100 nuclei, using a shape
parametrization in terms of spherical harmonics (details in [3] and references therein). In
these works, the properties of an average spin-orbit field, using both phenomenological and
microscopic approches, were examined.

In general, such methods suffer from the following drawbacks: on one hand, the
parametrization used to describe the geometrical shape of the potential and equipoten-
tial surfaces are inappropriate at larger deformations and, on the other hand, higher order
deformation parameters are needed in the multipole expansions. In this work we use an-
other and more convenient approach to calculate single-particle states for strongly deformed
nuclear shapes. In this approach the nuclear shape parametrization is carried out by using
a coordinate system based upon Cassini ovaloids, as proposed by Pashkevich [4,5]. This
shape parametrization requires only a few parameters to describe a whole variety of real-

istic shapes in deformed nuclel (up to and beyond its separation into two fragments). In



this sense, this parametrization may be considered better than the expansion in terms of
- spherical harmonics, extensively used in the literature.

If one is interested in the quantitative description of the properties of the fission isomeric
- states (known as the best superdeformed states [6]), it is necessary to pay special attention
to the parametrization of the spin-orbit part of the deformed nuclear potential. Therefore, a
good parametrization of the spin-orbit part of the potential, which is mostly responsible for
the order of single-particle levels, is extremely important in the analysis of the properties of
single-particle levels at deformations corresponding to the second minima of the total energy
surfaces of fissioning nuclei. In this regard, Dudek and collaborators [7] carried out shell
model calculations, in which the parameters of the deformed Woods-Saxon potential were
" adjusted in order to reproduce the shape properties of some known isomeric states. They
showed that the parametrization of the spin-orbit potential, at fission isomeric minima,
should be significantly different from the parametrization applied to the ground states,
resulting, thus, in a deformation-dependent parametrization of the strength (\) and radius
(ro-s0) parameters. The main features of this parametrization of the spin-orbit pot_ential for
fission isomeric states consist of both increasing the effective strength of spin-orbit potential
- and reducing its radius parameters r,_,,. Similar results were also obtained by Hamamoto
and Ogle. In all these works, however, the particular dependence of the spin-orbital potential
parameters on deformation was restricted to the parametrization. Moreover, the spherical
shape parametrization used in these works is not the most convenient, because it requires
an expansion with several terms to describe a deformed shape. However, the study of the
dependence of the spin-orbit term with deformation, could be performed by using the nuclear
surface area B;. In this case, the results are applicable for any parametrization.

The identification of single-particle orbitals in the second minimum is of paramount im-
portance because it would test the basic model assumptions, especially if one could demon-
sfrate that the right levels are used to calculate the shell correction . Concerning fission
isomeric states, extensive theoretical and experimental efforts have been done to study the

properties of these states, but up to now the spin and/or parity of most of the fission isomers
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~ still remain unknown. Nevertheless, some measurements of spin—parity for the second mini-
mum in %237 and ?**Pu have been performed [9,10]. Therefore, the study of spectroscopic
properties of isomeric states would be a perfect testing ground for the single-particle model
at large deformations, as proposed in this work. #%Pu is a particularly interesting nucleus
to study because, among odd-Pu isotopes, it is the only nucleus in which a rotational band
built on an isomeric state was identified [11]. **"Pu and ?*'Pu also have two isomeric states
but, differently from the ?*Pu case, their spin and parities are not known. Actually, only
the spin (parity unknown) of the energetically lower isomer (8 us) of ***Pu is known [11].
The spin and parity of the energetically higher isomer (2.6 ns) remain unknown. In the case
of 27Dy , several attempts to do an assignment to these states were carried out, as reported
in the literature, but this is still an open issue. Both experiment and theory agree with the
fact that the ground-state isomeric level (or the short lived isomer - 122 ns) is expected to
have lower spin compared to the excited isomeric level {(or the long lived isomer - 1.1 us),
which may have higher spin. For ?*!Pu, no spin and/or parity assignment has been done so
far.

As far as **"Pu is concerned we note that Dudek et al. [7] have calculated the g-factors of

the I=1/2, K=1/2 and I=3/2, K=1/2 members of the K=1/2 rotational band, and compared
them with the experimental g-factor (g=-0.45) [12]. According to their results, the most
likely interpretation of the single-particle structure and the I™ values of fission isomers in
7Py is:
a) for the 122ns isomer, 1=3/2, K==1/2~ is a member of the K=1/2 rotational band; and b)
for the 1.1us, I=K=11/2,7=-1. Finally, for the energetically higher isomer (2.6 ns) in #°Pu
the most likely interpretation would lead to I=11/2" or I=11/2". The work of Dudek et
al. seems to have contributed to clarify the situation concerning the assignment of spin and
~ parity of *"Pu and 2**Pu isomeric states but, as stressed by the authors, these assignments
should be treated with some caution.

Due to these above mentioned facts, the goals of this work are:(1) to obtain an optimized

set of parameters for the spin-orbit part of the axially deformed Woods-Saxon potential,
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- which would be able to describe the experimental ground-state properties of Pu isotopes
(spin, parity and the energy spacing of single-particle levels of the equilibrium deformation);
this could be achieved by using a more convenient shape parametrization based upon the
Cassini ovaloids. (2) To obtain an analytical expression for the strength parameter A and
- the radius parameter r,_,,, as a function of the nuclear surface area B,. With the help of this
expression, we aim to make a parametrization of the Woods-Saxon potential corresponding to
the deformation region of the second minima of some Pu isotopes. With this parametrization
it would be possible reproduce the first rotational band built on the 8us isomeric state of
239Pu, as well as to do spin and parity assignment for the two isomeric states of ?*"Pu and
C2UIpy

It is important to note that this new parametrization for A and r,..,, differs from that of
Dudek et al. [7] in two aspects:(a) A and r,_,, are given as a function of the nuclear surface
area B, and not of the deformation parameters > and f4; and (b) we use a mére convenient

shape parametrization to describe a deformed nucleus, which is based on Cassini ovaloids.

II. METHOD OF CALCULATION
A. Nuclear shape parametrization

Our nuclear shape parametrization is carried out by using the BARRIER code developed
by Garrote et al. [8] . According to this code, the deformed shape (up to and beyond
its separation into two fragments) can be conveniently described by the Cassini ovaloids
proposed by Pashkevich, as shown in detail elsewhere {4,13].

Considering only axially symmetric nuclear shapes, the Cassini ovaloids are taken as the
first approximation to the nuclear shape. The deviation from the ovaloid shape is given by

an expansion into a series of Legendre polynomials. Geometrically, the family of Cassini

ovaloids is defined by [14]:

r2(z,€) = {/{a* + 4(cz)?) — (¢ + 2* ~ €%). (1)



- In this equation, r and z are cylindrical coordinates; ¢ is a dimensionless quantity such that
¢=€cRZ; ¢ stands for the square distance from the focus of the Cassini ovaloids to the origin of
coordinates; and ¢ is a dimensionless parameter which completely defines the shape, taking
into account volume conservation.

In the plane containing the symmetry axis it is defined a system of coordinates (R, z),

such that the coordinate line R is constant. This is a Cassini ovaloid where 0 < R < co

and —~1 < z < 1. The (R,z) coordinates are related to the cylindrical ones (r,z) by the

following equations

R(z,r) = {/{(22 +12)? = 2RE - (2* — %) + €RY)], (2)

] . 3
R @)
In this system of coordinates, the basic shape of the nucleus is described by these equa-

tions, whith R constant, determining thus the Cassini ovaloids. Therefore, the nuclear shape

can be defined as a curve R(z) that does not intersect any straight line = constant in

more than one point. Then, we expand the function R(z) into multipoles,

R(z) = Ro[l + 3 BmYmo(z}]- (4)

Therefore, the set of parameters (¢, ) determines the nuclear shape. The details of
this parametrization are given in [4,14]. As an example, we show in Figure 1 {¢, a4} as a
function of {8;, 84}. As clearly seem in this figure, it is difficult to establish an analytical
connectidn between the two set of parameters. A relation was obtained by a least—square fit
of the parameters (3, 8, to the shapes described in this work by the cassinian ovaloids. By
using this figure it is possible to establish a connection between the two set of parameters to
describe the same nuclear shape, bt for more complex shapes more coeficients are needed
in the harmonic spherical expansion.

It is worth mentioning that the shortcoming associated with spherical expansion, at large

deformations, refers to the inclusion of non-small terms to describe extreme nuclear shapes.
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In our approach, however, we can avoid this problem by using the parameter ¢, which is one

of the parameters of the ovaloid basis figures, subsequently used in the expansion given by

‘Eq.(4).

B. Nuclear Potential

In order to obtain single-particle energies and wave functions, the Hamiltonian has to

be diagonalized. The Hamiltonian matrix elements are calculated with the wave functions
| of a deformed axially symmetric oscillator potential. The basis cut-off energy is determined
in such a way that negative energy eigenvalues of the Woods-Saxon potentlal don’t change

..by the addltlon of more harmonic oscillator shells.

1. The azially-deformed Woods-Sezon potential

The real potential V(r) is expected to follow approximately the density distribution, as
usual. One of the most used radial dependences comes from the Woods—Saxon potential,
- which takes into account the nuclear potential and the density distribution. This potential
involves the parameters Vg, 7 and a, describing the depth of the central potential, the
radius and the diffuseness parameters, respectively.

The nuclear potential is given by

Ve

. 3 (5)
ist{r,z,e,3) ’
1+ e:l:pd Hopsd

V('r?z?€ﬂé) =

where dist(r,z,e,ﬁ’) is the distance between a point and the nuclear surface, and € and 5’ are

deformation parameters.

The depth of the central potential is parametrized as
V = Wll £ k(N ~ 2)/(N + ), (6)

with the plus sign for protons and the minus sign for neutrons. The value of the constant &

is equal to 0.63.




2. The spin-orbit potential

‘The Woods-Saxon-type potentials, with the spin-orbit interaction proportional to the
potential gradient, are the most appropriate from the physical point of view. It is obvious
-that the spin—orbit interaction is a surface term. In the region where the nuclear density is
constant the average effect of the spin-orbit interaction is zero, because the effect of one of
tﬁe nucleons is cancelled by the effect of another one located at the same distance and in
.an opposite direction; therefore, no preferable direction could be defined. However, in the
surface region this cancellation does not occur, and a single nucleon experiences a spin-orbit
interaction due to the other nucleons. So, we can define a preferable direction given by the
density gradient. Because of this effect, the strength of the interaction reaches its maximum
in the region where the density of nucleons is changing more rapidly, so that the radial
variation of the spin-orbit term is frequently set proportional to the gradient of V(r), where
V(r) is the radial function of the central real potential (equation (5)). According to equation
(5), the spin-orbit interaction is then given by:

h

; .
1’/SO(T: Z, 613) = /\ (2—}“{8) VV(T,Z,E, B) . (&. X ﬁj: (7)

 where A denotes the strength of the spin—orbit potential and M is the nucleon mass. The

vector-operator & stands for Pauli matrices and 7 is the linear momentum operator.

3. The Coulomb potential

The Coulomb potential is assumed to be that corresponding to the nuclear charge (Z —
1)e, and uniformly distributed inside the nucleus. It is computed in cylindrical coordinates

by using the expression given in [4].

C. Static magnetic moments

The calculation of static magnetic moments was performed in the same way proposed in

{7]. For odd-A nuclei the valence particles contribute significantly to the magnetic moment,
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as given by the approximate expression

_ Gx—9R [,2 , 1 1+1/2 ]
=gpl + —— |K“ + - -1 d, 8
pne = gal + GEI [ K+ 3020+ 1)(=1) b ] ®

where the magnetic decoupling parameter b is expressed by

bio=90) = { (K = 3= )t + (0= w2 = D)) ©)

The single-particle structure enters into the above relations via single-particle |K =
%) wave functions for K:% bands, but also via g-factors gx which, for one quasiparticle

excitation, are given by

gxc = = (K |(gi: + 9.5.)| K). (10)

The effective g-factor gg, for the rotational motion, can be analyzed from the data set
for K=0 bands of even nuclei; the resulting estimate gives gg ~ Z/A.

The intrinsic spin g factors g, are calculated by

9s = 0-795,3‘1-3&5

where g, frec = 5.58 and -3.82 for protons and neutrons, respectively.

D. Nuclear deformation

The first step to start the optimization of the potential parameters is to fix the appropri-
ate value of the equilibrium deformation of the nucleus. In the shell model approach, based
on mean-field potentials, this is achieved in most of the practical applications using the

- Strutinsky method [15]. In this work, the extremal points were calculated with the BAR-
RIER code {8], which includes the Strutinsky method with the Pashkevich parametrization
for the nuclear shape,

‘The expression for the surface area B, in the Pashkevich parametrization is

1+ (%)2} % dz, : (11)
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or,

b

Bs = %R{'{gc'g /_11 dzR [p — R? (23:2 - 1) — s]

i 1
where p = [R* + 2¢R2 (222 — 1) + €2R3]%, s=cR: and c= (T%) °
One of our goals is to obtain a relationship between some intrinsic parameters of the
Woods-Saxon potential (such as A and r,_,,) as a function of B, which is defined as the
ratio of the nuclear surface area, calculated for the experimental equilibrium deformation {3,
54), to the surface area of a sphere with the same volume. Therefore, it is very important to

check the reliability of the deformation parameters obtained in our calculations; this is done

by comparing them with available experimental results and other theoretical calculations.

The extraction of the deformation parameters from the experimental data is, in many
cases, uncertain (specially for 44) and, depending on the reaction, these values can be qﬁite
different. For instance, deformations obtained with Coulomb scattering are usually greater
than those extracted from nuclear reaction data. This is probably due to the different
mechanisms of these processes, but some additional errors could be attributed to the fact
that the interpretation of the experimental data depends, to a certain extent, on theoretical
models, and partially to differences between the geometrical parameters employed in optical
model calculations.

The deformation parameters (¢,ces) obtained from our calculations were converted into
another set of deformations (32, 81) and, then, compared with the experimental results of
Bemis et al. [16] and with theoretical results of Gareev et al. [17]. Bemis et al. carried
out precise Coulomb-excitation experiments from ?He inelastic scattering in even-A nuclei,

through the range of the actinides deformed region. In their work, the model-dependent

deformation parameters, 8o and B4; were extracted from the measured E2 and E4 transition

moments for a distribution of nuclear charges represented by a deformed Fermi distribution,

and by a deformed homogeneous distribution.

As we can see in figure 2, our calculations agree with the systematics obtained in the
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works mentioned above. So, the (€, o4) parameters correspond to the ground state defor-
mations for these nuclei. The {f,, 5} parameters, corresponding to the ground state, were
determined by their connection with {¢, a4} (figure 1). In this sense, the (¢, cg) parameters

must be varied to obtain the second minimum of deformation.

II1. RESULTS AND DISCUSSION

From one of the earliest parametrizations available in the literature [15], Dudek et al. (
[7] and references therein) worked out corrections for the parameters of the deform.ed Woods-
Saxon potential, in order to improve the agreement with experimental data on sequences of
spins and parities of odd-nuclei. Earlier parametrizations were usually obtained by fitting
the set of parameters to the available experimental data on spherical nuclei, specially 2°®Pb
[18-20].

By using the abéve mentioned method, deformations corresponding to the second mini-
mum could be obtained. In Table I we show the deformation parameters for the ground state
and the second minimum of 27289:241Py The parameters used as starting values were taken
from Chepurnov [20]. This nuclear potential reproduces satisfactorily the general features
of single-particle excitations, including the experimental separation energy of pairs.

For the ground state deformation of these nuclei, small changes on A and ro_;, are
introduced in order to reproduce adequately the spin—parity of the levels sequence. Using
“single particle states obtained by this procedure, the quasiparticle states can be calculated
for the first minimum region, providing spin, parity, energy and level spacing for the ground
and some low-lying states. The quasiparticle spectrum was obtained by using the semi-
microscopic method [22]. In order to reproduce the level spﬁcing of neutron resonance
energies, this method uses the quantum statistical model proposed by Decowski et al [23],
which takes into account shell and pairing effects calculated in the framework of the BCS
model. Therefore, we obtain a set of parameters which describes rather well the ground

states. This set of parameters is shown in Table II; A and 1,_,, for 2*°Pu are sligthly different
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from those of **"Pu and 2#!Pu. This is due to an anomaly in single-particle exeitations of

?¥Pu. Chasman et al. [24] have shown that the trend of the level spacing, for a representative

set of odd-neutron and odd-proton actinides, is quite irregular and not as smooth as could

~be expected from the shell model and the average nuclear potential. These anomalies in the
level spacing may be due to particle-hole interactions [24,29]. It should be stressed that the

- goal of this work is not reproducing fine details of single-particle excitations of Pu nuclei,

but only their general features.
Once an optimized set of parameters is obtained for each nucleus in the region of the

first minimum, the same procedure is used in the region of the second minimum, in order to

- reproduce the experimental information available for the shape isomers of ?"Pu and 2Pu.

In the case of **Pu, the main information concerning single-particle structure of the isomers
comes from the rotational band built on a ground state fission isomer [11]. For 7Py the
main information comes from the measured g-factor (g=-0.45(3)) of the short-lived fission
isomer [12].

In figure 3 are the neutron single-particle energies obtained near the Fermi level of

29Pu. Also, other theoretical results available for the same isotope are shown. The standard

. sequence is observed in the N=148 sub-shell, as other authors did [25-28]. However, some

small variations in the order and spacing of levels near the Fermi level were observed. In
this case, the experimentally accepted fact that the 145" neutron in Pu®™! resides in the
state with I=>5/2, was reproduced in our calculations. The possible candidates for the fission
isomer state are %+[633) and %+}622) . However, the high probability of finding ¢ antiparallel
to the s components, according to experimental results [11], limits the number of possible

states. The state %+|622) just have the opposite structure , i.e., the component with ¢

- antiparallel to s, and this does not exceed 20% in our calculation. Only the state %+|633)

have the proper intrinsic structure with £ antiparallel to the s components. In the case of
7Pu, a level £71510), close to the Fermi energy, appears as a likely candidate for the short-
lived fission isomer (a similar result was obtained by Dudek et al [7] ). The experimental

value for the g-factor (g=-0.45) is compatible with the rotational state (K=1/2, 1=3/2),

13



with g=-0.43.

- The rotational excitations of 2°Pu identified by conversion electron spectroscopy [11] are
compared in figure 4. with our calculations. The rotational bands with spin 5/2%, build on
the 2.6 ns isomeric state in 23°Pu, were obtained by using the ”experimental” moment of
inertia of the band, in accordance with the rotational constant A=3.36 .keV found in [11].

With the set of A and r,_s,, for both deformation regions (first and second minima), it
was possible to obtain the dependence of these parameters with the surface area term B,.
Since the main effect of the spin orbit coupling is concentrated near the 'surface, we have
tried to obtain a parametrization for this part of the potential depending directly on the
- surface area term B, instead of as a function of the deformation parameters as proposed by
Dudek et al. [7].

In figures 5 and 6 we present results for A and r,_,, as a function of the surface parameter
B. It is important to note that our results were normalized to the standard values given
by Chepurnov [20]. The parametrization of Dudek et al. [7] is also shown in these figures.
It is clear that our parametrization differs from that proposed by Dudek et al., particularly
in the second minimum region. As an aproximation, we propose an exponential dependence
of these parameters with the nuclear sﬁrfa,ce (see figure 5 and figure 6).

At the second minimum region, there are several experimental works dealing with the
fission isomeric state of ?**Pu , while no experimental information is available for 24!Pu.
Nevertheless, by using the procedures adopted in this work, we obtained optimized single
particle levels for **Pu (Figure 7). A closer inspection of figure 7 reveals a bunch of states
between -8.0 and -7.0 MeV. A large gap before two relatively close states (5/2,-3 /2) shows
up. These two levels are the best candidates for the #!Pu isomeric state. A huge gap is
observed between these levels and the next pair (5/2,7/2), which indicates that certainly the
(5/2) and (-3/2) states might well be related with the isomeric states of this isotope. The

parameters A and ry_s, we obtained agree with the systematics (figures 5 and 6).
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IV. CONCLUSIONS

We have obtained a new parametrization for the spin-orbit interaction using the Woods-
Saxon single particle model. This study was carried out by using the Cassinian ovaloids for
the nuclear shape parametrization, which is better than the parametrizations based on the
.spherical harmonic expansion. Also, we have obtained an exponential dependence between
the parameters characterizing the spin-orbit interaction and the nuclear surface area. In this
~ case, the strength of the spin-orbit potential increases with an increasing nuclear surface area.

With our parametrization, the single-particle structure of *!Pu was calculated. There
are two levels, 5/2% and 3/2~, which are the best candidates to explain the fission isomerism
in this nucleus. It is important to note that this parametrization differs from others found
in the literature [7,28], particularly because, in our case, the parameters are expressed as a
function of the nuclear surface area. Nevertheless, there are common characteristics as e.g.
the increase of the strength of the spin—orbit potential.

Moreover, we have proposed a procedure to study the second minimum region, based
not only in the study of the results of the Woods—Saxon single particle model, but based
also in the study of the quasiparticle spectrum obtained with a BCS model. It is important
to note that the microscopic treatment of the spin-orbit interaction is not so far well de-
veloped. Besides, the spin—orbit splitting depends on the nucleon—nucleon interaction used
in microscopic calculations. So, it is not possible to compare our results with microscopic
studies for this kind of effect.

Finally, we would like to point out that our approach, for the use of the Semi—-Microscopic
Combined Method, was succesfully employed in the calculation of the transition nucleus lev-
els at saddle points [30], which allowed the identification , for the first time, of a concentration

of M1 strength in the electro- and photofission of 2*Pu near the fission barrier (details in

ref. 30).
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TABLES

TABLE I. Deformation parameters.

Deformation Isotopes

237Pu 239Pu 241Pu
First Minimum € 0.225 0.237 0.225
| Qy 0.07 0.065 0.065
Second Minimum € 0.510 0.505 0.500
oy 0.015 0.025 -0.005

TABLE II. Parameters of the nuclear potential for the neutron system.
Vo o o An g’
First Minimum ref. [7] 49.6 1.347 0.7 31.5 1.28
This work 53.3 1.24 0.63 35.25 1.23
Second Minimum ref. [7] 49.6 1.347 0.7 43.1 1.28
This work 53.3 1.347 0.63 38.25 1.20
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Figure Captions

1. Parameters (¢, y) as a function of (s, 84).

2. Parameters (s, 84) as a function of the atomic mass.

3. Neutron level energies of 23°Pu obtained in this work, compared with other results.

4. Levels of the second minimum in the fission barrier of 2°Pu. Experimental results
are from reference [11].

5. Parameter A as a function of the surface parameter (B; —1). Full line: fitting; dashed
line: parametrization of Dudek et al [7].

6. Parameter r,.,, as a function of the surface parameter (B; — 1). Full line: fitting;
dashed line: parametrization of Dudek et al {7].

~ 7. 1Py single particle levels obtained at the second minimum region.

20




0.85

0.80

0.75

0.20(7TT 1

0.15H1T

01011

0.0514+1711

4 0.00

3

-0.05

-0.10

<
o

“
o

N
o

——

o

1,

Q
o

Y.
o

N
o

25

2.0

1.5

1.0

0.5

0.0

0.5

Fig. 1




(sepiunoe) v

Sec

0€¢

Gec

G0°0-
000
G0°0
0L0

GLo

L [} ) T m L) ) L L — 1 L} — ] ] ) i
. v -
- Wz [Z1]1e10 ADBIEE) A -
_ v psigindlel @ -]
- [9l]lelosiweg v -]
[ Ndpyz -
C Nd:ez ]
=3 : o
- v deee Mvez o Moz Ulgee Ulozz o
C A Nelzez v Mogz . £z . s N
[ WOz ‘o n_. i M5z 4 ngysee A A A A -
C Ndzyz ey ng Ndeez @ Ulyez Ulzez Yloez =
N Ndoyz o0 Ndzez . n
- v v v n
N Uloez -
— Mecz Moez v Ulzez i
n Nrez -
5 Ulszz o
N MNose Hlszz A N
— MNegz A _
N . Noez Misz . 4 ._bbm ] -
C MNace A o
C a A Ulsez Hlzez -
L Nelzyz Ndovz a -]
[~ Wppe a °® A ® Ndggz ® v o
- ry n “
" Ndive Ndsez dzez v ﬁ{m Uloge -
N v v e rd N
” v 3&¢m,mw Negz < “
> Ndppz n ]
= M dovz MNeez -
- v Ndzyz N
L v .
" Wz ]
o L § $ i L 1 L 1 | L 3 i L I 1 ]

G510
020
G20
00

Geo




¢ B4

Ol

uone|nojen
Inp
+2/5 (298]
2L [F18]
+2/5 [298]
+Z/L [1e9] +2/LE (519
2/ [o14]
2/ {ots]
+2/1 L [G19]
2/1 [osL]
-2ie [2s4] +&/1 [1£89]
-2/6 [¥e2]
2 216] 2/ {o1rg]
+2/5 [ec9
/s leed] —— 2/l TE&
-2/e {2st
-2/6 [¥£2) 2elzisl
+2/5 [ez29]
2L I¥Lg) +2/L [£G8]
+2/s [zegl

ojoweweH

-g/e [es2]

+2ie 128l

Z/1 oLl

2/ [218]

+Z/EL (s8]

+2/5 [298]

eelyes] —

+¢/G [ezal

+g/L (ess]

+2/1 [128]

19||OIN

XIN  JHWyos
|OSOIN

+2/1 [1g9]

+gfe [128]

-2/L [okg]

2 lzLsi

+2/5 (298]
+2/1L [519]

25 (es/]
z/elo1gl

-2/ lo1s]

+2/5 (298]

216 [Ped] ——+Z/11 [519]

+2/¢ [y29l
+2/6 [229]

2e [1re]

Ndeez

-2/6 [ve2]

+2f5 [g29l

2ie (1]
+efl [#29]

25 levs]

[ABIN] ABJsuZ



‘Spectroscopy of the 2”‘d minimun

239Py

IlllllllIllliillIllllllllllllillllllllllllilllllilllll
o
~ 10 L
o o) © Q
padd Ty} N o
: &
g D
— o
3 3
S s g 8
< + + +
o
(o8] '\ ™
Q © < 9
\ O (aV o
o o™~ o™~ o™
& & ~ rs)
1 + + w
IlllIllIlllllllll_lllll_llIIIIII|IIIlIIlllllllllllll!Iil
o o o o o o
o} o o) o O
ol N

(A\&Y) ABlauz

Theory [30]

Experiments [11]

Fig. 4




L 9 G 14 e 4 I
= y _ . T - onij,
] ,7  piepuelg
R 6.0%98¢ = O ’ :n_,w%c.hznm;o
6G'L FSREL- = O 7
N 000F0L€k =D y Ndzsz
pSBGE'E = X
2 1 ps / :n_mm_.m
I [(B/(1-7)-19 D+ 0=(1- Y¥/Y)
_ Adsez =
/
/
- K uoibal
i Nelsez e WNWIUIW s
\\
/
- /
/
/
_ uoibal s
wnNWiuiW pug .~ [2] e 1@ 3epng-----
- 7 suopenoed INO———

0¢

Ge

20l




g0l
L 9 g 14 (> c b 0
l ' I ' i ' | ' | ' | nNdipendeez | '
B Ndsez \\ O
i - enje ]
- Ndzez \\ prepueys = G
L / aouindsyn o
/
- / - Ol
/
- / -
- \\ -1 Sl
: uoibe. ) uoiba ] :
/ -
B WNWIUIW pug K wnwiulw,st - 4 og o
/ ] -
/ - o
21076, =0 ! 3¢ @
FOF62h-=0 y . a
000FE0H = 'O 7 _ - 0€
178820 =2zX / -
. s Z2. . b PSO 0 /
[2/(1-g)-12 0+ 0= 171-}) / : - g¢
/s
7/ -
. [2] e 18 ¥opnQ-- - - - 4 ov
- T suole|nojes INO——— -
- - - | - S
| 1 l L | I | 1 | 1 | 1 | ! Om

z-0l




L 614

[Lz8]2/e  ze

[SLOle/LL z/1

[resle/e  ee-

[o1gle/L o/t

[21sle/e  ere-

[ecole/s @S

61" L=(s)) - Aﬂv

00°8E=Y

[essle/s 2z

[e2gle/s as

[1vzle/e zre-

[evz]e/s z/s-

[ogsle/L e "

G00'0-= ©
05'0=3

winwiuliy puooes
Nd,ye

[ABIN] s|ere sjoied
a|buig uoaineN Jo ABisug



