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Abstract

We apply Approximate Entropy (ApEn) algorithm in order to recognize
epileptic activity in electroencephalogram recordings. ApEn is a recently
developed statistical quantity for quantifying regularity and complexity. Our
approach is illustrated regarding different types of epileptic activity. In all
segments associated with epileptic activity analysed here the complexity of
the signal measured by ApEn drops abruptly. This fact can be useful for

automatic recognition and detection of epileptic seizures.
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I. INTRODUCTION

One of the main problems in the physics of complex systems is how to define a mea-
- sure that can diagnose the kind of dynamics characterizing a given system. The potential
applications of such a measure are enormous. Recently, a measure of complexity so-called
approximate entropy (ApEn) has been introduced by 5.M. Pincus [1,2]. This measure is a
quantification of regularity in time serjes data, motivated by applications to relative short,
" noisy data sets. It has been applied to a diversity of physiological signals [3-6]. We will
apply it here to electroencephalogram (EEG) signals in order to identify epileptic seizures
(ES).
o Usually, the discrimination between different dynamics in nonlinear chaotic systems will
mean establishing an adequate set of invariant measures, such as: fractal spectrum, Lya-
punov exponents, Kolmogorov entropy, etc. [7-9]. These measures have been developed to
characterize nonlinear dynamical systems and their blind application to experimental time
series may easily produce spurious results [10,11]. Even for low dimensional chaotic systems
a huge amount of clean data are needed for & reliable estimation of these measures (about
10¢ where d is the embedding dimension [12]). Thus, long stationary time series of EEG
signals are required by those methods. In most cases, the stationarity of the signal is usu-
ally taken for granted, although this condition may not be satisfied when we deal with EEG
signals [13]. Thus, these methods have poor discrimination power. Moreover, they are not
useful for an accurate temporal localization of transient events in EEG recordings [14,15].
The traditional clinieal application of the EEG is in the identification of ES, where the
background activity is interrupted by sharp-waves, spikes, or spike-wave complexes [16-19].
The morphology of these sharp transients has been correlated with different types of ES [20].
For this reason, methods used to detect seizures, based solely in the morphology aspect,
require a big data base of morphology aspects in order to make 2 precise identification, as
any epileptic pattern not present in the data base would not bé identified.

In contrast, the approach presented here is able to characterize the different types of ES
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using short portions of signals. We shall apply a criterium for characterization based on
the loss of complexity during the seizure, due to synchronous discharge of large groups of
neurons. In fact, the loss of complexity associated with all types of ES has been corroborated
by some researchers, who have found low correlation dimension for EEG signals recording
during seizure [21-24], while normal EEQ signals can be described better as linearly filtered
noise {23].

In the present effort, we shall not try to establish the existence of chaos or estlmate
invariant measures of ES in EEG recording. We compute a complexity measure to quantify
the regularity of the dynamics underlying the EEG. The complexity measure is computed
by the ApEn algorithm that uses sliding temporal window. It should be remarked that this
complexity measure is not invariant [1]. This is a very useful property because, when dealing
with EEG signals, it is difficult to obtain a long transient for a reliable estimation of the
invariant measure.

The detection and spatial localization of epileptic activity are particularly valuable in
dealing with focal epilepsy, specialljr‘when surgical treatment is indicated [26]. The method-
ology presented here uses a short interval (about 1+ seconds of standard clinical EEG) to
identify epileptic activity. An effective temporal localization is useful for the spatial estima-
tion of the epileptogenic focus [26,27].

We organize our presentation as follows: in Sec. II we review some ideas concerning the
method of quantification of regularity, i.e. the approximate entropy algorithm. We describe
also the procedure used to record the EEG signals. In Sec. III we present our results
regarding the EEGs of patients with epilepsy. Finally some conclusions are drawn in Sec.

Iv.




II. METHOD AND DATA
A. Approximate Entropy algorithm

We shall present brleﬂy the ApEn method for measuring complexity or regularity of the
time series. We assume that the EEG signal is a stroboscopic sequence of N measurement
{v( to) vito+ 7),...,v (to + N7,)} made at intervals 7s. We construct a sequence of vectors
using time delay embedding [28], which uses a collection of coordinates with time lag to create

- a vector in d dimensions,

v(n)=(v(tn),v(tn—A),...,v(tn—(a’—l)A)), (1)

where A = n7, | (n € N), is the time lag or delay.
Now, we define the distance 4 [v(2), v(7)] between vectors v(2) and v(j) as the maximum
difference in their respective scalar components. For each i < N — (d - 1)A, we use the

sequence v(1),v(2),...,v(N — (d —_I)A) to construct,

o) = A 200 = dlv, V(i) 2)

where 8(z) is the step function (0(z) =1z >0, and 0 otherwise). C#(r) is a measure,

within a tolerance r, of the regularity (or frequency) of patterns similar to a given pattern

of length d x A. Now we define

d - 1 d ' 3
(‘P(r)—-N_(d__l)A;ln[Ci(r)]. (3)
Then, ApEn(d,r) is defined by
ApEn(d,r) = lim [®4(r) — o*(r)]. (4)
Given N data points, we implement (4) by defining the statistics [4):

ApEn(d,r, N) = 0%(r) — gi+1(y), (5)




Thus, the ApEn measures the logarithmic likelihood that sets of patterns that are close for
d observations remain close on the next incremental comparisons. We can see easily that in
the limit r — 0, and d — oo, Eq. (4) is the Kolmogorov-Sinai entropy [29].

Three input parameters d, r, and N, must be fixed to compute ApEn(d,r, N): d is the
dimension of the compé,rled vectors, r is effectively a filter, and N is the number of data
points. Studies based on both theoretical analysis and clinical applications [4,30] suggest
that for d = 1 and 2, values of the parameter r between 10% to 25% of the standard deviation
- (5D) of the signal produce good statistical validity of the ApEn. For ApEn computation

the number of N of data points is tipically between 75 and 5000.

B. Clinical Data

As control group we have taken the EEG recordings from ten normal individuals, males.
between 26 and 47 years old, free of a past history or current symptoms of psychopathology.
The recordings have been obtained under wakefulness, with the individuals physically and
mentally at rest, and closed eyes. For the epileptic group, we considered EEG recordings from
6 male and 2 female, between 5 and 39 years oid, si10wing evident paroxysmal discharges.
Three of the patients present clinical history of partial seizure, two of generalized seizure,
and three of partial seizure that turns into generalized. These patients were examined under
one of the following conditions: in the basal conditions of the normal patients, spontaneous
or induced sleep, and hyperventilation. These EEG recordings were previously examined by
a clinical specialist in order to make sure that they were free of artefacts.

The recordings have been obtained using a standard clinical device (International 10 /20
Systems) connected to the scalp, a reference electrode being placed at the patient’s nose.
The data was amplified and filtered using a low-frequency cut-off of 0.1 Hz, and high-
frequency cut-off of 50 Hz. The data was stored on magnetic tape and then digitized off-line
at 256 Hz with 8 bit digitizer. In order to test the method in the case of presence of

artefacts, we considered also two additional EEGQ recordings: channel Fpl from a normal
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individual during eyes-blink, and channel O1 from a patient with focal epilepsy during
- interictal activity at sleep stage I-II. These recordings have been obtained in the same

conditions above mentioned, but with 102.5 Hz of sampling frequency.

ITII. RESULTS

We compute ApEn(2,r, N) using a slide window with N = 250, with overlap of 220
samples, for different values of parameter r. We found that r = 0.25xSD is a useful chojce
for our applications. In all cases the time lag used corresponds to one sample (A = 7).

The ApEn algorithm, with the parameters above mentioned, was applied to EEG record-
ings of both the control group and the epileptic group. In the epileptic group the characteri-
zation of epileptic seizures was illustrated regarding all available situations: during epileptic
activity from patients with focal epilepsy, generalized epilepsy, and partial seizures that
turn into generalized. It is important to use a, great variety of epileptic pattern in order to
guarantee a good performance in clipjcal monitoring.

- A representative sample of our results is given in Fxg 1. At the top of the Fig. 1 we can
see the channel F§ of the EEGQ recording from a patient w:th generalized epilepsy, the seizure
presenting sharp waves. At the bottom of the same figure is displayed the corresponding
ApEn. We can clearly see huge sharp decrease of the ApEn at the points where epileptic
activity occurs. This decrease in the ApEn is due to a complexity decrease in the EEG
during the seizure, as many authors have reported using other techniques. At the top of
the Fig. 2 is presented the EEG from 2 healthy subject, at the bottom the corresponding
ApEn. In contrast with the case of epileptic signals, the ApEn does not fall below 0.5. The
v&riations of the ApEn take into account the different degrees of complexity registered in
the EEG of the healthy subject.

From the eight patients of the epileptic group, we selected 122 time epochs of epileptic
activity, and a mean value of the ApEn is calculated for each epoch. Each epoch has 730 data

points corresponding to 17 windows. Table I shows the minimum and the maximum mean




values of ApEn registered in the EEG recording of each patient. The values are between
0.27 to 0.43. The mean value of ApEn for each patient during all epochs are shown in the
third column of Table I. Table II shows the mean value of ApEn for EEG recording of ten
subjects of the control group (only F4 and FS have been considered in the calculations).
In this case, the ApEn Vz;lues are between 0.6 to 1. Thus, it may be possible to devise a
‘technical device that uses the crossing of threshold for the automatic detection of ES.

At the top of Fig. 3 we can see the channel 01 of a patient with focal epilepsy at sleep
stage I-II. The segment was recorded with 102.5 samples per second, and presents interictal
activity (spike-wave complexes in this case). As we can see at the bottom of Fig. 3, the
concomitant ApEn drops in essentiale the same form as shown at the bottom of the Fig.
1. This means that the present method is robust both with respect to the behavioral state
of the patients, and the morphologic patterns of the epileptic activity.

We tested the method in an interesting situation related to the problem of false positives.
- In some cases decrease in the ApEn could arise from other sources like eyes-blink, motion
. artifacts, etc. At the top of Fig. "4, we show the EEQ signal of the channel Fpl from
- -a healthy subject (vigilia, closed eyes). This signal was recorded with 102.5 samples per
| second, and presents several eyes-blink. In this case, decreases in the ApEn are observed,
1nd1cat1ng that the signal with eyes-blink has also low complexity. However, the decrease of
the ApEn in this case is less than in the epileptic activity case (see Fig. 3 for comparison ).
This means that the ApEn can discriminate false positives from the true positives. In the
cases illustrated in the figures 3 and 4, the ApEn was computed using N = 125 with overlap
~ of 110 samples. This smaller number of points introduces a slight increase in the ApEn

values in comparison with the other calculations.

IV. DISCUSSION AND CONCLUSIONS

We have presented here an alternative method for characterizing and detecting ES. We

applied it in the characterization of epileptic activity in nine patients. Different kinds of




epilepsy, different time intervals for the same patient, and different epileptic patterns have
been analysed. In all cases an effective characterization of the seizure has been possible.
Thus, the main advantage of the methodology presented here is jts robustness in the char-
acterization of different types of epileptic patterns,
~ Another remarkable facet of the present technique is that we use only about 1 second
of standard clinical recording in order to characterize the loss of complexity associated with
the seizure. This is an important fact because, when we deal with EEG signal, it is difficult
to obtain a long transient for a reliable estimation of the invariant measures. Thus. the
problems associated with the nonstationarity of the EEQG signals are avoided.
We conclude that the ApEn provides an effective temporal localization of a great variety
~of ES, using a relative small amount of data. In dealing with focal epilepsy, the high tem-
poral resolution is particularly valuable because it improves the possibility of localizing and
monitoring the epileptic focus activity using a multi-channel EEG recording [27]. The com-
putational burden is significantly low, and can be implemented on-line, with the acquisition
of the signal, in cases requiring ma.‘n.y hours of EEG recording for a reliable diagnosis.
For most normal subjects analysed here, we found a greater complexity in channel F§
than in the channel F4, as we can see in Table 2. This fact indicates that the ApEn is a
very useful quantity for characterizing the complexity of EEG from a short portion of the

EEG.
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TABLES

patients ApEn ApEn (ApEn) SD
min. value max value
0358 G -0.37 0.43 0.40 0.022
1072 G 0.28 0.39 0.32 0.030 ;
1126 P 0.34 0.39 0.36 0.027
1211 P 0.27 0.40 0.35 0.030
1741 P 0.30 0.35 0.32 0.017
1176 P>G 0.32 0.36 0.34 0.017
748 PG 0.27 0.30 0.28 0.019
0857 P—G 0.30 0.38 0.33 0.040

TABLE I. ApEn (min, max, mean value, SD) for eight patients with epilepsy. Only segments

with paroxismal discharges have been considered in the calculations.
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- |patients (ApEn) SD (ApEn) SD
0317 0.749 0.011 0.839 0.011
0420 0.658 0.007 0.694 0.007
1053 0'.646 0.008 0.764 0.010
1066 0.669 - 0.008 0.628 0.008
1359 0.745 0.013 0.797 0.012
1377 0.802 0.013 0.941 0.009
1949 0.723 0.006 0.753 0.019
0450 0.589 0.005 0.675 0.040
0624 0.649 0.008 0.679 0.007
0949 0.689 0.008 0.709 0.010

TABLE II. ApEn (mean value and SD} for ten normal subjects. Only two channels have been
considered, F4 on the left, and F8 on the right. We can see that the ApEn in F8 is greater than

the ApEn F4 in nine out of tep subjects.
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FIG. 1. Top: about 70 seconds of EEG recording from the patient 1072 with generalized
epilepsy (channel F8). Bottom: the corresponding ApEn using d = 2, r = 0.25x SD, and N = 250

(with overlap of 30 samples).
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FIG. 2. Top: about 65 seconds of EEG recording from the healthy patient 1949 (channe] F8).

Bottom: the corresponding ApEn using the same parameters d, r, and N of Fig. 1.
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FIG. 3. Top: about 40 seconds of EEG recording from the patient 1002 with focal epilepsy
(channel O1). Bottom: the corresponding ApEn using d = 2, r = 0.25x SD, and N = 125 {with

overlap of 110 samples).
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FIG. 4. Top: about 30 seconds of EEG recording from the healthy patient 1003 (channel Fp1)
with evident eye-blinks. Bottom: the corresponding ApEn using the same parameters d, ryand N
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