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We construct the quantum fields on the Poincaré group instead of Minkowski space (which
is @ coset space of Poincaré group) in 2,3,{ dimensions. We study the scalar field f(z,z)
on the Poincaré group, where x are coordinates on Minkowski space and z, parametrizing

“elements of the Lorentz group, correspond to spin degrees of freedom. It is shown that usual

spin fields arize in the framework of a decomposition of this unique field. Doing o classifi-
cation of the functions f(x,z), we naturally obtain relativistic wave equations, describing a
particle with fized spin and mass. One and the same spin may be described both in terms of o
finite-dimensional nonunitary representation and in terms of a infinite-dimensional unitary
representation of the Lorentz group. The consideration of the scalar field on the Poincaré
group allows one to give an uniform description for an arbitrary spin. In particular, the
present approach is o convenient tool for the theory of higher spins, where usual multicom-
ponent matriz approach is too cumbersome.

I. INTRODUCTION

The problem of constructing of the relativistic wave equations for particles with arbitrary
spin is far from its completion and continue attract attention till now. In fact, the question

is to construct physically sensible description of particles with arbitrary spin and mass in

different dimensions. This problem is closely connected with the representation theory of

~ the space-time symmetry groups, in particular with representation theory of Poincaré group

b

in arbitrary dimensions. S ,

In the present paper we develop one of the possible approaches for the obtaining rela-
tivistic wave equations, basing on the analysis of generalized regular representation (GRR)
of Poincaré group. The consideration of GRR (i.e. representation in the space of functions

- on the group) suppose use of the method of harmonic analysis as a basic method [1-4]. This

general group-theoretical method is in some sense alternative with respect to the method of
induced representations, started from [5] and usually used for semi-direct products [4,6,7).

Studying GRR, we encounter with the problem of classification of scalar functions of
some form on the Poincaré group. The specific character of this functions connected with
the fact, that they depend not only on space-time coordinates =, but also on some complex
coordinates z, which describe spin degrees of freedom.

In the framework of such an approach the construction of relativistic wave equations looks
as a separation of invariant subspaces in the space of such functions on the group. That
means the uniform approach to obtaining of distinct types of relativistic wave equations,
and also the possibility of regular construction of new equations in different dimensions by
uniform way.

Besides, one may consider this investigation as an alternative approach to construct a
detail theory of Poincaré group.

In section 2 we develop an uniform scheme for the analysis of the field on the group,
starting from the construction of left Tr(g) and right Tr(g) GRR of Poincaré group. On
this base we give the definition and consider general properties of the scalar field on the
Poincaré group,

f,(33’7 z’) = f(l:a Z)7
where f'(xz,z) = Tr(g)f(z, z), © are coordinates on Minkowski space and z are coordinates
on the Lorentz group. Spin operators are differential operators on z. We show, that this
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field contain arbitrary spin, and then establish the connection with usual spin description
by means of tensor fields in the Minkowski space. The action of discrete transformations
C, P,T are written in terms of scalar field on the group.

‘Then on this base we consider in detail the description of spin and obtain relativistic
wave equations in 2,3,4 dimensions by a regular method.

In section 3 we study scalar fields on two-dimensional Poincaré and Euclidean groups.

We consider the parity transformation, construct the relativistic wave equations for massive
- particles and find its solutions.

In section 4 we study scalar fields on three- dlmensmnal Poincaré and Euclidean groups.
Apart from finite-component equations we also consider positive energy wave equations,
connected with unitary infinite-dimensional irreducible representations (IR) of 24-1 Lorentz
group, describing, in particular, particles with fractional spin (anyons).

In section 5 we study scalar fields on four-dimensional Poincaré group. It is shown, that
consistent consideration, taking into account symmetry with respect to parity transforma-
tion, is possible on the base of representation theory of the de Sitter SO(3,2) group, whose
IR combine the components with different chirality. The connection of the present approach
with traditional approaches in the theory of relativistic wave equations is considered in de-
tail. In particular, we pay significant attention to equations with subsidiary conditions (the
Dirac-Fiertz-Pauli equations, the Rarita-Schwinger equations and the Bargmann-Wigner
equations) which also arise in present approach, but as equations for systems with compos-
ite spin. General Gel'fand-Yaglom equations and, in pa.rtlcular Bhabha equatlons connect

- a few scalar functions on the group. : s ‘
: . Under classification of the scalar fanctions on the group we obtain equatmns ‘with aniform - =
. basic properties in 2,3,4 dimensions, which describe a pa.rt1c1e with -fixed mass and spm

General properties of these equations we consider in section 6.

II. FIELDS ON THE POINCARE GROUP AND SPIN DESCRIPTION
A. Parametrization of the Poincaré group

To begin with we remember basic definitions and introduce some notations.
Consider linear non-homogeneous real transformations

z' = g, & = Auua:” + a”, (2'1)

of the coordinates z = (z#, p = 0,..., D) in d-dimensional (d = D + 1) pseudo-Euclidean
space, which leave the interval square invariant,

ds? = n,, de"dz”, (2.2)

‘where 7, = diag{1, —1, ..., —1} is Minkowski metric tensor. In (2.1) vectors a define trans-

lations and the matrices A define rotations, that means that the latter belong to the vector
representation of O(D,1) group. We are also going to consider D-dimensional Euclidean
case, when ds® = npdz’dz® and ny = diag{1,1,...,1}, 4,k = 1,..., D. In this case the
matrices A belong to the vector representation of O(D) group.
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The transformations (2.1), which may be connected continuously to the unit transfor-
mation, form a real Lie group which is called Poincaré group (or proper Poincaré group)
Mo(D,1). In the homogeneous case, when @ = 0, this is the Lorentz group (or proper
Lorentz group) $O(D,1). In Euclidean case those are Mo{D) and SOo(D) respectively.
The composition low and the inverse clement of the group have the form

. ‘(a_z,_..Ag)(al,Al) - (az -+ Aza]_, A.gA.l), g_l _m. (—-A‘Ila_, A__l), | | (23)

~ Thus, the groups My(D,1) and My(D) are semidirect products

My(D,1) = T(d)x)SOu(D,1),  Mo(D) = T(D)x)SOu(D),

where T(d) is d-dimensional translations group.
In psendo-Euclidean spaces of 2,3 and 4 dimensions, there exist one-to-one correspon-
dence between the vectors ¢ and 2 x 2 Hermitian matrices X *,

z e X, X =z, (2.4)

' Namely:

(2.5)

0 .1
d=1+1 X:(:l io) (2.7)
In all the above cases
det X = g zHzt, z# = %Tr(Xa”). (2.8)

In Euclidean spaces of 2 and 3 dimensions similar correspondence has the form

25zl —iz?

D=3%: X_(m1+i932 T ) (2.9)
z2 gl

D=2: X:($1 _mg). (2.10)

If z is subjected to the transformation (2.1) then X transforms as follows (see, for
example, [2,4,8]):

*We will use two sets of 2 x 2 matrices o, = (90, %) and 7, = (0, —0}) = o*,

(10 (01 (0 [t 0
°Zlo1/ T \10/ T\ 0 ) BT\o 1)




X' =gX=UXU'+4, (2.11)

where A = a*0,, and U are some matrices obeying the conditions

o\, =Ua,U'. | (2.12)

- It follows from (2.12) that det U = ¢**. Clear, that it is enough to consider only unimodular
- matrices det U = 1. One can also see that U and —U generate the same transformations

of X. Thus, U belong to double covering group Spin(D,1) of the Lorentz group SOu(D, 1)

or in Euclidean case to double covering Spin(D) of the group SOo(D)). In the dimensions

under consideration those groups are isomorphic to following once:

1,1
d=3+1: UeSL(2C), U= (zé Zg), wiud — wluy = 1, (2.13)
. - 1 Uy
d=2+1: UeSU(1,1), U= (?:1 1:2), [ug|? — Jual® = 1, (2.14)
Ug Uy
' Uy Uy 2 2
—Us Uy
cosh £ sinh £
d=141: UeSO11), U= (smhg cosh%) (2.16)
cos & sin
D=2 UeS0(2), U= (_Si-né mé). e s (20T)

We retain both elements UV and —U in the conmderatlon That means,in fact a transition
to the groups S : '

M(D,1) = T(d)x)Spin(D,1),  M(D) = T(D)x)Spin(D).

~ As 1t is known, that allows one to avoid double valued representations for half integer spin

description. There exist one-to-one correspondence between the element g of the group
M(D,1) or M(D) and two 2 x 2 matrices, g <> (A, U), where A correspond to translations
and U correspord to rotations. The formula (2.11) describes the action of M(D,1) on the

. Minkowski space, the latter is coset space M(D,1)/Spin(D,1).

As a consequence of (2.11) one can obtain the composition low and the inverse element,
(A2, Un) (A1, Uh) = (U AU + Ay, TRUR), g7t = (“UTA(UHY, UY). (2.18)

The matrices U in the dimensions under consideration satisfy the following identities:

UeSL2,C): oUay = (UT)Y (2.19)
UeSU(LL): oUo= 5", oxUcy = (UT)7Y, aslos = (UD7T, (2.20)
UesSU@): alloy=UT) =T (2.21)

An equivalent description can be done in terms of the matrices X = z#7,. Using the

- relation X = 09X7 09, the transformation low of X (2.11) and the identity (2 19), one can

find that



]

X = (UHY'XU + A - (2.22)

Thus, X is transformed by means of the element (4,(U')™!). The relation (A,U) —
(A,(U")!) define an automorphism of the Poincaré group M(D,1). In Buclidean case
the matrices U are unitary and the latter relation is reduced to (A, U) — (A4, U).

The representation of the transformations in the form (2.11) is closely connected to a

 representation of finite rotations in R¥ in terms of the Clifford algebra. In higher dimensions

the transformation low has the same form, where A4 is a vector element and U correspond

~to an invertible element (spinor element) of the of Clifford algebra [9]. Besides, the repre-

sentation of finite transformations in the form (2.11) can be useful for spin description by

means of Grassmannian variables £, since £ and 8¢ give a realization of the Clifford algebra
[10].

B. Regular representation and scalar functions on the group

Remember that a generalized regular representation (GRR, left T(g) or right Tr(g)) is
defined in the space of functions on a group G,

Ti(9)f(g90) = f'{g0) = Fl9™ %), (2.23)
Tr(9)f(g0) = 1'(90) = Flg09), (2.24)

iwhere g € G and go € G is a fixed element. It is well known that any IR of a group is

- equivalent to one of sub-representation of the left (right) GRR [1-3].  Thus, the study of

% GRR is an effective method of the analysis of IR of the group. It is easy to see that the

- transformation law (2.23), (2.24) under the action of GRR is reduced to the transformation
law of scalar functions on the group

f(g5) = f(g0), (2.25)

if the transformation law of arguments is defined as
96 = 990 for left GRR. or (2.26)
gh = gog™" for right GRR. (2.27)

Thus, the consideration of all IR of the group may be based on the classification of the scalar
functions on the group with the transformation law (2.26) or (2.27).

Let us consider the transformation law for the groups M(D,1} in the parametrization
of group elements by means of 2 x 2 matrices, described belove. Let go + (Ao, Up) and
g + (A,U). Then, according to (2.18),

90 = 990 > (A5, Ug) = (UAU" + A, UT) (2.28)
90 = gog™" (Ao, Up) = (Ao + Ug " AU, UU ™). (2.29)

- Matrices Ag and Up correspond to the element gy. The former matrix Ag is transformed
- similar matrix X, i.e. as an element of coset space M(D,1)/Spin(D,1), sec (2.11). The

latter Uy, belongs to Spin(D, 1) and transforms under rotations only. Therefore, we identify
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Ap with the coordinate dependence and Uy with the spin dependence of the scalar functions
on the group.
- According to what has been said there will be convenient for us to use the notations
- X = Aq, Z = Uy, and denote variables, which parametrize this matrices, by z and z.
In these notations one can rewrite (2.28) in the form

9o =990 < (X', Z') = (UXU' + A, UZ), (2.30)

“from where follows =™ = A” z# + a”. The latter transformation law coincides with (2.1). It
allows us to interpret the arguments of the scalar functions on the group with the transfor-
" mation law (2.30) as the space and spin coordinates. In this case (2.30) may be considered
- as the transformation law of the coordinates under the transformation of the frame of refer-
ences.
The right transformations act on gy <> (X, Z) according to formula

=gg ' & (X, 2) = (X + 27 A7), 20, (2.31)

from where follows =™ = 2 4 (A~*(2))* ,@#, 6,A”, = Z&,Z7. These transformations differ
from the coordinates transformation (2.1). The inconsistency of the latter transformation
law with the interpretation of arguments z as coordinates is stressed by the fact, that for
a # 0 the interval square (2.2) does not conserve under the transformations (2.31).

. Therefore below we will consider scalar functions on the group f(z,z) with the trans-
' formation law (2.30), or what is the same, only the left GRR, with the aim to keep the
- mterpretatlon of z as the coordinates in Minkowski space. Using the pa.rametnzatlon de-
ey scrxbed above we obtain for the groups M(D) and M(D,1)

Ti(g)f(z,2) = flg™ 'z, g7'2), g7 0 U NX - AU, ¢z U012,  (2:32)

According to (2.32), X is transformed with respect to the adjoint (vector) representation
and Z with respect to the spinor representation of corresponding Lorentz (rotation) group.
" One can also see that Z is invariant under the translations. If one restricts itself by Z-
independent functions, then (2.32) reduces to the left quasi-regular representation,’ which
corresponds to the scalar field case f'(z') = f(z). If one restricts itself by X-independent
. functions, then (2.32) reduces to the left GRR of Lorentz (or rotation) group.

Generators, which correspond to translations and rotations will be written as

p” = —ia/am”, j,u.r/ : -fly,y + S“ul’/j (2'33)

where L, = (2,0, — x,8,) are angular momentum operators, and 5, are spin operators.

The algebra of the generators (2.33) has the form

[ﬁmﬁu] =0, [juv;ﬁp] = ?:(WUpﬁ.u - nﬂpﬁv)v
[ s o] = Mopdue — Mupdve — Moo Jpp + 1pe Jup - (2.34)

‘Let H be a subgroup of G. The equality Tf(g)f(90H) = f(9™'goH) gives a representation of
~ G on the function space on G/H. This representation is called left quasi-regular representation
corresponding to the subgroup H [3].



Making Fourier transformation

p(p) = (2)~4/2 / fe)érede (2.35)

" in the variables z, i.e. considering representations in the space of functions ¢(p, z), one can
- get an analog of the formulas (2.32) in this representation,

Tr(g)elp, 2) = ei“p'go(p’,g_lz), P=g'pe P = U‘lP(U“l)J‘, P =p,c* (2.36)

It is seen that the combination det Z and det P = p® are conserved under the transformations

(2.36)." and p? is an eigenvalue of Casimir operator p?.

For the groups M{D) one can consider two types of representations depending on the
eigenvalues p* of Casimir operator p%: (1) p? # 0 (moving particle); (2) p* = 0; then all
pi = 0 (rest particle) and IR differ by eigenvalues of Casimir operators of Rotation subgroup.

For the groups M(D,1) one can consider four types of representations depending on

~ the eigenvalues m? of Casimir operator p%: (1) m? > 0 (particle of mass m); (2) m? < 0
~(tachyon); (3) m? =0, py # 0 (massless particle); (4) m? = p; = 0, IR differ by eigenvalues

of Casimir operators of Lorentz subgroup and corresponding functions do not depend on =.

For the decomposition of the left GRR we are going to construct a full set of a commuting
operators in the space of functions on the group. Together with Casimir operators a functions
of right generators® are a part of this set. Therefore it is necessary to know the exph(:lt form

jof right generators. As a consequence of the formulas

TR(g)f(:c,z) = f(zg, 2g), =g X+ ZAZi‘ 2g & 2U, (2.37)
Tr(9)e(p,2) = e7%p(p, 29), o < A'=ZAZ, - (238)

one can obtain

BE =—(AY(2), p., JE =52, (2.39)

:Operators of right translations may be written also in the form PR = —7z-1P(Z1)1; oper-

ators S, and S R are the left and right generators of Spin(D,1) (or Spin(D)) subgroup and
depend on 2 only All right generators (2.39) commute with all left generators (2.33) and
obey the same commutation relations (2.34).

In accordance with the theory of harmonic analysis on the Lie groups [1,4] a complete set
of commuting operators consist of a Casimir operators, commuting with all (left and right)
generators, the certain number of left generators and the same number of right generators.
The number of commuting operators is equal to the number of parameters of the group.

‘We denoted the square of the vector pu by P2, P2 = PPy Since we will not use p with upper
indices this will not lead to a misunderstanding.

YThe physical meaning for right generators is usually not so transparent as left generators, however,
the right generators of three-dimensional rotations in the rotator theory are interpreted as operators
of the angular momentum components in a rotating system of coordinates [11].
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The nonequivalent representations in the decomposition of the left GRR are differed by
eigenvalues of the Casimir operators, equivalent representations are differed by eigenvalues

~of right generators, and the states inside IR are differed by eigenvalues of left generators.
In particular, Casimir operators of spin Lorentz subgroup are the functions of Sf,, (or

y S'W) and commute with all left generators (and with left translations and rotations corre-
spondingly), but do not commute with the generators of right translations. These operators
differ equivalent representations in the decomposition of the left GRR.

On every finite-parameter Lie group it is possible to define an invariant measure du(g).
If GRR acts in the space of all functions on the group G, then regular representation acts
in the space of functions L*(G, i), such that the norm

f F@f@dne) (2.40)

- is finite [3,1]. The regular representation is unitary, as it follows from (2.40) and the in-
~ variance of the measure du(g).** However we will use also nonunitary representations (in
particular, finite-dimensional representations of the Lorentz group). Therefore we consider
the GRR as a more useful concept.

C. Field on the Poincaré group

Tensor fields in the Minkowski space describe particles with different spins. These fields
~ are defined by means of the transformation low of multicomponent functions (i.e. the func-
tions, depend on both x and some discrete parameter) under the coordinate transformation.
- The relations f'(g5) = f(g0), 95 = ggo, connected with the left GRR, (2.23), also define
. the transformation low under transformation of the frame of references, but in a extended
space. Besides the coordinates x scalar functions on the Poincaré group f(g), 90 = (=, 2)
‘depend on the set of variables z,

'z, 7)) = f(z, 2), . (2.41)
' =gz=Ar4+acUXU'+A, Z=gz:cUZ (2.42)

In contrast to tensor fields on Minkowski space this field is reducible with respect to both
mass and spin.
Let us consider more detail the transformation low of = and z for distinct dimensions.
In two dimensional case matrix Z depend on only one parameter (angle or hyperbolic
angle, see (2.16),(2.17)). The functions on the group depend on z = (2*) and z = e* (or
¢ = (z*) and z = ¢ in Euclidean case); it is appropriate to consider these functions as
functions of real parameter a directly.

**There exist unitary representations which are not found in the decomposition of regular repre-
~ sentation. These representations of so-called supplementary series are characterized by nonlocal

- scalar product [ (1) f(§2)1(§1, §2)die(§1)d14(§2), where kernel function I{§, 3=} has to be invariant
under the group transformations, §r. ¢ G/H, H C G. :
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- In three dimensional case according to (2.14),(2.15)

D=3: Z= (zl “fz), d=2+1: Z= (""1 fz), detZ=1. (2.43)
Z3 2t 2y 1

Functions f(z,z) depend on » = (*) (in Euclidean case z = (2*)) and z = (z,, 74), where

Zo are the elements of the first column of matrix (2.43). Let us write the relation (2.42) for

d =2+ 1 in component-wise form,

2" Oy = Uaﬂamm“Uﬁ'. (2.44)
2 =Upz, 3 =0U, f’zﬁ, 2= (UT)%P, 2% = (U“)%Zﬁ‘. (2.45)

Undotted and dotted indices corre5pond to spinors which transformed by means of matrix

:_U and complex conjugated matrix U Invariant tensor ¢,.q has one vector index and two
's;_pmor indices of distinct types.

For the group M (3,1) matrices Z has the form

d=3+1: Z:(zl fl), det Z = 212 — 2%, = 1. (2.46)

zy 23

.The functions f(z,z) depend on z = (z*) and z = (za,za,za, Z%). There are some reasons

‘to consider functions f(z,z) as functions of z and z rather then real parameters Re z and

+Im z. Variables z and Z are subjected to simple transformation rule. Besides, use the spaces

“i+of analytical and antianalytical functions is suitable for the problem of decomposition of
.:GRR. Under action of group M(3,1) the elements z® and 7* of first and second columns of
matrix (2.46) are subjected to the same transformation low.

In accordance with (2.42) and (2.22) one may write the transformation low of 2%, z,, z4

1n component-wise form,

20y = UL, 02 0P, &8, = (U)o, Pam(U) 2, (2.47)

2 =UpPzq, 7z, = . 'Gzﬁ, 2= (U_l)o‘,@z’g7 7% = ([’}_1)%;‘%. (2.48)
Corresponding to transformation low (2.47), the tensors

Tuas = (Tu)ass  3,°% = (5,)°, (2.49)

are invariant. These tensors are usually used to convert vector indices into spinor ones and
vice versa or to construct vector from two spinors of different types,

1 . 1_. *
I 1e e _ T, 7"
¥ = " Bs0, Tog = Oupeatt, ¢ = 50"‘ Ze B (2.50)

In consequence of the unimodularity of 2 x 2 matrices U there exist invariant antisym-
12

. metric tensors £ = —gf¥ ¢ = _gha 12 _ b =1, €12 = €43 = —1. Now spinor indices

are lowered and raised according to the rules




Za = Eqpt’, 2% =%z (2.51)

Below we will also use the notations 8, = 8/82%, 8% = 8/02,.

In the framework of theory of the scalar functions on the Poincaré group a standard spin
description in terms of multicomponent functions arises under separation of space and
spin variables.

Since z does not transformed under transla{uons then functions, which depend on z only,
are transformed under a representation of the Lorentz group. Let a function f(z, z) allows
the representation

f(maz) = ¢“(z)¢n(m), (252)

~where ¢"(z) form the basis in the representation space of the Lorentz group. The latter

means that one may decompose the functions ¢™(z’) of transformed argument 2z’ = gz, on
the functions ¢"(z},

$u(?) = ¢'(2) L, " (U). (2.83)
The action of Poincaré group on a line composed of ¢™(z) reduced to multiplication by
matrix L(U), where U € Spin(D, 1), ¢(2') = ¢(z)L(U).
One may compare decompositions of the function f/(2,2') = f(z,z) over the changed
basis ¢(z’) and over the initial basis ¢(z),
fil2) = ¢ () = $(2) LU (2) = dl=)d(z),

where 1(z) is a column with components 1,bn( )s and fcﬁbta.in the transformation Iof:vi éf.-.fei;sor

| field on M1nk0wsk1 space

P'(2') = LU )P(z). (2.54)

~ This transformation low is connected with the representation of the Poincaré group acting

in a linear space of tensor fields as follows T(g)¥{x) = L{U )¢ (A~ (z — a)). According to
(2.53), {2.54) functions ¢(z) and (zx) are transformed under contragradient representations

~of the Lorentz group.

For example, let us consider scalar functions on the Poincaré group fi(z,z) = %a(x)z*

cand fo(z,z) = 1,505(:1:);“, which correspond to spinor representations of Lorentz group. Ac-

cording to (2.52) and (2.54)

B (2)) = UPoe(z), Fa(x') = UL Ps(a). (2.55)

The product v, (z)¥**(z) is Poincaré invariant.

Since, tensor fields of all spins are contained in the decomposition of the field (2.41)
on the Poincaré group and the problems of their classification and construction of explicit
realizations are reduced to problem of the decomposition of the left GRR.

- Note, that above we reject the phase transformations, which correspond to I/ = €*. This
transformations of U(1) group do not change space-time coordinates , but change the phase
of z. According to (2.53) and (2.54), that lead to the transformation of phase of tensor field

--components ¥,(2). The consideration of this transformations means the transition to the

functions on the group T'(d)x)Spin(D,1) x U(1).
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D. Discrete transformations: C,P,T

Three automorphisms of M(D,1),
(A: U) — (}Ia (Ut)—l)a {256)
(A,0) = (A,0), (2.57)
(A, U)— (A, 0), (2.58)

- generate finite group consist of six elements. The discrete transformations of # and 2z are

connected with these antomorphisms.
Tke space reflection (or parity transformation) P is defined by the relations 2° — z° -,

2% = —z* or X — X. If X is transformed by means of the group element (A,U), then X
s transformed by means of the group element (A4, (U1)™1), see (2.22). Therefore the space

reflection represent a realization of the automorphism (2.56) of the Poincaré group,

(x,2) 5 (X, (2H7). (2.59)

* Thus, under the space reflection # and z in all the constructions have to be changed according

o (2.59). In particular, P — P, where P = p,5*. The generators of the rotations are not

‘changed and the generators of the boosts change their signs only.

The time reversal T is defined by the relation z# — (—1)%ug* or X = —X (the time

.~ reflection transformation 7"), with the supplementary condition of energy 31gn conservation, -
_tha.t means P — P. For the time reflection one can obtain

x5 Xy (éﬁo)

Besides, as it follows from the conditions X — —X P - P, the conditions p, —

—(=1)orp,, Ly — —(— 1)ontonf 5, — —(— 1)50”"'50",5'”,, take place. It is sufficient
for that in addition to (2.60) to use the substitution z — z, § — —3.

The charge conjugation changes the signs of charges, of energy and of chirality.  In
the frame of the characteristics connected with the Poincaré group the charge conjugation

. changes the signs of energy and chirality (spin orientation). One may show, that the charge

conjugation corresponds to the complex conjugation of the functions f(z, z),

f(2,2) S f(=,2). (2.61)

Let us consider a term in the decomposition (2.52) of f(z, z), which corresponds to a plain
wave. Such term has the form €7°¢,(z). Complex conjugation changes the sign of energy
and for d = 2,3,4 we will see below (using the explicit form of spin projection operators),

that transformation ¢,(z) 5 ¢n(2) changes the sign of chirality. It is easy to see, that the

-charge conjugation is connected with automorphism (2.57).

The improper Poincaré group is defined as a group, which includes continuous trans-
formations of the proper Poincaré group ¢ € M(D, 1), the space reflection P and the time

-reflection T".

In the Euclidean case the space reflection is reduced to the substitution (X, Z) A
(—X, Z). The charge conjugation inverts the momentum and spin orientation.
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E. Equivalent representations

In the decomposition of scalar field (2.41) on the Poincaré group {or, that is the same,
of the left GRR) there are equivalent representations, differed by the right generators.

Remember, that representations Ti(g) and Ty(g), acting in linear spaces [y and L,
correspondingly, are equivalent, if there exist a invertible operator A : L; — Lo, that

ATi(g) = Ta(g)A. (2.62)

In particular, the left and the right GRR of a Lee group G are equivalent. The operator
(Af)(g) = f(g™") realizes the equivalence [1,2].
Let us consider the transformation of functions f(z,z), that correspond to the transi-

tion between two equivalent representations in the decomposition of the left GRR. If the

representations Ti(g) and Ts(g) of the group M(D,1) (or M(D)), acting in the different
subspaces Ly and Ly of the space of functions on the group, are equivalent, then

ATI(g)fl(maz) = T2(Q)Af1($7z)a f2($7z) = Afl(maz):

where fi(z,z) € Ly and fo(z,2) € Ly. In particular, if operator A : Ly — Ly is a function of
- the right translations generators ﬁff, then one can’t map the function fi(z, z) to the function

fa(z, z) by the group transformation, which leave the interval square invariant. Therefore,

the physical equivalence of the states, that correspond to equivalent IR in the decomposifion

of the left GRR at least is not evident. ; '
Below we will consider a number of examples in different dimensions.: In particular, in

- the framework of the representation theory of three-dimensional Euclideah group M(3) IR,

characterized by different spins (but the same spin projection on the direction of propa-
gation), are equivalent. There are no contradictions in the fact, that in this case different.
particles are described by equivalent IR, since one can’t map corresponding wave functions

~one to another by the rotations or translations of the frame of references.

In some cases more general consideration may be based on the representation theory of an
extanded group. In framework of the latter there are two possibilities: either IR, labelled by
different eigenvalues of right generators of initial group, are nonequivalent, or some equivalent

- IR of initial group are combined into one IR. For example, in nonrelativistic theory spin

becomes the characteristic of nonequivalent IR after the transition from M (3) to Galilei
group. In 341 dimensions the representations of proper Poincaré group, characterized by
different chiralities, are equivalent. At the transition from the Lorentz group to the de Sitter

- group all states with different chiralities A, characterized by spin s, A = —s,—s+1,...,s

combined into one IR.
The space of functions f(z, ) contain functions, transformed under equivalent represen-

‘tations of the Poincaré group, and is sufficiently wide to define transformations of improper

Poincaré group, which include space and time reflections, and charge conjugation. These
discrete transformations, connected with automorphisms of the group, also combine equiv-
alent IR of proper Poincaré group into one IR of improper group. For example, in 3+1

- dimensions space reflection combine two equivalent IR, of proper group labelled by A and

—A into one IR of improper group.
Besides, as we will see below, the different types of relativistic wave equations (finite-

. component and infinite-component equations) also connected with equivalent representations

in the decomposition of the left GRR.
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Thus, initially it is appropriate to consider all representations in the decomposition of

the left GRR, including equivalent ones.

F. Quasiregular representations and spin description

~ The consideration of GRR, of Poincaré group ensures the possibility of consistent de-

scription of particles with arbitrary spin in the space of scalar functions on R¢ x Spin(D, 1).

At the same time, there are a number of papers, (see, for example, [12-19]), where spin de-

~scribed by means of operators, acting on the functions on some spaces {one or two-sheeted

hyperboloid, cone, complex disk, projective space and so on).

The use of the spaces R? x M, where the action of the Poincaré group are defined on
R? and action of the Lorentz subgroup are defined on M, are common for these papers. (In
momentum representation R? are replaced on the surface, defined by the equation p,p* =
m?.) In some papers such spaces are treated as phase spaces of some classic mechanics,
and the latter are treated as models of spinning relativistic particles. These models can be

- naturally obtained in frameworks of the next group-theoretical scheme.

Let us consider left quasiregular representation of Poincaré group

T(9)f(g0H) = f(g~ goH), H C Spin(D,1). (2.63)

H is a subgroup of Spin(D, 1), and since x is invariant .under‘_ri.ght'rotations,(s.ee (2.37)),

g0+ (X,Z), g (X, ZH).

| ““Therefore, the relation (2.63) define the representation of Poincaré group ‘in the space of
- “functions f(z,zH) on '

R? x (Spin(D, 1)/ H). (2.64)

In the de-composition of the representation in the space of functions on Spin(D,1}/H (or
R? x (Spin(D,1)/H)) there are, generally speaking, only part of IR of the Lorentz (or

- Poincaré) group. In particular, the case H ~ Spin{D,1) correspond to scalar field.

Thus, the consideration of quasiregular representations allow one to comstruct in any
dimension a number of spin models, classified by subgroups H C Spin(D,1). But the
existence of nontrivial subgroup H lead to rejection of the part of equivalent (with different
characteristics with respect to the Lorentz subgroup) or, possibly, nonequivalent IR of the
Poincaré group.

G. Relativistic wave equations

Let us consider a problem of the classification of the scalar functions on the Poincaré
group. The classification can be based on the use of the operators C, commuting with
Tr(g) (and correspondingly with all left generators). For these operators as a consequence

~of a relation Cf(z,z) = cf(z,z) one can obtain Cf'(z,z) = cf'(x,z), where f'(z,2) =
Tr(g)f(=, z). Therefore, different eigenvalues ¢ correspond to subspaces, which are invariant
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with respect to action of Ty(g). The invariant subspaces correspond to subrepresentations

of the left GRR.

For the classification in addition to the Casimir operators one may use the right gener-

“ators, since all right generators commute with all left generators. The right generators, as

was mentioned, differ equivalent representations in the decomposition of the left GRR.
- There is some freedom to choose the commuting operators, which are functions of the

‘right generators of the Poincaré group. We will use only functions of the generators of

the right rotations (2.39), in particular, for the coordination with standard formulation of
theory. _ '

Following the general scheme of harmonic analysis, for M (D, 1) one may consider the
system, consisting of d equations

ékf(ma z) = Ckf(:l'}, z): (265)

- where C, are Casimir operators of the Poincaré group and of the spin Lorentz subgroup.

Just the system we will use below for d = 2 + 1.
On the other hand, for relativistic equations there exist two general requirements, con-
nected with physical interpretation:
1. Invariance under space reflection.
2. Presence of the first order equation on 8/0¢.1
A Casimir operator linear on p, exist in odd dimensions. As we will see below, the

~ system (2.65) in 2+1 dimensions is invariant under space reflections. -

Casimir operators of the Poincaré group are constructed by genera.tors Dy, and. Juv In
even dimensions the invariant tensor ¢** also have even number of indices and therefore

. Jinear on p, Casimir operator does not exist. Besides, in even dimensions IR, of proper

Poincaré group under space reflection converts to equivalent IR, labelled by another eigen-
values of Casimir operators of spin Lorentz subgroup. These two representations form IR of

- improper Poincaré group.

Nevertheless, in odd dimensions there exist operator ¢’ = p,I*, I = f‘“(z,a/ 0z),
commuting with all left generators and connecting the states, which mapping one to another
under space reflections. In contrast to Casimir operators this operator is not a function of
generators of Poincaré group and does not commute with some right gemerators. A first
order equation '

pul"f(2,2) = »f(2,2) (2.66)

connect at least two IRs of the group M(D, 1), differed by eigenvalues of Casimir operator
of spin Lorentz subgroup. The equations (2.65) and {2.65) have the same form; namely,
invariant operator acts on the scalar function f(z,z) on the group M(D,1). Note, that
the addition of the operators I'* in fact means the transition from the Lorentz group to

1TAs a consequence of relativistic invariance, a linear on /8t equation can be either first order
or infinite order on space derivatives (square-root Klein-Gordon equation [20-23]). The latter type

of equations are naturally obtained in the theory of Markov processes for probability amplitudes
[24].
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. more wide group (in particular, in four dimensions to the de Sitter group SO(3,2)). The
-equation (2.66) replaces the equations of the system (2.65), which are not invariant under
space reflection.

In approach under consideration equations for all spins have the same form. The sepa-
ration of the components with fixed spin and mass is realized by fixing eigenvalues of the
* Casimir operators of the Poincaré group (or operator p,[). Fixing the representation of
the Lorentz group, under which transforming ¢(z) in the decomposition

f(=,z) = ¢"(2)dn(z)

one can obtain relativistic wave equations in standard multicomponent form. This fixation
- 18 realized by the Casimir operator of spin Lorentz subgroup.

There are two types of equations to describe one and the same spin, one on functions
f(x, z), where ¢™(z) transforms under finite-dimensional nonunitary IR of the Lorentz group
and another on functions f(z, z), where ¢"(#) transforms under infinite-dimensional unitary

IR of the Lorentz group. In matrix representation these equations are written in the form
of finite-component or infinite-component equations correspondingly. The latter type of
equations (for example, Majorana equations {25-27]) is interesting because it give the possi-
bility to combine the relativistic invariance and probability amplitudes. Desirability of this
combination was emphasized in [28]. ‘

Let us briefly consider the possibility of existence of particles with fractional spin. The

5. ‘Testrictions on the spin value in the representation theory of M (D) and M(D,1) arise, if

- one restrict the consideration by (1) unitary, (2) finite-dimensional (on spin), or (3) single-
- valued representations. (The latter means that the representation acts-in the space of
single-valued functions.) The restriction by single-valued functions (although often supposed
in mathematical papers connected with classification of IR) is omitted in some physical
“problems, that allow to consider particles with fractional spin (anyons). Thus, we will
consider also multi-valued representations of M (D) and M{D, 1) in the space of the functions
f(z, z) on the group. :

ITI. TWO DIMENSIONAL CASE -
A. Field on the group M{(2)
In two dimensional case the general formulas are simplified. Matrices U (2.17} of SO(2)

subgroup depend on only one parameter, namely an angle 8, 0 < 8 < 4wx. Using the
correspondence go + (X, U(a/2)), g + (4,U(8/2)), one may write the action of GRR,

Tu(9)f(z,2/2) = f(a', /2 - B/2), (3.1)
2y = (@1~ a1)cos B + (22 — az)sin B, @y = (2 — @) cos f — (w1 — a1} sin f,
Tr(9)f(z, @/2) = f(=", /2 + B/2), (3.2)

T7 = T3 + a1 cosx — azsing, T, = Ty + azcosa+ apsin a.

Left and right generators, which correspond to parameters  and 3, is givén by
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where

.ﬁmi(iﬂlaz—mgai):mii §:—i%, A:( cos o sma).

— Sl & COSx

The functions on the group are the functions on R? x §* and invariant measure on the group
may be written as

dule, @) = (41?)_1dm1dm2da, —o << 400, 0<a<dn.

We will consider two full sets of commuting operators P, P, S and 2, J, §. The eigen-

functions of these operators are

(z1zaafpr ps s) = (27) 7" exp(ipymy + ipas + isa), (3.5)
(roalpj s) = (2r) "% Jy(pr) exp(ilp) exp(isa), (3.6)

where I = j — s is orbital momentum, Ji(pr) is the Bessel function. IR are labelled by
eigenvalues p? of the Casimir operator p*. At p # 0 the representation is irreducible, at
= 0 split into one-dimensional IR of spin subgroup U(1), which are labelled by eigenvalues

s of the spin projection operator (or, simply speaking, spin operator) S.
At p # 0 the representations characterized by the spin s and s’ = s+n, where n is integer

. number, are equivalent. Really, operator, K commute Wlth all left generators, but do not
" '\_commute With the generators of rlght translatmns which mix spin’ ‘and space coordinates.
Operators P = pt—ipl and pE = pft + iplt are raising and lowering operators with respect

- to spin s;

PElp1pa 8) = (ip1 £ p2)ipip2 s £1). (3.7)

- ‘Right translations do not conserve both interval (distance) and spin s.

The functions (3.6) satisfy the relations of orthogonality and completeness

[(pj slrpa)(roalpj s)rdrdpda = @&?5&3:, (3.8)
[ Strvaloio)ipi slroad = Vit — of)ie— o). (59)
l,s ’

Therefore, we obtained the decomposition of left regular representation. Spin operator g
differs equivalent IR (except the case p = 0, when IR are labelled by its eigenvalues). The
decomposition of the functions of a on the eigenfunctions of S correspond to the Fourier

- series expansion of functions on a circle.

Thus, the representations of M(2) are single-valued at integer and half-integer s. The

fractional values of s correspond to multi-valued representations. IR are equivalent, if are

labelled by the same p s 0 and the difference s — 8’ = n is an integer number. At fixed
p # 0 there are only two nonequivalent single-valued representations, which correspond to

integer and half-integer spin. Nonequwa,lent multi-valued representations at fixed p # 0 are
labelled by 3 € [0,1), § = s — [s].
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B. Field on the group M(1,1)

Matrices U (2.16) of SO(1,1) subgroup, which is isomorphic to an additive group of real
numbers, depend on a hyperbolic angle 8. Using the correspondence gy «+ (X, U(a/2)),
g + (A, U(B/2)), one may write the action of GRR,

Ti(g)f(z, a/2) = f(z',a/2 — B/2), (3.10)
| zy = (%o — ao) cosh B + (m; — a1)sinh 8, z} = (21 — ag) cosh B + (2o — ao) sinh 8,
Tr(g)f(=, a/2) = f(", /2 + B/2), (3.11)

Ty = 2o+ agcosha — a;sinh @, 2 = 2, 4 a; cosh @ — ag sinh .

The functions on the group are functions on R? x R and invariant measure on the group
may be written as
dp(z, @) = dzydzada, ~oco < z,a < 400,

As above, we will consider two full sets of commuting operators, 1, ps, S and p p J 5. The
elgenfunctmns of the first set are

(mamaa|pr pa A) = (27) 2 exp(ip.z® + ida), (3.12)

where A is an eigenvalue of the spin projection (chirality) operator 3. The form of eigen-
functions of the second set depend on the type of IR. There are four types of umtary IR
~ “labelled by eigenvalue m? of operator p* [29].

1. m? > 0. Representatmns correspond to the pa,rt1c1es of nonzero mass, the elgenfunc~

' Titions of operators P J § are

('rcpa|m_7 A) = (4#)” 1iexp(7rl/2)HfIE)(mr) exp{ilip) exp(i)\a), " (313)

where Hi(lz) (mr) is Hankel function, r? = (29)2 — (2')2.

2. m® < 0. Representations correspond to tachyons, which in d = 1+ 1 are more similar
to usual particles because of symmetry of space and time variables. The form of (rpa|m j )
coincide with (3.13), but m is imaginary.

3. m =0, pp = +po. Representations correspond to the massless particles. According

o (2.36), one may obtain for the action of finite transformations Ty(g) on the functions

f(p, +p, a/2)
To(g)f(p, £p, @/2) = P f(p, +p', a/2 — B/2), p =ePp.

Therefore the representation To(g) is reducible and split into four IR, which correspond
to sign of energy (po > 0 or pg- < 0) at p1 = =pg, and reducible representation, which
corresponds tom =p; =0.

_ 4. m = py = 0. This representation sp]_lt into one-dimensional IR of group SO(1,1),

which are labelled by eigenvalues of 3.

' There are no integer value restrictions for the spectrum of § and chirality can be frac-
tional, 00 < A < 400. The decomposition of the functions of « on the eigenfunctions of .5
correspond to the Fourier integral expansion of functions on a line. The equivalence of the
representations characterized by different A is connected with the fact, that as in Buclidean
case, operator 5 does not commute with right translations.
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C. Relativistic wave equations in 141 dimensions

A IR of the group M(1,1) may be extract from GRR by means of equations

7 £(2,0) = m*f(z, a), (3.14)
$f(z,0) = Af(z,a), (5.15)

where chirality A differs equivalent IR, labelled by identical eigenvalues m? of the Casimir
“operator p°. Solutions of this system have the form f(z,a) = ¥(z)e***, where p*¢(z) =
m2ip(z).

According to (2.59), parity transformation converts ¢** to e™*** and therefore combines
two equivalent representations of the proper Poincaré group M(1,1), characterized by chi-
ralities A and — ), into one IR of the improper Poincaré group, characterized by spin s = {Al.
Thus, if the symmetry with respect to parity transformation takes place, it is necessary to
transit to the equations, which, in contrast to (3.15), combines states with chiralities +A.

The general form of the linear on p* equations is

ﬁﬂfwf(;c: C!) = Jff(fﬂ, O’.), ' (316)

where [ = ['#(a, 8/8a). Tt is necessary for invariance of (3.16) under the parity transfor-
mation a,nd the hyperbohc rota,fuons respectwely

B A (1)51»1“#, w oL
CEes=m, LS = 3.7

- The operators

R - ]
M=scosa—sina—, I''=issina-+icose—

[0 1] = —§ 3.18
da’ da’ [ I 5 ( )

obey these relations. One may construct the operators, which raise and lower chirality A by
L

N N . . A a N . d
Iy =T 4T = (s + z;—a) r_=1°_1'= e_w‘(s.— ia—a . (3.19)
“Operators I'?, [ and I'2 = —i§ = —§ /Oa obey the commutation relations of the generators

of the SO(2,1) ~ SU(1,1) group,
[f\a’f:b] = —ieabcf‘c, f‘a = qabf‘b, oo = Mag = —M1 = ]_, f‘af‘“ = 3(3 -+ ]_)

Thus, in the presence of symmetry with respect to the parity transformation the condition
of mass 1rredu(:1b1]_1ty (3.14) may be supplement by the equation (3.16) instead of (3. 15)
Let us consider the system

*f(z,0) = m*(z, ), - (3.20)
pul*f(z, ) = msf(z, a). (3.21)
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The operator 5 does not commute with ﬁuf‘“, and the particle with nonzero mass, described
by equation (3.21), can’t be characterized by certain chirality. In the rest frame a general
solution of (3.20)-(3.21) is

Fz, @) = C1e™ [cos(a/2)]* + Cre™™ [sin(a/2)]*. (3.22)

~ Therefore, for a fixed spin s there aré only two independent components with positive and
“negative frequency. Plane wave solutions, which correspond to moving particle, may be

obtain from (3.22) by a hyperbolic rotation at the angle 23,

Cu(eHP + 6—ia—ﬁ%§3ikom°+z‘k1w1 + Cy(HP — e»-’.ia—,@i?'g

—dhox? —iky 2!

where ky = mcosh28, k; = msinh 28. In the ultrarelativistic limit 3 — +oo we have two
states with chirality A = s respectively. Thus, if in the rest frame one may differ two

“components with positive and negative frequency, then in massless limit one may differ two

components with positive and negative chirality.
Matrix form of the system (3.20)-(3.21) can be obtained by the decomposition of f(z, )
on the basis ¢**/2, A = —s,—s+1,...,s. There are 2s + 1 components 3(z) in this form,

", but only two of them are independent.

At s = 1/2, substituting the function f(z,a) = ¥(z)e™*/? + ¢s(z)e*/? into equation
(3.21), we obtain two-dimensional Dirac equation for ¥(z) = (¥1(z) 1a(2))%,

Puy"¥(z) = m¥(z), P =01, Y =i0s, 25 =1"=0;. : (3.23)
" Matrix 7® corresponds to chirality operator and satisfies the conditions 7° = —iy 91,

e =0

At s = 1, substituting the function f(z,a) = ’(,[)]_1($)€Za+¢12($)+’§b22($)6_2a into equation
(3.21), we obta.m

(BuI* —m)¥(z) = 0,

L (010 , {0 10 10 0
M=-—[101 M=—=t -1 0 1 S=[o00 o (3.24)
V2lo10)/’ v2\ o —10/ 00 -1/

where ¥(z) = (P11(z) P12(2)/v2 az{zx))”. Ifat s = 1/2 and at s = 1 the first equation of
the system (3.20)-(3.21) is the consequence of the second equation, then at s > 1 there are
the solutions of the equation (3.21) with mass spectrum, m;|s;| =ms, 8; =3, 8 —1,...,—s.

_ For the extraction of IR of improper Poincaré group, characterized by certa.m mass m and

Spin $, it is necessary consider both equations of the system.

Note that the chirality A of a particle, described by (3.14)-(3.15), can be fractional, but
the spin s of a particle, described by (3.20)-(3.21), at m # 0 and finite number of components
¥ (z) can be only integer or half-integer.

Really, if 25 is not integer, then acting by the raising operator on the state with label
A = —s, we not get into the state with label A\ = s, which connected with initial state by
the parity transformation; moreover, the spectrum of X is not bounded above.

On the other hand it is possible to develop an alternative approach (in particular, for
the particles with fractional spin), based on the using of infinite-dimensional unitary IR of
S0(2,1). That approach we will consider below in 2+1-dimensional case.
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IV. THREE DIMENSIONAL CASE
A. Field on the group M(3)

The case of M(3) group is characterized by many-dimensional spin space. On the other
‘hand, the constructions allow the simple physical interpretation.

Using the operators Ji = [i 4+ 8% = (1/ 2)6’3’“J3k, it is possible to rewrite the commutation
~ relations (2.34) in the more compact form,

[ﬁiaﬁk] =0, [ﬁia jJ] = “ieijkﬁk: [jia jj] = _ieéjkjk . (4'1)

- The invariant measure on the group is given by the formulas

du(z,z) = Cd2é(|z1]* + 22> — )P 21dP 20 = T S d’z sin 8dfdodi. (4.2)
7
—o<e<+oo, I<l<n, 0<¢d<22n, —2n<YP <2,
where z; = cos £e™/2H/2 ) 4, = jgin £e~*/2+%/2 are the elements of the first column of

matrix (2.43), 22 = —z;, 2} = 25, and 6, ¢,9 are the Euler angles. The spin projection
‘operators, acting in the space of the functions on the group f(z, z), have the form

S = 50— 380, 2= (s 22), B, = (90 8/, |
g Cian 1 * * . * : . . ; . ‘ |
S =5 (xowdy — Xon0y),  x=(21—%), O = (0/0m —0/0z)T. - (43)

Tn the parametrization by the Euler angles one may obtain
S5 = —i0/0¢, SR =1i8/8y. (4.4)

_ The - operator p? and the operator of the spin projection on the direction of propagation
W = pJ = pS are the Casimir operators. The eigenvalues (S + 1) of the Casimir operator
of rotation subgroup in z-space §? = 82 define spin S. Full sets of the commuting operators
{pr, W, 52 5'133} {p®,W,32 5,82, SR} consist of six operators (two Casimir operators, two
~ left generators and two nght generators). The Casimir operator W does not commutes with
Lk and Sk separately, but only with the generators Jk = Lk + Sk, therefore there are sets,
which do not include W, for example, {p?, s, Ls, S3, 82, 7} and {p,, 55, S2, SF}.

We will consider the ﬁrst set, since in this case elgenfunctlons have the most simple form.
']A:‘his' set includes two Casimir operators, the operator of spin square S? and the generator
SE. The latter two generators commute with all left generators, but do not commute with
* right generators and label equivalent representations in the decomposition of the left GRR.

According to (4.4), the eigenfunctions of S¥, SE|...n) = n|...n), has the form |...n) =
F(=,0,4)exp(—iny) and are differed only by a phase factor. As a consequence of the
" commutation relations of generators S’k the operators 5'i = SR + zSR are the ra131ng and

lowering operators for the eigenfunctions of SE,

S|, .n) =C(S,n)]...n+£1). (4.5)
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The intertwining operators S*f consist of the generators of right rotations, which conserve
the interval square, according to (2.31). Moreover, the right rotations do not act on z.

In spite of the fact that there is no transformations (rotations and translations) of the
_frame of references, which connect the representations with different n, this give some reason
to consider only one of the equivalent representations, labelled by 8'3

The operator S2 also labels equivalent representations of M(3) group. This operator
- commute with all generators except right translations and therefore an intertwining operator
-is a function of the latter generators. Right translations change both the interval and spin.

Therefore it is naturally to characterize free particle in three dimensional Euclidean space
not only by momentum and spin projection on the direction of propagation, but also by spin
S.
_ There are two standard realizations of the representation spaces, which correspond to
- eigenvalues » = £25 and n = 0 of the operator SR

The first realization is the space of analytlcal (n = —285) or antianalytical (n = 25)
functions f(z,z) of two complex variables 21, 23, |21)? + |z3[* = 1, i.e. the space of functions

of two-component spinors. In particular, according to (4.3), for the space of analytical
- functions SE = —(2,0/021 + 2,8/02),

2 1

Sk = 52?0';‘,8;, (4.6)
and §2 = SR(SE — 1). The eigenfunctions of the operator of spin square are polynomials of
the power 25 in 2;, z;. The charge conjugation transformation connects equivalent IR labeled

by n = +25 and the spaces of analytical and antianalytical function. This transformation -

o reverses the direction of momentum and spin.
- The second realization is the space of functions, Wh1ch do not depend on the angle 1, and
corresponds to » = 0. That is the space of functlons of five real variables on the manifold

R3x %, du = (4n)"'dPz sin fdfdg.

‘The point in the spin space (i.e. on the sphere 52 ~ CP* ~ SU(2 )/U( )) can be define by
the spherical coordinates , ¢, or by two complex variables z; = cos £ e""s/ %,z =sin ei/2 (in
this case one may use (4. 6) for the spin projection operators) or by one complex number z =
z1/ %, (this case corresponds to the realization i in terms of projective space CP'). In terms
of variables 0, ¢ the eigenfunctions of operators S, S5 are P(cos 8)e**%, where Pg(cos §) are
assoclated Legendre functions [2].

Let us consider eigenfunctions of the set of the operators {p,, W,S?} in the space of
analytical functions of z;, zs,

Puf(®,2) = puflz,2), S*f(z,2) = S(S+1)f(z,2), PSFf(x,2) =psf(z,z). (4.7

The eigenfunctions of S? are polynomials of the power 25 on z (the unitary IR of SU(2)
are finite-dimensional, therefore spin S and spin projection on the direction of propagation
s are integer or half-integer). Let p, = (0,0, p), then the normalized solutions of the system
(4.7) are

1/2 .
0095 5) = (2) " (o S} (e ()
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The states with arbitrary direction of vector p may be obtain by the rotation P = URUT,
Z =Uly, Py =po®, Zy = (2 22)7,

(25)!
S+ s)(S -

’ 1/2
p1p2p3SS = (27 -3/2 Z]_'U,I +Zzu2 549 —x ‘LL "'|"Z'2’u, )S 3 'spa: (4 8)
( s)!

where u', u? are the elements of the first line of matrix U. Note, that for the parametrization
of matrix U it is sufficient to use only two angles, since the initial state has a stationary
subgroup U(1).
For the rest particle p? = S = 0 and only in this case IR of M (3), labelled by different
S, are nonequivalent.
 In general case the function, corresponding to the particle of spin 5, has the form

= 3" da()"(2),  $al2) = (C35)*(20)* " (z2)",  (49)

n=0
ffs (z,2)folz, 2)du(z, z) = 5,;3:[21#“(;3 %™ (4.10)

where C2° is the binomial coefficient and du(z, #) is the invariant measure (4.2). The relation
(4.9) gives the connection between the description by the functions f(x, z) and the standard *
description by the multlcomponent functions ¥™(z). It is easy to see, that the action of the

operators S = 52030, on the function (4.9) reduces to the multlphcatmn of the column. . -°

P(z) by (25 +1) x (25 + 1) matrices Sy of .SU(2) generators in the representation Ts,
Sef(z,2) = ¢(2)Sef(z). Matrices Si obey the commutation relations of spin projection
~ operators, [S%, 57] = 9%},

In partlcular the linear function of z;,2s correspond to spin S = 1/2, and the action of
the operators S on 9(z) is reduced to the multiplication by o-matrices.

The operator 82 as was mentioned above, is not a Casimir operator of M(3), and labels
‘equivalent representations of the group. This operator is the direct analog of the Lorentz
- spin operator in pseudoeuclidean case and we will consider its properties in detail.

1. Operator S? is composed of right generators and commute with all left generators,
therefore is not changed under the coordinate transformation (left transformations of the
Euclidean group). The right transformations do not change the spin projection s on the
direction of propagation, but change both spin 5 and interval (distance).

2. Operator 2 does not depend on = and commutes with operators T, Pr, Sk, therefore
in the presence of interactions is conserved for any Hamiltonian H=H (Zk, Prs Sk)

3. The eigenvalues of S% label IR of the rotation subgroup in the spin space and define
the possible values of the spin projection s, which can arise under the interactions.

Note, that in the representation theory of Galilei group (symmetry group of nonrelativis-
tic mechanics, which includes M(3) and ensures more general description) IR, labeled by
different elgenvalues of §?, are not equivalent. The classification of IR of Galilei group can
be based on the use of two invariant equations. The Schrédinger equation fixes the mass m,
and the second equation fixes the eigenvalue of spin operator 8% {30,31].
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B. Field on the group M(2,1) and fractional spin -

Using the operators J# = L# + §7 = (1/2)er# Juw, it is possible to rewrite the commuta-
tion relations {2.34) in the next form:

[ﬁmﬁ!}] =0, [ﬁ’u: ju] = _?:Guwﬁm [jua jy} = _ieﬂﬂ??jn . (4'11)

The invariant measure on the group is given by the formulas [2]

i
dp{z, 2) = du(z)d®z = Cdxé(|z|? — |2|* — 1)d? 5 d%z, = §w§d3ae sinh 8dfdgdyp.  (4.12)
¥is
—co<e<+too, 0<l<o0, O<Pp<2r, —2r<ey <2n,
" where z; = cosh gei"s/ 249/2 5, = sinh %e‘*"f’/ 2+%/2 gre the elements of the first column of

matrix Z (2.43), and 8, ¢, are the analogs of Euler angles. The spin projection operators,
- acting in the space of the functions on the group f(z, 2), have the form

SH = %(zfy“az - 2:;(“3;), z= (2 22), 8 = (8/82 8/82z)7,
1

St = —5 (0 — Xm0y), x = (21 ), Oy = (/0 003", (413)

~where 4* are three-dimensional y-matrices,

= (03:?‘027 ~i01), Y = =i Py, e (4.14)
i In the I;aiametrization by the Euler angles one may obtain 5° = —id/94, 3% - 18/0. The I
- sets of commuting operators are the same as in Euclidean case.

One may show, that in consequence of the identity 01[} oy = U matrix g is the invariant
symmetrical tensor, which converting dotted and undotted indices, T = (al)adzd.

According to (2.44), the invariant tensor o,,4 connect vector index and two spinor indices
of different types. On the other haund, using the identity, mentioned above, one may rewrite
(2.44) in the form 2"(0,01) = #*U(0,0:)UT. Thus, the invariant tensor, which we denote
as

Fpap = (001 )ap, (4-15)

- connect vector index and two spinor indices of one type. Raising first or second index of
G uap, one may obtain two sets of three-dimensional y-matrices, differed only by the sign of
~% and 2.

Similarly to the Fuclidean case, there are two standard realizations of the representation
spaces, which correspond to eigenvalues n = +25 and n = 0 of the operator SE.

The first realization is the space of analytical (n = —2) or antianalytical (n = 29)
functions f(x,z) of two complex variables 21,23, 2° = —z, 2! = 23, |2|? — |2]? = 1, ie.
the space of functions of two-component spinors. The eigenfunctions of §2 are homogeneous
functions of degree 25 in z. According to (4.3), for the space of analytical functions S% =

—(210/ 021 + 220/ 82,), and for the space of antianalytical functions ,5‘% = 2,0/8%; + 238/8z;.
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The eigenfunctions of S? in these spaces are also eigenfunctions of 5% with eigenvalues
n = F25 correspondingly.

The second realization is the space of functions, which are not depend on the angle v,
and corresponds to the eigenfunctions of 3% with zero eigenvalue. That is the space of

functions of five real parameters on the manifold

R® x CD?, dp = (2n)~'d®z sinh §d0d¢,

where CD' ~ SU(1,1)/U(1) is a complex disk. ,

- Remember some facts from the representation theory of SU(1,1). Spin projection s (the
eigenvalue of S°) for finite-dimensional nonunitary IR T3 of 2+1 Lorentz group SU(1,1) ~
50(2,1) can be only integer or half-integer, s = —§,...,5,5 > 0.

However, 2+1 dimensional Lorentz group has not compact non-Abelian subgroup. There-

fore there are infinite-dimensional unitary representations, corresponding to fractional 5.

These representations are multi-valued representations of SU(1,1). For single-valued rep-
resentations of SU(1,1) (S0O(2,1)) the spin projection s can be only integer or half—integer
(only integer).

The representations of discrete seria correspond to S < —1/2. TR of the positive discrete
series T4 bounded by lowest weight s == —3, IR of the negative discrete series T bounded
by highest weight s = S, IR of the principal series correspond to S = —1/2 + i}, and can

- be bounded by highest (lowest) weight only for S = —1/2. For other IR of principal series

the spectrum of s is not bounded. Supplementary series correspond to —1 / 2:< S' <0 and G

-are characterized by nonlocal scalar product.

~ A visual picture for weight diagrams of all seria on the pla.m S, s one can. ﬁnd in [8 32]
Thus, there are only two possibilities for description of a particle with fractional spin
by means of unitary IR of SU(1,1) with local scalar product. The first correspond to IR

~of discrete or principal seria of the Lorentz group, bounded by lowest (highest) weight,
18| > |8] > 1/2. The second correspond to IR of principal series, which is not bounded.

‘Unitary IR of discrete series are used for the description of anyons [8,18,19].

C. Relativistic wave equations in 2+1 dimensions

Let us consider the system on the eigenvalues of the Casimir operators of Poincare group
and spin Lorentz subgroup,

ﬁif(m, z) = mzf(mv z): (4'16)
_z:)Sf(:c, z) = Kf(z,z), (4.17)
S*f(z,z) = 5(8 + 1) f(z, ). (4.18)

The operator §? we will call below as operator of the Lorentz spin square.
The equations (4.16),(4.17) define some sub-representation of the left GRR of M(2,1),

“which is characterized by mass m, Lorentz spin S, and by the eigenvalue K of Lubanski-

Pauli operator. At m = 0 we suppose K = 0, that is true for IR with finite number of
spinning degrees of freedom. The general cases m = 0 and 7 imaginary was discussed in
[33.8].
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Possible values of K can be easily described in the massive case. Here we can use a rest
frame, where §,5* = $%m signpo. Thus, for particles X = sm = s®m and for antiparticles
K = sm = —&m, where s° is the eigenvalue of $°. The latter spectrum depends on the
representation of the Lorentz group.

Variable s labels IR of the group M(2,1) and can take both positive and negative values.
It is the analogy with massless particles in 3+1 dimensions, characterized by helicity. In both
cases SO(2) is the little group, and single-valued IR of SO(2) are labelled by integer number
2s. (It is a particular case of the connection between the massive fields in d dimensions
and massless fields in d 4 1 dimensions, see [34,35]). Therefore we will call s as helicity

- (correspondingly s sign py as chirality) and |s| as spin.

Corresponding to (2.59) space reflection convert Z to (Z1)™! = ¢%Z¢®, or z; — 2,
zy — —2zy, and operators p°, 5% do not changed. Thus, distinct from 3--1-dimensional case,
chirality also does not changed under space reflection.
 Fixing of S in (4.18) ensures the transition to the space of homogeneous functions of
degree 25 in z, z;. According to the sign of S, below we consider two possible choices of IR,

~ of SU(1,1), bounded on two or one side.

Finite-dimensional nonunitary IR 7§ of SU(1,1) are labelled by positive integer or half-
integer 5. The basis in the representation space is formed by the polynomials of power 25
in z, see (8.2). Corresponding representations of M(2,1) we denote by T, ,.
~ Infinite-dimensional unitary IR Ty (TF) of SU(1,1) are labelled by negative § < —1/2

- and are bounded by highest (lowest) weight. The basis in the representation space is formed -
‘by the quasipolynomials of power 25 in z, see (8.3). Corresponding representations of -

M(2,1) we denote by T, (T.F ).
One may present a function f(=,z) in the form

=, z) = ¢(2)¢ (=), | | (4.19)

7w1.1.ere #(z) is a line, composed of the elements ¢,(z) of the ‘basis of corresponding IR

SU(1,1), and +(z) is a column composed of the coefficients in the decomposition on this

‘basis. The action of the differential operators $# on a function f(z,z) may be presented in

terms of matrices

8" F(w,2) = gul2) (S 9™ (a), (4.20)

where S§* are generators of SU(1,1) in the representation T, described in Appendix (see
also [8]). They obey the commutation relations of the SU(1,1) group,

[S¥,8Y] = —1e"S,,.
At § fixed and in the matrix representation the equations (4.16),(4.17) have the form

(6° —m?)g(z) =0, (4.21)
(BuS* — sm)(z) = 0, | | (4.22)

According to (4.22),
PH{(z)(iS™8, + sm) = 0.
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Tt follows from the explicit expressions (8.4), that for T, , the relation 5 = I'S¥T', where
(D) = (—=1)"0nn, take place. For Tf, and T, , matrices S* are Hermitian, §™ = S,

m,s

according to (8.5). Let us introduce the notation

P =PiT for T0

p=o! for T T-

m,8 T m,s"

The function ¥(z) obeys the equation

P(2)(i5*, + sm) = 0 - o (4.23)

.Therefore ¥(z)1(z) is a scalar density, and one may define a scalar product

($'(2),9(2)) = P(z)(2). (4.24)

The scalar density ¥(xz)9(z) is positive definite for T}, and Ty, , in contrast to the Ty ..

As a consequence of (4.22) and (4.23), the continuity equation holds
0uj* =0, =4SP (4.25)

By analogy with four-dimensional case [26], along with the current vector j#, one can

. connect with the linear equa,tlon (4.22) the energy-momentum tensor T*W and the energy
C densﬂ:y W —T“0 ; : L

T“":Im( 5¢,¢) W= —T% = _In (soa‘b ¢) . 7 (4.26)

If matrix S° is diagonable, then the positiveness of W(z) is equivalent to the requirement
that -

(8%, 8%) > 0. (4.27)

for all vectors ¢ [26]. In particular, for T | and T, | the relation (5%, S%)) = $15°8%) > 0
takes place and energy density is positive definite.

There are two cases when the equations (4.21) and (4.22) are dependent. Indeed, multi-
plying the equation (4.17) by p,5" + ms one gets

(5.5 + ms)(B,S* — maY(a) = (5ubAS*, S} —ms”) $(x) = 0. (4.28)

In the particular case S = 1/2 we have s = £1/2, $* = 4#/2 and (4.28) is merely the
Klein-Gordon equation (4.21). In general case the matrices $# are not y-matrices in higher
dimensions and the squared equation (4.28) do not coincide with the Klein-Gordon equation

© (4.21). Using the rest frame, one may show that the equation (4.21) follows from (4.22) also
“in the case of vector representation S = 1, s = £1. In the other cases for the isolation of

the IR of M(2,1) it is necessary to use both equations of the system (4.21)-(4.22).
It is naturally to connect spin value with the highest (lowest) weight of IR of Lorentz
group, s = 5. That means, that up to a sign (+ for particles, — for antiparticles) s is
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equal to maximal or minimal eigenvalue of the operator 5° in the representation Ts of the
Lorentz group. According to (4.16)-(4.18), in this case functions f(z, z) obey the equations

P’ f(=,2) = m*f(z, 2), (4.29)
pSf(z,2) = msf(z,z), s==5, (4.30)
§2f(x,2) = $(8 + 1) f(z, 2). (4.31)

In the frame of system (4.29)-(4.31) there are two possibilities to describe the
same spin:

1. Equations for f(z,z) = ¢(z)(z), where ¢(z) is transformed under finite-dimensional
nonunitary IR of the Lorentz group.

2. Equations for f(z,z) = ¢{2)¥(z), where #(z) is transformed under infinite-
dimensional unitary IR of the Lorentz group. These equations allow also to describe particles
with fractional spin (anyons).

(1) Consider first representations T5 , of the Poincaré group, connected with finite-
. dimensional non-unitary IR of SU(1,1). In this case S has to be positive, integer or
- half-integer. In the rest frame the solutions of the system (4.29)-(4.31) in the space of

analytical functions (polynomials of power 25 in 2!, z%) are

0

§ = S >0: f(:r:,z) = C1(Z1)Seimm0 + C’g(Zg)Se_imw y (432)
s==-8<0: flz,2) = C’;:,(zl)Se”’:m““0 + C4(z2)3.eim‘”0. o 0(4.33)

At certain mass and spin there exist 4 independent components, diffefédﬁby the signs of pg

- and s. The separation by the sign of helicity s has absolute character since these states are
“7 solutions of different equations. But the states with different sign of py-are solutions’ of one

and the same equation. Correspondingly, the energy spectrum of solutions are not bounded
below or above.

In the space of antianalytical functions (polynomials of power 25 on ,*zi, %), connected
with previous case by charge conjugation, the solutions of the system (4.29)-(4.31) are

s=8>0: flz,2) = Ci(3)5e™™" + Ca(z;)5e™",
s=—8<0: fle,z) = Cs(z)%e™" + Cu(z;)5e~".
These solutions have the same characteristics as the solutions {4.32),(4.33). Thus, in this
case the descriptions by means of analytical and antianalytical functions are equivalent.
The wave function (4.32) in the rest frame, corresponding to the helicity s = S, has the
form (2,)2%¢™*° | py = m. Acting on it by finite transformations, we get a solution in the
form of the plane wave, which is characterized by the momentum p,

P=URU'Y, Po=mlI, Z=UZ, 2Zy=(uz)",

f(z,2) = (2x)7%/? (zu' + zgul)zs e, (4.34)
The state with P, = m{ has the stationary subgroup U(1), and we can take elements
u' = coshf/2 and u? = sinh#/2e™ of the first line of matrix U, that depend on two

parameters only. Thus py = F = mcoshf, —p; +ip, = msinhfe™ and one can express
the parameters u; and us via the momentum p,
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() - M(—iﬁ) - (43)

25 + 1 components v,(z) are the coefficients in the decomposition of the function (4.34) on
the basis ¢,(z),

F(2,2) = $al"(), n=0,1,...,25, (4.36)

2) = (2532 (O 1/2 w25 (42 e = (2% —~3/2 (v \1/2 (E+m)zs—n(_p1 ‘l'%'Pz)Se,;p:c
Yu(e) = (2m) 772 (C5s)"/* (w5 (7)"e™* = (2m) /2 (C3) B -

In the particular case S = 1/2 we get

_ 1 E+m \ ..
Vi) = 2m(E — m) (—Pz + z'Pl)e -

Considering the system (4.30)-(4.31) without the condition of the mass irreducibility
(4.29), it is easy to see, that the charge density j° = ¥T'$%) is positive definite only at
S = 1/2, and the energy density —7'°° is positive definite only at S = 1. The scalar density
ip = PiTe is not positive definite.

Let us show that for the particles with half-integer spin, described by the system (4.29)-

..+ . (4.31), the charge density j° (4.25) is positive definite. In the rest frame solutions of the

" system (4.29)-(4.31) have only two components (labelled by sq = £5), which we denote as

i apg(z) and -_g(z). For half-integer spin j° = 1'% = S(|¢ps|> + [¥_s|?) > 0 holds. - At

N - 1) 2 from the explicit form of matrices S and S? (8.4) one can obtain; that in the rest

o0 frame jli= 32 = 0, therefore the square of the current vector (5°)% = (71)? = (j )? is positive.
-Correspondingly, 7° > 0 for any plane wave.

Thus, for particles with half-integer spin, described by representations T, , of M(2,1),

- the charge density j is positive definite. The scalar density and the energy density in the

rest frame are proportional to 9Ty = |5|® — |#_s|? and therefore are indefinite.

Let us consider now particles with integer spin. In the rest frame solutions of the system
also have only two components, ¥g(z) and ¥_g(z), (5%, S°) = TS % = S2(|9s]* +
|h_g|?) > 0. Thus, for particles with half-integer spin, described by representations T}, , of
M(2,1), the energy density 7° is positive definite. The charge density in the rest frame are
proportional to [¢g|> — |¢_5|* and therefore is indefinite.

Consider two particular cases explicitly. At § = 1/2 the decomposition (4.19) has the
following form,

flz,2) = 29" (@) + 297°(2),  P(&) =U(e), P(z) = ($'(2) P*(x))".  (437)

Taking into account the relation U/ ~! = ¢*Ut¢®, which is valued for the SU(1, 1) matrices, we

~ get the transformation low for the line ¢ = ¥16®, 4/(z') = ¥(2)U. The product ¥(z)y(z) =

[h1(z)|*> — |b2(x)|? is the scalar density.

Thus, in the case under consideration, we have two equivalent descriptions. One in terms
of functions (4.37) and another one in terms of lines () or columns % (z). One can find
the action of the operators S* in the latter representation and the equation (4.22) can be
rewritten in the form of 2 + 1 Dirac equation,
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S p(e) = 1Y), (B Fmible) =0, (4.38)

where minus correspond to s = 1/2, plus to s = —1/2, and v* are 2 x 2 y-matrices (4.14)
in 2+ 1 dimensions. The functions ¢ = (¢! 0)7 and ¢ = (0 ¥2)7 are eigenvectors for the
operator $¢ with the eigenvalues (+1/ 2).

Sometimes two equations for s = ::1/2 are written as one equation on the four-component
reducible representation [36], (p,I'* ~ m)¥(z) = 0, where I* = diag(y*, —y*), that corre-
spond to the simultaneous consideration of particles with opposite helicities.

At § = 1 the decomposition (4.19) has the following form

f(z, 2) = (&) (22)" + 9 (2) 220 + P () (20)7, (4.39)
where ¥(z) = ($*(z) ¥'*(z)/v2 ¥'(z))T is subjected to the equation (4.22) with the

. matrices

10 0 , (0-1 0 ; (010
=00 0], S'=—-F%(1 0-1}, F=——c|101]. (440
0 0 -1 v2\o 1 ¢ ZAVER -

If instead of the cyclic components $**(z) one introduces the new (Cartesian) components
Fu = Guapt® (), where 5,4 is defined in (4.15), then the equation (4.22) takes the form

B," Fy + smF* =0. (44

‘A transversality condition follows from (4.41); 8,F* = 0. One can see now that the equations
* {4.41) are in fact field equations of the so called "self-dual” free massive field theory [37]. As
remarked in [38] this theory is equivalent to the topologically massive gauge theory with the
‘Chern-Simons term. Indeed, the transversality condition allows introducing gauge potentials
A, namely a transverse vector can be written as a curl:

1
F‘” == E‘U'UABI,AA = EE”VAFI,A,

where F,\ = §,A) — O\ A, is the field strength. Thus, 7* appears to be dual field strength,
- which is a tree-component vector in 241 dimensions. Then (4.41) implies the following
equations for F,,

OuF* + = Rereb =0, (4.42)

which are the field equations of the topologically massive gauge theory.
(2)Consider now representations T}, and T, of the Poincaré group, connected with
unitary infinite-dimensional IR of SU(1,1) with highest (lowest) weight. In this case S
- can be non-integer, S < —1/2 (discrete series) or § = —1/2 (principal series). For discrete
positive series sg can take on only positive values, sy = —5 + =, and for negative one only
negative so =5 —n,n=10,1,2,....
Let us consider the energy spectrum of the system (4.29)-(4.31) at m # 0. According

to the first equation pp = +m. The second equation ensures the connection between the
spectra of operators py and 8°,
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pas® = ms. (4.43)

- For representations T}), ,, which correspond to finite-dimensional IR T of the Lorentz group,

the value of s° can be both positive and negative. Therefore, at any s there are both positive-

frequency and negative-frequency solutions.

For unitary IR with highest (lowest) weight the spectrum of s° has definite sign. For T,

._ which act in the space of antianalytical functions, the spectrum of operator &° is positive,

and for T, which act in the space of analytical functions, is negative. Therefore, for T the
sign of energy po coincides with the sign of s, and for Ty the signs of po and s are opposite.

As well as for representations Tf,’h_g, at fixed mass and spin there are four states, differed by
the signs of pp and s. In the rest frame there are two solutions in the space of antianalytical
functions,

Po>0,8>0: flz,2) = (2r)7¥2(%)5 ™’ (4.44)

Po<0,8<0: Flz,z)=(2n)"%(3;) e ™. (4.45)

The solutions correspond to positive chirality and connected by C PT-transformation. There

are also two solutions in the space of analytical functions, but for negative chirality,

0

po>0,8s<0: f(z,2)= (zﬂ)—sl'z(zl)sezfmm
Po<0is>0: fz,2) = (2m) ¥ (z) e

(4.46)
(4.47)

1]

. Thus, there éﬁst four equations, defined by tlvlle.;s‘ign of s a_nd by used functional space (IR . =
- T4 or T5 of the Lorentz group), and any equation has the solutions only with definite sign -
-of po. : EUE S : '

Thus, in contrast to the case of T, , where the energy spectrum pq is not bounded both
above and below, the energy spectrum has definite sign. In any inertial frame the spectrum
is bounded below by py = m for the solutions (4.44), (4.46) and above by po = —m for the
solutions (4.45), (4.45).

For the unitary IR of M(2,1) under consideration, which correspond to IR of the discrete

seria of the Lorentz group, the integration of the functions (8.3) in the invariant measure
(4.12) gives

[ Fou (@, ) f, (2, 2)du(z, ) = 65,5, f S () ()b, (4.48)

f Fou (@, 2) i (2, 2)dpa(2) = 5,591 () (),

- At the same time, for the representations Ty, ,, which correspond to finite-dimensional IR of

the Lorentz group, the integral on the spin space diverges. In particular, the states (4.44)-
(4.45) are normalized according to dss8(p — p'). For the principal series j = —1/2 41, and
3,7, n (4.48) is changed by 8(A; — Az).

Arbitrary plain wave solution may be obtained by analogy with the case of T ,, con-
sidered above. For example, for the states (4.44) one can get the formula (4.36), where C%g
are now the coefficients from (8.3) and » = 0,1,2,.... The power 25 is negative and the
decomposition f(x,z) = ¢,(2)¥"(2) contain infinite number of terms.
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. Let us summarize some properties of unitary IR under consideration. IR T}, and T,
‘of Poincaré group describe particles with positive and negative chirality correspondmgly
Charge density j° = 915%) is positive (negative) definite for the particle with positive
(negative) chirality. The energy density is positive definite in both cases, since (5%, S%) =
- 15°5%) > 0. Besides, for unitary IR the scalar density !¢ is also positive definite in
contrast to the finite-dimensional case. The existence of positive definite scalar density
ensures the possibility of interpretation of 4 (z) as an probability amplitudes.
._ Thus, in 2-+1 dimensions the problem of the construction of positive-energy relativis-
tic wave equations is solved by the system (4.29)-(4.31), using of the infinite-dimensional
‘unitary IR T§ and T3 of the Lorentz group with lowest (highest) weight. The wave func-
tions are transformed under unitary IR Tf | (signs of po and s are the same) or T, , (signs
of pg and s are opposite) of Poincaré group M(2, 1), characterized by mass m and helicity s.
These IR of Poincaré group are conrected by charge conjugation, which changes the signs
of py and chirality, but conserves the sign of helicity s.

The interesting problem is to find an explicit form of the intertwining operator A for
the unitary IR T} ,, T, and the representation Ty, ,, labelled by the same mass m and
spin s, but connected with finite-dimensional nonunitary IR of the Lorentz group, AT}, , =
T ,A. The intertwining operator is nonunitary and must be a function of the generators of

right translations, since other generators commute with operator S2? and can’t change the
representation of spin Lorentz subgroup.
Note, that the 241 Dirac equation arises also in the case of unitary 1nﬁmte—d1mensmnal‘;,

IR T and Ty of the Lorentz group, not as an equation on a true wave fuiiction, but as an’

*equation for spin coherent states evolution. In this case the equatmn includes eﬂ'ectlve mass
_m8—|3]m s=-5,-5+1,...[8]. ' : IS
: Among the above conmdered relativistic wave equations are ones Whlch descnbe particles
with fractional real spin. These equations are connected with unitary multi-valued IR of the
" Lorentz group and can be used to describe anyouns.
In spite of the fact that the number of independent polarization states for massive 241
particle is one, the vectors of the corresponding representation space of IR Tt T, have

infinite number of components in matrix representation. Thus, z-representation is more
convenient in this case.

V. FOUR DIMENSIONAL CASE
A. Field on the group M(3,1)
The action of the left GRR on the functions f(z,2) and the generators are given by

formulas (2.32)-(2.34). For spin projection operators it is convenient to use three-dimensional
vector notations Sk = —e%;,;‘,,!:?’z B = S(}k The explicit calculation gives

S ——(za d, ——zaka)

B, = -z—(zakaz + 2650 + .., z=(mzm), 8 =0, 8,)7; (5.1)
SE = —%(Xa*ka — XO'ka*) .
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|

BJ’? = _%(X‘}*kax t iaka,‘z) +.., X= (21 E1)1 8x = (azl aZ3)T5 (5'2)

‘Dots in the formulas replace analogous expressions, obtaining by the substitutions z — 2’ =

(& Z), x = X = (2 7).

Since det Z = 1, then any of z can be expressed in terms of other three, for example

“Zy = (1 — 29%)/ 2. Invariant measure on R* x SL(2,C) has the form [39]

du(z, z) = (1/2)°d*xd® 21d 20d% % | 21| 2. | (5.3)

The functions on Poincaré group depend on 10 parameters, and correspondingly there

- are 10 commuting operators (two Casimir operators, four left and four right generators).

Both the Poincaré group and the spin Lorentz subgroup have two Casimir operators,

A9 A~ z ¥ - 1 ~ 2 5 Cruns appa O &
D = pup #, w?= W#Wu = §P2Suv5'u _P”Pusupsup:

A 1 . N ; A a
whete W = ep,Jp = — 28,3, (5.4)
la & 2 - F 1 vpo & 8 1 v <§=
S = isfj, =§ B, 78,8, = o SRR — 8B, (5.5)

Let us consider a set of commuting operators

b W, 8B 8B, B BE L (56)

- This set cons1st of operators of momenta, Lubanski-Pauli operator VV2 the: proportmna.l to 7
" helicity opera.tor pJ pS and four operators, which. are the functions of the right genera.tors SRS
- This four operators commute with the left rotations and translations and allow one to differ

equivalent IR in the decomposition of GRR.
Functions f(z,z) on the group M(3,1) are the functions of four real variables z# and

. four complex variables zy, Z, 2122 — 227 = 0.

The space of functions on the Poincaré group contain the subspace of analytical functions

. f(z*, 2%, z,) of the elements of the Dirac z-spinor

e

Zp = (2%,24), Za={Z, %} = {#, %} ' (5.7)

Charge conjugation means the transition to subspace of antianalytical functions of elements
of Dirac z-spinor (i.e. analytical functions 3%, z,).

According to (2.59), for the space inversion we have Z 5 (Z~H1, or

1 21 oz ¥
25) 5 (25,
z5 Z —22 Z3
This transformation reverses the sign of the boost operators fj’k It is easy to see that, in
contrast to charge conjugation, space inversion conserve the analyticity (or antianalyticity)

~ of functions of Zp.

Similarly to three-dimensional case (sec (4.5}), eigenfunctions of 3% and B} differ only
by a phase factor. Fixing eigenvalues of operators S% and BR, one may pass to the space of
functions of 8 real independent variables on the manifold
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R4 x (Cz, d,u = d4$d221d222. (5.8)
of #* and elements of Majorana z-spinor
ZM — (Za, ;o',).

Thus, in this space we have 8 commuting operators {2 Casimir operators, 4 operators differ
states inside IR, 2 operators differ equivalent IR). Notice, that physical argumentation of
necessity to use 8 variables for describing spinning particles contained in [40].

'The space reflection maps the functions of Zys to the functions of Zz; = (2%, Z4). As
was mentioned above, the elements %, Z; and z;, z; have the same transformation rule. The

charge conjugation leave the space of functions of Za; invariant. Therefore, one may use the

functions f*(z,z) = f(2,2) to describe particles, which coincide with their antiparticles.

Below we will consider the massive case, characterized by the symmetry with respect to
space reflection and, therefore, the space of the analytical functions of Dirac z-spinor Zp.
The action of M (3,1) on this space is given by formula

T(g)f(a*, 2, 2a) = F(A™),2", UP?, (U71)5%a). (5.9)
Spin projection operators have the form
| o 1 y * LY ) C* : [ o
b = 5(2010, — 20407), By = %(zakaz + 50405 ). L a0)

It 1s knowh, that one can compose the combinations Mk, l(fk,-

2

M, = é(sk By = 2010, My = 218/0z, N = 20/0m,
n 1 4 " " "
Ny = —5(Sk +iBe) = Zox0;, Ny =%0/0z, N_=20/0%, (5.11)

. that {M,;,Nk] = 0. According to 5; = S, B,Z = By, for unitary representations of the
Lorentz group these operators obey the relation M ,z = Ny, (for finite-dimensional nonunitary

IR S'}Z = 5, é,i = —By and M = — N correspondingly). Casimir operators of the Lorentz

- subgroup one can rewrite in the form

a2 . n >y oy 1
§* — B = 2(M* + N?) = 251 (1 + 1) + 2j2(ja + 1) = —§(k2 —p*—4),

SB = —i(M® — N?) = —i (j2(jr +1) ~ jo(ja + 1)) = kp,
where p=—ilji+42+1), k=7 —7. (5.12)

Thus, IR of the Lorentz group SL(2,C) are labelled by the pair (ji,72). It is convenient
label unitary IR by [k, p], where IR [k, p] and [—k, —p] are equivalent [4,39)].

Notice, that the formulas (5.9)-(5.12) are also valid, if we consider the functions of
elements of Majorana z-spinor Zjs instead of Zp, using correspondingly substitution z; —

v

Za-
The formulas of reduction on the compact SU(2)-subgroup have the form
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[39].

Fitiz 00
T(.?'n:iz) = Z I;, T[k,p] = ZTj, (513)

i=|f1 ~3z| j=k

for finite-dimensional nonunitary IR and infinite-dimensional unitary IR correspondingly

Consider monomial basis in the space of functions ¢(z, z),
(1) (") (z)(22)".

The values j; = (a + b)/2 and js = (c+ d)/2 are conserved under the action of generators
(5.11). Therefore, the space of IR (41, 73) is the space of homogeneous analytical functions of
two pairs of complex variables of power (271, 2j2), which we denote as ¢;,;,(z, ). For finite-

- dimensional nonunitary IR of SL(2,C) a,b, ¢, d are integer nonnegative, therefore j;, j2 are

integer or half-integer nonnegative numbers.

B. Relativistic wave equations as the conditions of irreducibility of M(3,1)
representations

Fixing eigenvalues of Casimir operators of the Poincaré group and the Lorentz subgroup

W)= bt mfea), o 6)
MPf(w,2) =i + D (w2 . (5.16)
N%f(z,2) = falda +1)F(2s2); (5.17)

allows one to decompose the representation, acting in the space of scalar functions f(z, z)
on the Poincaré group. Thus, in general case we have second order equations on 0/dz and
8/0z.

The exception is the equations for massless particles (or, more precisely, massless particles
with discrete spin). The latter case corresponds to zero eigenvalues of Casimir operators p*

“and W? and IR are labeled by chirality A,

(PrS* = AV f(2,2) =0, A=j1— o (5.18)

The proof of the relation A = j; — jp is contained in [4]. The explicit form of chirality
operator in the space of analytical functions f{z, z) is given by the formula

¢ 1 0 0
S - — = . 1
A 5 (z 5 2 Bﬁd) (5.19)

| At m # 0 IR of proper Poincaré group, labelled by different chirality, are equivalent. Cor-
~ respondingly, the system (5.14)-(5.17) for fixed mass m and spin s = j; + j» has 25 4+ 1
solutions, differed by A = 7; — 5.

Analogously with 2+ 1 case, there are two types of representations of the Poincaré group,
describing the same spin s:
1. 8 = jmax = j1 + jo for nonunitary finite-dimensional IR (4, j2),
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2. 8= Jmin = Jo = |f1 — J2| for unitary infinite-dimensional IR [jo, pl,

where jmax and jyin are the maximal and minimal 5 in the decomposition (5.13) of IR of the
Lorentz group over IR T; of compact SU(2} subgroup. Below we will consider the first case.
The space inversion connects two equivalent IR of proper Poincaré group, labelled by
Lorentz indices {j1,72) and (s, 51) (by chiralities £1) into IR of improper Poincaré group.
Therefore, the system (5.14)-(5.17) is not symmetric with respect to space inversion and
some correction is necessary to consider massive particles.
The simplest possibility is the transition to a system

ﬁjf(w, z) = m*f(z, z), (5.20)
_ sz(m?z) = _3(3 + l)mzf(:z:, z): (521)
s$=J1+72. (5.22)

- The last equation fix the power 2s of the function f(z,z) as polynomial in 2. The first

two equations are the conditions of mass and spin irreducibility. Thus, the system describe
fixed mass and spin, but the representation of Poincaré group, defined by this system,

- are reducible. This representation split on 2s + 1 equivalent IR, differed by chirality A =

—8,...,8.

The equations of the system (5.20}-(5.22) do not contain operators, which not commute
with chirality operator (5.18), and therefore, do not describe the transitions between the
states with different chiralities. Moreover, in the rest frame it is easy to see, that solutions

. of the system contain 2(2s + 1)? independent components instead of 2(2s +1). (Each IR of
" the Lorentz group (41, Js), j1 + j2 = s, contain spin s IR of SU(2) subgroup, see (5.13)).

Thus, if the symmetry with respect to the space reflection take place, it is necessary to
consider equations, which combine equivalent IR of the proper Poincaré group, labelled by
different chiralities A = j; — j5. In the other words, it is necessary to consider supplementary

- operators, which define some of extension the Lorentz group.

C. Relativistic wave equations, invariant under improper Poincare group

The general form of the invariant equations linear on p is
BuV*f(z,2) = 5f(e,2), (5.23)

where V* is a function of z and 8 /2, transforming as four-vector.
Using invariant tensor o, and spinors 2%, Zy, O, = 8/02%, 0% = /024, it is possible to
construct just four vectors:

e 1 1 -
Viy = 58" %400, Vi = 50%ae20%, (5.24)
N 1 . ,\ 1 o '

Vi = 522, Vi = 50%%0.0%. ~ (5.25)

These operators are not functions of generators of M(3,1) and define transitions between
IR with different (41, 2). Operators VX, Vi conserve j; + j», and operators V# VE conserve
Jt — 32. Any of four relations, connecting two scalar functions,
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PuViafin g (#,2) = safs 1 se1(2:2)s BuVarFinin(2,2) = 3o fiyy1 5 1(02), - (5.26)
ﬁuﬂﬁf.h,jz(w?z) = %llfjl+%,j2+%(msz): 16#- 2‘; Fil .J'z(w: z) = xz?fjl—%-,jg—%(m?z)Y (527)

one may consider as a relativistic wave equation. Thus, the operator V* in (5.23) is a linear
combination of A,‘t _ ' |
Let us consider finite-component (on spin) equations invariant with respect to space
reflection. That means: .
1. The operator ﬁ“V“ 1s invariant under space reflection.
2. The equation has solutions f(z, z), which transform under representation, containing
finite number of IR, 4y, 72).

' It 1s easy to see, that at sc # 0 operator Vz‘g can’t be contained in V#. In this case one
can separate from the system of equations on functions f;, ;,{z,z), f(z,2) = 3 fi(z,2)
the independent equation on the function fi(z,2) = >, L. . fin(s, z), characterized by
maximal j; + jz, which does not contain ffn (Besides, it is not necessary to use operators

_ V 1} and sz, since these operators leave j; — j» invariable and can’t connect IR with different
A.)

Relating to operators f/’l‘; and 1’»"2’{, one can see, that only the combination ﬁ“f‘”,
. 1 . ..
F=VE L VA = 2 (c‘r“"‘“zdaa + a“adzaa"‘) , (5.28)

~ is invariant under space reﬂechons Operaﬁors . connect representatlon (J1,72) with (71 +
1,72 —1) and ( i — 1,72 —|— ) and conserve ]1 + 32 These opera.tors obey the commutatlon
relatlons ; e e RS : ;

[S"X“, o] = i(rjﬁﬁfx '—""'nx?'fﬁ), (5.29)
§[¥, V] = §¥, | (5.30)

which coincide with the commutation relations of matrices v*/2. The explicit calculation
shows, that I‘ I'** depend on IR of the Lorentz subgroup,

[0 = 251 + 25 + 45175, (5.31)
Supplementing generators of the Lorentz group by four operators
S e, §eb = _Gbe (5.32)
‘we obtain
(89, 8¢ = (o5 — 10:8% — a8 + 12a5%), 74 = 100 = 1. (5.33)

- Thus, operators 5’“5, a,b=10,1,2,3,4, obey the commutation relations of the generators of
de Sitter group SO(3,2) ~ Sp(4, R). This group has two fundamental IR, four-dimensional
spinor IR Tjyq) (by matrices Sp(4, R)) and five-dimensional vector IR Ty (by matrices
50(3,2)).
Using (5.5), (5.12) and (5.31), we obtain for second order Casimir operator of the group
Sp(4, R) | . o
58 (2, 2) = 430 + 9 f(2, 7).
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- Thus, we are deal with symmetric representations of Sp(4, R), denoted as Tl2s0] (see Ap-
pendix). These IR can be obtained as symmetric term in the decomposition of the di-
rect product (®@T};q)*. IR Ti2s0) of the group Sp(4, R), characterized by dimensionality
(25 + 3)!/(6(28)!), combine all finite-dimensional IR of the Lorentz group with j; + j» = 3.

However, it is obvious, that the equation

pul™f (2, 2) = % f(z, 2) (5.34)

by itself does not fix spin and mass, defined by (5.14) and (5.15), or the power j; + j» of
the f(z,2) in 2. In the rest frame it is easy to see, that even ab s = j, + j» this equation fix
only composition ms = .

Let us consider the system

P’ f(z,2) = m*f(z, 2), (5.35)
Bl f(z, 2) = msf(=, z), (5.36)
S8 f(e, z) = 45(j + 2)f(z, 2). (5.37)

Below we will show, that the equations of this system fix m, s and j = j; -+ js, in contrast
to four equations of the system (5.14)-(5.17), which fix 7; and j, separately.

Really, the last equation of the system fixes IR, Tiajq) of de Sitter group and the power

25 = 271 + 25, of polynomial in z, 2. On these polynomials can be realized IR of Poincaré

 group, characterized by spin s < j. Below we restrict our consideration by the condition.

s = j. The condltlon s = j allow to describe spin . $ by means of the IR of the de Sltter

" group with minimal possﬂ)le chmensmnallty
In the rest frame

pof(mi Z) = mzf(z;,z),
Folf(z, 2) = msf(e,2), ©°= %(g%azdaa +0° 2259, (5.38)

According to the first equation py = +m. At py = m any function, characterized by

M1 — ny = 25 is the solution of the equation (5.38), where ny is the power of homogeneity

~on the variables (2! + 7)), (2> + %), and n is the power of homogeneity on the variables

 {#'=%), (22— 2). Correspondingly, at po = m any function, characterized by n, —ns = —2s
is the solution of the equation (5.38). We also fix the spin projection by the equation

B f(w,2) = $Pf(w,2), $°= %(zlﬁl + 70" — 220, — 5,0%), (5.39)

that in the set of polynomial of the power 2s in z, Z up to normalization factor define desired
function

S8z, 2) = Cy gima’ (z +z )“"’3 (2% + 2 ¥~ s* + Che ~ima’ (z' — 2 )”"‘8 (z — Z)"° (5 40)

Explicit calculation gives W2 frnss(2,2) = —mPs(s + 1) frn o2 (2,2). Therefore, s in the
-equation (5.38) really defines spin.

At fixed mass m and spin s there are 2s + 1 independent positive-frequency solutions,
and 2s + 1 independent negative-frequency solutions.
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Notice, that only four-dimensional IR of the de Sitter group, corresponding to spin
1/2, remains irreducible at the reduction on the improper Lorentz group.  For spin one
10-dimensional IR split on 6+4 (antisymmetric tensor and four-vector), for spin 3/2 20-
dimensional IR split on 8+12, and so on.

Consider plain wave solutions, corresponding to a particle, moving along z®. They can
be obtained from the solutions in the rest frame (5.40) by means of Lorentz transformation

P =UPRU!, where P = +diag{m,m}, U = diag{e™,¢e*} € SL(2,C),
where the sign correspond to the sign of po, |
p. = kysign po, ko =mcosh2a, ky=msinh2a, e =+/(ko+Lks)/m. (5.41)
Thus it follows that

Fho s ss(@7) = Crethos®+hes® (Jlea | 5 gmayobs® (gm0 | gpeayo=s® |

Cpe ko2’ —ksa? (zte® — Zye “)""""3 (z%e* — 226““)3_’3. (5.42)
In ultrarelativistic case at @ — oo it is convenient to rewrite (5.42) in the form

ko + ks \®
| fm,s,éa(x,z)«—m( 0:;; 3)

R ((Ictl:‘:e-z'ko_':'nn—l—l’i;nmg _I_‘02(_‘1)3—.93‘,&—‘5160:1:0—’?0:1:5) (-Tél)s+3 (— )s #° + O (kﬂ ks) ) (5 43)

ko+k3

Passmg to hmﬂ: we obtain the states with certain chirality A = j; — 32 = 5° (correspondmgly,
at @ -+ —o0 w1th chiralily A = j1 — J2 = —s°). In ulirarclativistic case the main term in
(5.43) correspond to functions, transforming under IR (22 232), of the Lorentz group. The

contribution of other IR ("‘;X 2 2)‘ ) are damped by factor (B222 )=l In particular, in the

limit IR (50)® (0 s) of the Lorentz group correspond to the states, characterized by s* = +s.
At m =0 (5.36) split on 2s + 1 independent equations on the functions f;;(z,2),

fs(:c, z) = Z f.’.fl.iz(:cvz): where s = j1 +j2, A =Jj1 ~— Ja, (544)
A=—s .

corresponding to 2s+1 values of chirality A. At m # 0 equation (5.36) in chiral representation
* has the form

fs,O pHV21f —- —- fs,O
ﬁ“f“"‘ fs—%.% _ | Pu 1zfa o+ Puvzlfs—l 1| = s fs—%,% _ (5.45)

fO,s p,_,, 12 8+1 fO,s
This equation bind 14-[s] IR of improper Lorentz group and allow oue to express components,
corresponding to IR (s 0) in terms of components, corresponding to IR (s — 3 3) and so on.

That, in turn, at s = 1, 3/2, 2 allow one to transit from the first order equations on the
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reducible representation to second order equations on IR of improper Poincaré group. For

example, at s = 1, excluding f, o and f;1, we obtain

m’f11(2, 2) = (P Vs, B Vit 1 11 (e, 2). (5.46)

2

In general case one also can to transit from the system of first order equations (5.45) on the
reducible representation to higher order equations on IR, for example, to the equations of

- 1+ [s] order on the components, transforming under IR ($ £) or ((3"2"1) (3"2"1)) @ ( ""2'1) (Hz'l))
at the cases of integer or half-integer spin correspondingly.
Let us consider some particular cases.
1. 8 = ji + j» = 1/2, the Dirac equation.
i (2, 2) = xal®)2™ + $*(z)Zs. o (5.47)

If we substitute (5.47) into the equation (5.36) and compare the coefficients at z* and at Z4
in the left and right side, then obtain

B Up(e) = mUp(z), Tp= CZ:EZD = (fp ‘TO”) _ (5.48)

The complex conjugated function correspond to charge conjugated state, . .

Felenz) = —pa(@)2 - P,

" (the sign reverse because of anticommutation of spinors, ¥,2% = —2z,%®) or in the matrix -

 form

x%(2) —Xa(z)

oo () i (N 549

- The matrix y* = diag{a®, —°} correspond to chirality operator (5.18).

The real function fi/s(,2) = fi/2(2, 2), describing Majorana particle, depend on the
clements of Zyr, and correspondingly ¥%(z) = —x%(z) = ic?xa(z).
2. 8 =31 + 32 = 1, the Duffin-Kemmer equation.

Fil, 2) = Xap()2%2® + $(2)2°2, + 9P () 222, (5.50)

Substituting (5.50) into equation (5.36), we obtain

L 1 . . i ,
m¢aﬁ($) = 5.36#&#&?9'51'«6(37)’ mXas(x) = Eﬁuduﬁ"aﬁbg(m):
mPL(2) = Pu(6" Xan (2) + 0% 9% (2)), (5.51)

or, after the transition to vector indices, F,.(z) = %mamdayﬁﬁ(ed‘éx""@(;c) + eaﬁqbd'é(:n)),
@”(.’B) = %&#ﬁaqba,é(x):

Fo(2) = 0,8,(z) — 0,3,(z),  m?®,(z) = 0" Fo(z). (5.52)
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The Duffin-Kemmer equation in the form (5.52) is the equation on IR Tjyq of de Sitter
group Sp(4, R), and, thus, on the reducible representation of the Lorentz group (10)®(3 3)®
(01). This representation contain both four-vector &,(z) and antisymmetric tensor F,(z),

- which correspond to chiralities A = 0 and A = £:1. One can exclude components F,,(z) and
consider second order system only for the components &,(z), transformed under IR, (33) of
~ the Lorentz group (equations for spin one in the Proca form), '

(- m)B,(p) =0,  PBu(a) =0, | (5.53)

Neutral field of spin 1 one may describe, in pa:rtlcula,r by real functwn of the elements of
Majorana z-spinor, fi(z,z) = f1(a: z). Then xag = 1,ba,3, bops = qbﬂa, or (I> =@, Fm, = F,,

~In this case it is possible instead of complex variables #* and 24 to use real variables

1 *
q,u = §a“aﬁzazﬂ! Q.uqu = 07
1

= g = §amdavﬁé(ed"éza P 4 P ‘@) (5.54)

One can rewrite (5.50) in the form

1 1
flz,q) = ¢,(z)g" + EF“”(m)--qﬂ._ , o - (5.55)
- a.nd, appljing Qperato;ﬁ o 7 o
| 5.0% = —ilh,0 00 +p“aqw’ SRR T (5.56)

obtain (5.52). Such transition to vector indices is p0s31b1e “under éonsidering of any integer
spimn.

3. 8 = j1+ J2 = 3/2, equations for spin 3/2 particle. Equations (5.45) allow one to write
the components (30) @ (02) in terms of (13) @ (3 1). Then one can to transit to the second
order system on the components, transformed under IR (13) @ (5 1) of improper Lorentz

- group,
(3m/2)’ £y 1(2, 2) = pub VEVR Fia (=, 2) + (3m/2)p Vi i 1 (2, 2),
(3m/2)* f11(2, 2) = Pub VAV F1 1 (2, 2) + (3m/2)pu Vi 1 1 (3, 2). (5.57)

4. s = j1 + J2 = 2, equations for spin 2 particle.

Equations (5.45) allow one to write other components in terms of (§ 1%), (32) and to
obtain second order system on the components, transformed under IR (£ %) & (3 2) of the
Lorentz group,

(@) fy 4(3,2) = {5 Viss Vi by 4 (00 2) + Db VEVE Fy 52 2) (5.55)
(2m)* f15(, 2) = {BuVi5, B Vst 4+ f1,8(3, 2) + Dub VisVis f3 1 (2, 2). (5.59)

For higher spin it is also possible to write the higher order system on IR of improper
Poincare group, but the system will be cumbersome and it is easier to consider corresponding
 linear equations on the reducible representation.
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For the cases s = 1/2 and s = 1 first equation of the system (5.35) (Klein-Gordon
equation) is the consequence of second equation. In other cases the solutions of (5.36) have
spin and mass spectrum, 8; = {8, s—1,...1} or 5; = {3, s — 1,...1/2}, m; = ms/s;. Thus,

- for higher spin the Klein-Gordon equation is independent condition, allowing to exclude

from spin spectrum all spins, except maximal s.

The cases s = 1/2 and s = 1 are also the exceptions in sense of simplicity of labelling
the components by spinor and vector indices. The number of the indices of symmetric spin-
tensors, necessary for labelling higher spin components, increase in spite of the fact, that
for labelling of the states, belonging to symmetric IR of the de Sitter group, it is sufficient
to use only three operators and correspondingly only three numbers.

- In particular, for spin 3/2 particle there exist four kinds of components, namely t,s,, cgﬁjﬁé,

' w‘g‘q,, X‘j"é"”, corresponding to 4 possible chiralities. For the spin 2 particle the representation,

analogous to (5.55), is also cumbersome,

1 1 oo
Fla:0) = B ()00 + 3 Fusn@)2” e + § Foan (20 (5.60)
with the necessity to fix independent components by means of relations g,¢" = 0, g,,q" +
4uwq” = 0 and so on. _
Thus, beginning from the spin 3/2, it is convenient to use the universal notations, con-
nected with the decomposition over monomial chiral basis,

s ki j2 -
ECDOED D DD DI+ L OF
A=—smy=—f1 ma=-—j; :

e Y 3 . : :
( . (2‘71) ' (232) ) zi1+m1zgl—m1z.;2+mnzgz+m2’ (561)
(1 + ma)!(G1 — m2)! (Jz + 102)! (72 — mp)!

“where s = j; + ja, A = §; — jo. These notations are also suitable for infinite-dimersional

representations. Two indices ji,j, label spin and chirality and two indices my,ms label
independent components inside IR of the Lorentz group.

By analogy with 2+1 case, one can find plain wave solutions of the system (5.35)-(5.36)
for the any spin s in general form without using matrix representation. The states, corre-
sponding to the particle, moving along 23, are eigenstates of the operator $;5* with cigen-
values |p|o, where ¢ = s®sign ps is the helicity. These states have the form

| fm,s,o-(m; Z) — Cleikom0+k3a:3(z16a + Zle—a)3+a(z2e—a + 22641)5—0‘ +
Cze—ikomo—k3m3(zlea _ Elewa)s—a(ZZea _ 226---c1).‘r+cr:I (562)
where e* is given by (5.41). For the rest particle one can obtain the general solution,
characterized by the spin projection s’ on the direction n, from (5.40) by the rotation

25 = Uy®24, U C SU(2). For particle, characterized by momentum direction n and helicity
o one can obtain the solution by the analogous rotation starting from the state (5.62).

D. Relativistic wave equations, invariant under improper Poincare group.
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Equations on a few scalar functions

Above we have considered the linear equations on one scalar function on the group. The
condition of the presence of symmetry with respect to space reflection led us to the system
(5 35)-(5.37) for particle with spin s = j; + j» and mass m.

- For the construction of invariant wave equations one may also use the operators p,‘Vzk,
which are not invariant under space reflections. It is possible to restore the invariance under
space reflections, using a few scalar functions f(z, z).

Let us consider systems of the form (5.26),(5.27), connecting several scalar functions
with different §;,72. The equations of this system interlock the representation (j1,j2) with
at least one of the representations (j; = 1,72 F 1), (j1 = 1,2 £ 1), that allow one to identify

this system with Gel’fand-Yaglom equations [41,26], which can be written in the matrix

form as
(a#py —3)tp = 0, [8*, 0] = i(n*a> — p™at) (5.63)

In the present approach the latter relation is a consequence of the commutation relations
(32, V%] = (Vi — V). This relation is necessary for Poincaré invariance of the
equation [4,26).

Finite-component equations of the form (5.63), supplemented by commutation relations

. [e*,a”] = S*, are known as Bhabha equations [42], although for the first time was sys-

tematically considered by Lubanski [43]. These equations are classified. according to the

_ i finite-dimensional IR of the de Sitter group S 0(3 2).. Other posmble commutatlon relatlons
- of matrices o are discussed in [44].

-The equation (5.36) on a scalar function, conmdered above is the partmular case . of

Bhabha equations, connected with symmetrical IR T[zso} of the de Sitter group.

In general case the Bhabha equations characterized by finite number of different m and
s. Therefore, this equations connect the fields, transforming under nonequivalent IR of

- Poincaré group.

If one use the operators 13,_,‘[71‘; and puV;z, then the equations either describe at least two
different spins s, or the condition s = j; + j2, connecting spin s with a highest weight of IR
of Lorentz group, is not valid. .

Cite as an example the system, interlocking IR (00) and (33) of the Lorentz group,

ool 2) = $(2), fiy(e,2) = VE(w)255

ﬁu‘}ﬁfOO(maz) = xlf%%(waz)a ﬁu%‘;f%(ma Z) = —‘@foo(%: Z): (5-64)

or in component-wise form p,¢ = 2309, p.Y* = 3a¢. In the rest frame one may obtain
s, = 255 = m. Thus, the system (5.64) is equivalent to Duffin equation for scalar particles,

-which correspond to ﬁve-dimensional vector IR Tjgy) of SO(3,2) group.

Using the operators ﬁ” &, one may construct the equations of higher order, for example,
equations, interlocking IR (s0) and (0s) of the Lorentz group,

(Bu Vi) fuo(, 2) = 3 fos(z, 2), (B V51)* fos(2, 2) = 3¢fu(z, 2).
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E. Relativistic wave equations, invariant under improper Poincare group.
' Equations for the particles with composite spin

Many-particle systems are described by the functions of the sets of variables z(;), 2(3), Z(3)-
But here we will consider not many-particle systems in unsual sense, but some objects, cor-
responding to functions f(z* s 21y Za(1) - - - 2y Za(m)) (01, briefly, f(z, {z»})), i.e. to func-
tions of one set of # and several sets of z. These objects one may interpret as particles with

. composite spin.

Let us consider linear symmetric functions of Z(1)s -+ 3 Z(ntl)s

f%%(mv {zn}) = wf;”f,’.'.‘.',’g',.’.(w) Z 24(611) S z‘(aq:)g(n-i-i)m o Bngl)dy (5.65)

“where symmetric spinors gbah g'(:n) transforming under IR (n/2,{/2) and all permutations

of 1,...,n + [ are summed over. For this functions one may write the equations, analogous
(5 26) (5.27). '
One may obtain Dirac-Fierz-Pauli equations [45,46], acting by the opera,tors V:Lz{k) and

_Vn(k) on the functions (5.65), which are transforming under the IR (2 + 3, %) and (2, = +2)

correspondingly,
Tﬁi(k)fn Li(z, {z0}) = fn 112, {zm}), o
Vwfan@ o) = s lod, 660
ot in compbne_nt—wme form. | .‘ |

OG5, (2) = o5, o)
Ouopa b i (@) = iy (w) (5.67)

. These equations, interlocking two scalar functions, allow parity transformation only at n = [.

Considering the functions, which depend on several sets of spin variables, one may obtain

the equations, often joined with the Dirac-Fierz-Pauli equations by the name "equations

with subsidiary conditions”, namely Bargmann-Wigner equations [47], equations for massive
tensor fields and Ranta—Schwmger equations [48].

In contrast to the system (5.35)-(5.36) on the functions of one set of space and spin
coordinates, these equations suppose the conditions both on the whole system and its spin
subsystems separately. Naturally, these conditions can be found inconsistent under interac-

- tion. The general scheme of construction is as following.

One impose an equation (p” ) — 2¢)f = 0 on each spin subsystem, described by IR

(30) & (03) or (33) of Lorentz group. Then one require the wave function to be symmetric
with respect to the permutations of indices (k). (That cut the IR (j; + 71, jz2 + j5) from the

direct product (j1,72) ® {41, 75).) Finally, if it is necessary, one impose an supplementary

conditions to exclude redundant components.
Let us return to the symmetric lincar on z(;) functions f(z,{z@}) (5.65) and impose the
condition on each spin subsystem

(Bully —m/2) f(@, 20), - - -2 22p) = 0, (5.68)
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Rewriting this equations in four-component form, we obtain Bargmann-Wigner equations

(ﬁpﬂ(&) ~ M) o8, ¥p1.. 8.0 () = 0. (5.69)

As a consequence (5.68) one may obtain a system, including only equations for whole system,

(B* — m*) f(=, 21y, - - - 225)) = 0,
(Bl — ms)F (2, 21), - - - 2(25)) M=) T4, s=j (5.70)

which are analogous to the system (5.35)-(5.36). Notice, that the connection of the the
Rarita-Schwinger and Bargmann-Wigner equations with Bhabha equations was also inves-
tigated in [49)].

- One may obtain the equations for massive tensor field, characterized by integer spin n,
~ considering functions f(z#, {qf‘;), qﬁ’;}), ¢ = 1,...n, which are linear on g¢(;) and symmetric
with respect to permutations of g;) (where g(; is given by (5.54)). Let us write n Duffin-
. Kemmer equations, k= 1,...n,

(Bulty — m)f(z, {ge}) =0, - (5.71)

where pMP(k) is given by (5 56). At k = 1 we obtain (dots replace the indices, connected
with gg), 7 > 1) o .

'm()aé(yimﬁpﬂwgﬁﬁwmm¢.J;wm}f'

Excludmg Fi..(z) and taking into a:(_:cdiint';‘[a,v,,ia,‘,] = 0, we obtain

(132 - mz)@“_"(m) =0, 0"®,.(z)=0,

where functions ®,,,,. .., () are transformed under represemtation (3 —1 5 — 1), I =
0,...,[n/2] and correspond to the terms &, ;. p,(2)4(1)4(5)- - - sy in the decomposition

of f(z,qu;)). One should impose the subsidiary condition @, .., (%) = 0 to obtain IR (5 7).
(Notice, that there is not necessary to impose subsidiary conditions, using only one set of

~ spin variables, since g,¢* = 0 (see (5.54)) and redundant components are not contained in
f(z,q).) As a result one may obtain

(7 — ) ppgeiin(®) = 0, Py s (2) =0, By (2) = 0. (5.73)

_ Repeating the previous arguments for functions f(z ,{qf;), qg’;}, 2%, Z4) linear on ¢(;) and
z, one can obtain a system

(Dut™ — M)y () = 0, 6“‘1'##2"-%(1’) =0, Q. u,(z)=0, (5-74)

~ where &, un(:c) is a four-component column, consisting of ®,, . o(z) and @, ,.%().
This system is one of the standard forms of Rarita-Schwinger equations. The transition to
another form is described, for example, in [7]. _

Let us consider more detall the case 5 = 3/2. A particle are described by function

f(m'u: q“'.' quy: za’ 26'!) - .U'Vﬂ(m)qﬂy * FMVd(m)quzd + q).ua (m)qnza + (I)Hd (m)q”zé!'
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Spin subsystems obey the Dirac and Duffin-Kemmer equations correspondingly,
(ﬁuf“(ﬁ) - m/z)f(mv q, Z) - 07 (ﬁ”f‘i‘;) - m)f(:l:, 4, Z) = 07 (575)

where operator f“i‘l) act only on z, and f‘f‘z) act only on ¢. The sum of these equations is an

equation of the form (5.36) or (5.70), describing with Klein-Gordon equation (that also is a
consequence of (5.75)) the system with mass m and spin 3/2 as a whole,

(BulBfyy + D)) = 3m/2) F(2,0,2) = 0, (7~ m*)f(z,q,2) = 0. (5.76)

On the other hand, writing equations (5.75) in component-wise form, taking into ac-
count the relation [8,,8,] = 0 and excluding F,,, and F,,% one can obtain standard form
of Rarita-Schwinger equations for spin 3/2. In contrast to the system (5.76) both these
equations and initial system (5.75) contain the subsidiary conditions, which fix the states of

spin subsystems.
‘ Apart from the equations with subsidiary conditions, the Ivanenko-Landau-Kahler (or
‘Dirac-Kahler) equation [50,51] also arises as an equation for particles with composite spin.
- Let us write some linear on z(1y and 2(z) scalar function f(x,z(), z(2)) in the form

4
f(.’.B, Z.(l),Z(z)) = Z(l)‘li(w)Z(‘;) = E Z(l)i‘I’ij(m)Zikz)jn ' _ (577)

=1
where Z = Zp = (2 22 5 Z3), and ¥(z) is a 4 X 4 matrix with a transformation rule
V(') = UL(e)(U)!, U = diag{U,(U")'},

in contrast to the transformation rule ¥/,(2’) = U®p(z) of Dirac spinor (5.48). Let us
- impose the equation on the first ("left”) spin subsystem,

A

(Bul'yy — m/2)f (=, 21), 72)) = 0, (5.78)

and do not impose any conditions on the second (’right”) spin subsystem (imposing the
same equation, we obtain the Bargmann-Wigner equations for spin 1). Writing (5.78) in
component-wise form, one can obtain Ivanenko-Landau-Kahler equation in spinor matrix
representation, ‘

(Duy” — m)¥(z) = 0. (5.79)

According to (5.79), 16 components ¥,;(z) obey Klein-Gordon equation, therefore mass is
equal to m. Spin of both subsystems is equal two 1/2. The spin of system is indefinite, and
there are both spin 0 and spin 1 components.

The consideration of this equation mainly connected with the attempts to describe
fermions by the antisymmetric tensor fields (see, for example, [52-54] and also [55] as a
good introduction). In contrast to papers concerning equations with subsidiary conditions,
in latter case the spin subsystemms ("left-spin” and "right-spin”, [52,54]) and its characteris-
tics are investigated.

45




Comnsidering the functions of one set of space coordinates = and several sets of spin co-
ordinates z, we have obtained the equations, which are widely discussed in bibhography.
However, it is not clear, which type of objects are described by these equations. At least,
that is not elementary particles in usual sense, because of the existence of supplementary
conditions on spin subsystems. Moreover, these equations are inconsistent or lead to acasu-

‘ality when minimal electromagnetic interaction is introduced (of course, excluding the cases,

when spin is not composite, exhausted by s = 1/2 and s = 1, and Ivanenko-Landau-Kahler
equation, that is the equation only on a subsystem).

From mathematical point of view there is some interest to consider equafions omn
F(z@ys ... 8y, 2) for particles, which are elementary in spin space and composite in usual
space.

F. Discussion

We have obtained the system (5.35)-(5.37), allowing the parity transformation and de-
scribing a particle with fixed mass m and spin s, as the resalt of group-theoretical classifica-
tion of scalar functions f(z,z) on the Poincaré group. One may obtain the same system in
multicomponent matrix form using both traditional approaches to the theory of relativistic
wave equations.

- It is well known [56,57] that earlier attempts at formulatmg theory for hlgher spin followed

~ two distinct lines.

Within the ﬁrst approach, gomg backwards to.[45,46], one considers symmetnc spinors

. and tensors. Dirac or Proca equations are imposed on every index separately, that one

may treat as fixing of the states of spin subsystems.  In the approach, considered in this
paper, that correspond to particles with composite spin. The Dirac-Fiertz-Pault equations,

~ the Rarita-Schwinger equations and the Bargmann-Wigner equations are examples of this

kind. In free case, considered in detail in [7], these equations describe particles of given
mass m and spin 3. But the number of equations exceeds the number of field components.
The presence of "subsidiary conditions” which supplement the field equations is an essential
feature of these theories. One therefore has an overdetermined set of equations which,

- although consistent in the free-field case, invariably becomes self-contradictory or leads to

acasuality when interaction is introduced [56-62].

Within the other approach, going backwards to [43,42,63,41], see also [26}, one considers
Poincaré-invariant equations, linear on p*. The problem of minimal electromagnetic coupling
for Bhabha equations are considered in papers of Krajcik and Nieto (see [64]; it contains
references to the six earlier papers). The theory is casual with minimal electromagnetic
coupling [64], but in general case s > 1 describe multi-mass systems, m;s; = ms.

The system (5.35)-(5.37) lie on a halfway between these lines.

In the first place, as it was shown above, one may extract this system from Bargmann-
Wigner equations, leaving only conditions on a particle as whole. As before, after the
rejection of the conditions on spin subsystems the equations describe fixed mass and spin.
Moreover, one can rewrite these equations as higher order equations on the variables, trans-

forming under IR of the Poincaré group.

In the second place, one may consider a Bhabha equation, which corresponds to sym-
metric representation Tjs,q) of the de Sitter group Sp(4, R) ~ SO(3,2) and is the direct
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generalization of Dirac and spin 1 Duffin-Kemmer equations for higher spin. Supplementing
this equation by the condition of mass irreducibility, namely by Klein-Gordon equation, one
may obtain the system (5.35)-(5.37).

Which conditions do we neglect in both cases? Excluding subsidiary conditions on the
spin subsystems, we neglect the requirement, that equations must be imposed on every index
of symmetric tensor or spinor separately. Supplementing the symmetric Bhabha equation

by the condition of mass irreducibility, we neglect the requirement, that all equations of the
system must be first-order equations on p#. It is difficult to bind this requirements with
some physical conditions. Traditionally used in one the approach, these requirements are
not imposed in another one.

Thus, the comparison with both traditional lines once more show, that the system (5.35)-

- (5.37) is the minimal set of equations, fixing mass and spin and allowing the parity trans-
~ formation, with the true number of independent components.
"The solutions of the system (5.35)-(5.37) have the components, transformed under 25+1
IR (j1,J2), j1 + j» = s, of the Lorentz group. But these components, corresponding to
chiralities A = j; — 7, are not independent. In contrast to left generators of Poincaré group,
" operators f‘“ do not commute with chirality operator and combine 2s + 1 representations
- of the Lorentz group into one IR of the de Sitter group S0O(3,2). One may express all
components in terms of the components, corresponding to chiralities + and rewrite the
system of first order equations on a reducible representation as higher order system on IR of
- Poincaré group. The condition of spin irreducibility: (5.21) is a consequence of: (5.35)-(5.37).
“Let us briefly consider the problem of equivalence of the d1fferent relat1v1st1c wave equa—
e tloms. In the case of free field, using the relation _ RS It

[am av] =0, _ . | -. (580)

one can establish the equivalence of wide class of relativistic wave equations, for example,
‘the Rarita-Schwinger equations and the Bargmann-Wigner equations [7] (all solutions of the

system are also solutions of another one). Subsidiary conditions on spin subsystems in free
case are consequences of the equations, which describe system as whole, and the equations
(5.35)-(5.37) are also equivalent to previous ones.

But, for systems with interaction the subsidiary conditions on spin subsystems lead to
independent equations. It is obvious, that the coupling, which is minimal for one system,
1s not minimal for another “equivalent” system, if one use the relation (5.80) to prove this
equivalence in the free case. These equations will differ by the terms proportional to the
commutator of covariant derivatives

[Dy, D] = igF (5.81)

Therefore, when an interaction is introduced, the system of equations can be found
inconsistent, if some equations are the consequences of another taking account of (5.80).
This situation is typical for the equations with subsidiary conditions as one can sece on the
-example of Bargmann-Wigner equations for spin 1 and 3/2 [7].

The system (5.35)-(5.37) do not include some subsidiary conditions on spin subsystems,
but describe a particle with definite mass and spin, in contrast to Bhabha equations. Thus,
one may hope to construct the consistent theory for higher spin with minimal coupling by
this way.
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- VI. THE EQUATIONS FOR FIXED SPIN AND MASS: GENERAL FEATURES

Consider the general properties of the obtained equations, describing a particle with
‘definite mass m and spin s, in two dimensions

P f(z,0) = m?f(z,a),
ﬁ#f‘”f(:r_:, a) = msf(:l:, CM),
in three dimensions
P f(x,2) = m* (=, 2), (6.3)
ﬁpg’”f(m,z) = msf(z, z), 4
§*f(e,2) = S(S + 1) (=, 2),

in four dimensions

ﬁzjf(ma z) = mzf(ma z): (6'6)
I?#Fi‘f(;c,z) = msf(zx,z), - (6.7)
83 F (2, 2) = 4§(j + 2)f(2, 2). (6.8)

In all cases first equation (condition of the mass irreducibility) is the equation on the eigen-
“values of Casimir operator of the Poincaré group. But the other equations, although seem
-~ similar, has distinct origin in-even: and odd" dlmensmns That connected w1th the ‘distinct

. #role of space inversion.

In2+1 dimensions other ‘equations (6. 4) (6. 5) are the equa,tions on the elgenva.lues of
Casimir operator of the Poincaré group and the Lorentz subgroup.

In even dimensions space inversion combine two equivalent IR of proper Poincaré group,
~ labelled by chiralities X, into IR of improper Poincaré group. The system, fixing the
eigenvalues of the Casimir operators of Poincaré and Lorentz group, in general case is not
symmetric with respect to space inversion. If one reject equations, which fix chirality, (in
3+1 that correspond to the transition to the system (5.20)-(5.22)), then in the rest frame
it is easy to see an abundant number of independent components. Thus, it is necessary
to construct equation, connecting the states with different chiralities. Since generators of
Poincaré group commute with chirality operator, then it is necessary to use supplementary
operators ['**, which extend Lorentz group SO(N — 1,1) up to SO(N —1,2) group with the
maximal compact subgroup SO(N — 1) ® SO(2). Operator I'® is the generator of compact
S0O(2)-subgroup.

Third equation of the system fix the homogeneity power 25 or 27 of the functions f(x, z)
on z, defining IR of the Lorentz group in 241 dimensions or of the de Sitter group in
3+1 dimensions. (In 141 dimensions there exist analogous equation L0 f(z,a) = s(s +
1)f(z,a), but this equation connected with the definition of I'*.)

A positive (half-)integer S = s or j = s correspond to the space of polynomials of the
power 2s on z, transforming under finite-dimensional nonunitary IR of Lorentz (or de Sitter)
group.

A negative § = —s correspond to infinite-dimensional unitary IR. The unitary prop-
erty allow to combine probability amplitude interpretation and relativistic invariance (the
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desirability of this combination was stressed by Dirac in the paper "Relativity and quan-
tum mechanics” [28]). Thus, equations under consideration allow two approaches for the
description of the same spin, by means of both finite-dimensional nonunitary and infinite-
dimensional unitary IR.

In I+1 and 2+1 dimensions there is the possibility of the existence of particles with frac-
- tional spin, since the group SO(2,1) does not contain compact Abelian subgroup. However,
the description of massive particles can by given only in terms of infinite-dimensional IR of
the group $O(2,1). That is another reason to consider infinite-dimensional IR.

Fixing the IR of the Lorentz or de Sitter group with the help of the third equation of
the system, one can transit to usual multicomponent matrix description. This transition
is realized by the separation of space and spin variables, f(z,z) = 3 tw(z)ér(z), where
¢1(z) form the basis of the representation space of the Lorentz (or de Sitter) group. Thus,
depending on the choice of the solution of the third equation, second equation in matrix rep-
resentation is either finite-component equation or infinite-component equation of Majorana
type.

~ For fundamental spinor IR the action of differential operators 284 in 2+1 dimensions
and 2 in 141 and 341 dimensions in the space of functions f(z, z) on the Poincaré group
can be rewritten in terms of action of corresponding y-matrices on the functions ¥(x).

Differential operators I'* and matrices ¥*/2 obey the same commutation relations,

[P, 1““'] =—i5™, (8,8 = —ic5,.

In 3+1 dlmensmns opera.tors I‘“ and Guv obey thé commutatlon relatmns of generators of i
- 80(3,2) group, see (5.33). ' L ‘

Anticommutation relations for operators $* in 2+1 and [* in 1+1 and 3+1 d1mensmns
analogous with relations for y-matrices,

1
{88 = oo, {0 1% = o,

are valid only for fundamental spinor IR. That is group-theoretical property, connected with
the fact, that in these IR the double action of lowering or raising operators'on any state give
- zero as a result. (Anticommutation relations along with spinor IR of orthogonal groups also
take place for fundamental N-dimensional IR of Sp(N) and SU(N) groups [65].)

At s =1/2 and s == 1 first equation of the system (condition of mass irreducibility) is
the consequence of (6.4) or (6.7). At s > 1 it is necessary to consider both equations.

Consider some characteristics of the equations, connected with finite-dimensional IR of
the Lorentz group. For the second equation of the system (without the condition of mass
irreducibility) the component j° of the current vector is positive definite only at s = 1/2
and the energy density —T% (see (4.26)) is positive definite only at s = 1. However, for
the system as a whole the component j° of the current vector is positive definite for any
half-integer spin and energy density is is positive definite for any integer spin.

For the case of infinite-dimensional equations, considered in 2+1 dimensions, energy is
positive definite for any spin and j° is positive or negative definite in accordance with the
sign of charge.
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VII. CONCLUSION

In present paper we have considered scalar field on the Poincaré group.
Transformations of the left GRR of the Poincaré group

T(g)f(go) = f(g_lg{))v G0 = (a:,z), (71)

where z are coordinates on Minkowski space and z are coordinates on the Lorentz group, one
_ can treat as coordinate transformation on Poincaré group as a whole, induced by coordinate
transformation in Minkowski space,

T(9)f() = f(g"2).
By the other hand, {7.1) can be rewritten as
f(&,2) = flz,2), ' =gz, &=gz, g€ M(N-1,1). (7.2)

which define a scalar field in the extended space. The equivalence of the concepts of the left
GRR and scalar field on the group allow to combine the powerful mathematical method of
harmonic analysis on a group with physical interpretation.

The consideration of the functions f(z,z) guarantee the possibility to describe any spin,
because any IR of a group is equivalent to:one of sub-representation of GRR. Thus, scalar

s ﬁeld on the Poincaré group is an uniform field, contammg all masses and spms

+ As a conseguence of this uniformity, we have: - : S S ;
1. The uniformity of spin operators The spm prOJect1on operators are d1ﬂ'erent1a.1

vuoroperators.on z.

2. For this scalar field and, thus, for a.rbltrary spin, dlscrete transformatlons C P, T are
defined as automorphisms of Pomca.re group.

3. Relativistic wave equations arise under classification of the functions on the group by
eigenvalues of invariant operators and have the same form for arbitrary spin.

The transition to the usual multicomponent description by functions ¥, (z) correspond
to the separation of space-time and spin variables, f(z,2) = 3. ¢n(2)¥a(z), where ¢n(z) and
() transformed under contragredient representations of the Lorentz group. Many-particle
systems are described by functions f(z(1), 2), - -+ B(n), Z(n))-

General scheme of analysis of fields on the Poincaré in different dimensions, developed
above, allow to obtain equations without subsidiary conditions, describing particle with
fixed mass and spin. These equations characterized by uniform basic properties in 2,3,4
dimensions.

The properties of higher spin equations, corresponding to finite-dimensional representa-
‘tions of the Lorentz group, are similar to the same for spin 1/2 and spin 1. In particular,
for particles with half-integer spin the component 7° of a current vector is positive definite,
and for particles with integer spin the energy density (defined in terms of energy-momentum
tensor) is positive definite.

The approach also give the possibility for regular construction of the positive energy
wave equations, connected with infinite-dimensional representations of the Lorentz group
and allowing probability amplitudes interpretation. In present paper we consider such the
equations in 2+1 dimensions.
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Besides the equations on one scalar function on the Poincaré group, considered above, the
present approach allow to reproduce practically all known relativistic wave equations. How-
ever, in general case these equations either interlock several functions f(z,z) (as Gel'fand-
Yaglom equations}, or describe objects with composite spin, corresponding to functions
f(2, 2(1), -+ . 2(n)) of ome set of space-time coordinates = and several sets of spin coordinates
z. .

In particular, equations which in general case are inconsistent or noncasual with minimal
electromagnetic coupling (or equations with subsidiary conditions, namely the Dirac-Fiertz-
Pauli equations, the Rarita-Schwinger equations and the Bargmann-Wigner equations) arise
as equations for systems with composite spin. The latter explain the difficulties in attempts
to describe interacting elementary particles by these equations.

The consideration of the field on the Poincaré group allows to ensure also essential
progress in the problem of practical computations for multicomponent equations.

- As was noted in [66], the general investigation of Gel’fand-Yaglom equations "revealed a
number of interesting features, but ... the use of such equations (or more accurately, systems
of a large or infinite number of equations) for any practical computations is not possible”.
It was suggested in [87] for the solution of this problem to consider equations for functions,
dependent not only on coordinates @, but also on some other quantities (see also [66]). In
particular, in [68,69] one-component functions of =¥ and ¢* was used for the construction
of positive energy wave equations. Recently the functions, depending on ¢*, Majorana or

- Dirac z-spinors are considered in the main not in the context of rela,tlwstlc wave equatlons
- but-in context of models of spinning particles {13-19]. B ORI LI U -

‘In the present approach due to use of spin. differential operators instead of ﬁnlte ‘or

"_1nfin1te—d1mens1ona,l matrices there is no essentm.l distinction in the conmdermg of the equa-
“tions, connected with the representations of the Lorentz group of ‘different: dimensions.

Therefore, the present approach is adequate to work with higher spin and positive energy
wave equations, connected with infinite-dimensional representations of the Lorentz group.

Thus, the scalar field on the Poincaré group allows to give an uniform description of
arbitrary spin.

VIII. APPENDIX. BASES OF IR AND S#¥* MATRICES OF 241 LORENTZ
GROUP

Spin projection operators $*, which act in the space of the functions f(z,z) on & = (z*)
and two complex variables 2! = z,, 22 = —z;, |21|* — |22|® = 1, have the form

Sk = %(zq“’@z - 2’?“8;), z=(z1 22}, 0, = (0/02 8/02)7, (8.1)
where v* = (03,102, —101).

The polynomials of the power 25 on z, which correspond to finite-dimensional IR 78 of
241 Lorentz group, can be written in the form

25
T.Siq i fs(z,2) = Z ¢n(z)¢n(m)= Pulz) = ( 23)1/2 (z1)23~n(22)n7 =5 n, (8.2)

=)
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“where £° is eigenvalue of $°, and C%s are binomial coeflicients. The qaia,s1polynomjals of the
power 25 < —1, which correspond to 1nﬁn1te—d1men31onal unitary IR T of 2+1 Lorentz
'group, can be Wntten in the form

T fsle,2) = Z $a(2)9"(z), $al2) = (Cis)* () (), & =—-5+m,

Tg: fs(z,z)= Z¢n(z)?,b"(z), ba(z) = (CF5)*? (21)23_“(?2)”, =9 -, (8.3)
o _ ((=DT(n —28)\
25 ( nlIl'(—25) )

There is a correspondence between the action of differential operators §# on the functions

f(z,2z) = ¢(2)¢(z) and the multiplication of matrices 5% by columns (z), composed of - ..

P™(z), SPf(z,2) = ¢(2)5#1(z). For the finite-dimensional representations T§ we have
(807 = % (8491 = 55,

(8°)" s = dnw (S — ), n=0,1,...,25,

(8w = —% ( w414/ (28 —n 4+ Ln + 5n+1 W/ (25 —n)(n + 1))
Ty 1 : o -

(32)"-' p= 2 ( n num/ 25‘ n+ )n — but1 /(25 = n (n+ )) o84

:"Ma.trlces Sk satlsfy the condltlon (S )Jr = I‘S”I‘ Where 'is a dlagona,l matrix, (]f'--)mr-.=i '
(—1)"0pn. The substitution z:— Z in (8.2) changes only signs of S° and S?. For represen-
tations T of discrete positive series is valid (S#)f = S*,

(8" = b (=8 + ), n=012...,

(Sl)”ﬂ, = _% (6,-,, nr+1\/(n -1 25)?1. ~+ 5n+1 n;\/(n — 2,5')(n + ]_)) \
B T i e

For T matrices S have the same form, whereas $°, §% change only their signs.
The case of representations of principal series, which is not bounded by the highest
(lowest) weight, was considered in [8].

[1] D. Zhelobenko and A. Schtern, Representations of Lie Groups {Nauka, Moscow, 1983).

[2] N. Vilenkin, Special Functions and Theory of Group Representations (Nauka, Moscow, 1965).

[3] N. Vilenkin and A. Klimyk, Representations of Lie Groups and Speciel Functions (Kluwer
Acad. Publ., Dordrecht, 1991), Vol. 1.

[4] A. Barut and R. Raczka, Theory of Group Representations and Applications (PWN, Warszawa,
1977).

52




eI

[5] E. Wigner, Ann. Math. 40, 149 (1939).
[6] G. Mackey, Induced Representations of Groups and Quantum Mechanics (Benjamin, New lork,
1968).
[7]1Y. Ohnuki, Unitary representations of the Poincaré group and relativistic wave equations
(World Scientific, Singapore, 1988).
[8] D. Gitman and A. Shelepin, J. Phys. A 36, 6093 (1997).
[9] I. Benn and R. Tucker, An Introduction to Spinors and Geometry with Applzcatzons in Physics
(Adam Hilger, Bristol, 1988).
[10] F. Berezin, The Method of Second Quantization (Academic, New York, 1966).
[11] L. Landau and E. Lifschitz, Quantum Mechanics (Pergamon, Oxford, 1977), Vol. 3 of Course
of Theoretical Physics.
[12] E. Wigner, in Theoretical Physics, edited by A. Salam (IAEA, Trieste, 1963), p. 59.
[13] Y. Kim and E. Wigner, J. Math. Phys. 28, 1175 (1987).
L. Biedenharn, H. Braden, P. Truini, and H. Van Dam, J. Phys. A 21, 3593 (1988).
Z. Hasiewicz and P. Siemion, Int. J. Mod. Phys. A 7, 3979 (1992).
S. Kuzenko, 8. Lyakhovich, and A. Segal, Int. J. Mod. Phys. A 10, 1529 (1995).
S. Lyakhovich, A. Segal, and A. Sharapov, Phys. Rev. D 54, 5223 (1996).
R. Jackiw and V. Nair, Phys. Rev. D 43, 1933 (1991).
M. Plyushchay, Int. J. Mod. Phys. A 7, 7045 (1992).
J. Sucher, J. Math. Phys. 4, 17 (1963).
K..Samarov, Sov. Phys. — Dokl. 29, 909 (1984). - : g
H.-J. Briegel, B.-G. Englert, and Siissmann, Z. Naturforsch A 46, 933 (1991)
J. Smith, Second Quantization of the Square-Root KIem—Gordon Opetator; Mlcroscopu:
- Causality, Propagators, and Interaction, Preprint UCD/ IT RPA 93-13, Umvers1ty of Callforma
‘Davis, 1993. - : : = e e
[24] A. Shelepin, Phys. At. Nucl. 60, 206 (1997).
(25] E. Majorana, Nuovo Cimento 9, 335 (1932).
[26] 1. Gel'fand, R. Minlos, and Z. Shapiro, Representations of the rotation and Lorentz groups and
their applications (Pergamon press, Oxford, 1963).
[27] D. Stoyanov and I. Todorov, J. Math. Phys. 9, 2146 (1968).
[28] P. Dirac, Fields and Quanta 3, 139 (1972). '
[29] D. L’vov, A. Shelepin, and L. Shelepin, Phys. At. Nucl. 57, 1083 (1994).
[30] M. Hamermesh, Ann. Phys. (N.Y.) 9, 518 (1960).
[31] J.-M. Levy-Leblond, J. Math. Phys. 4, 776 (1963).
32] B. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974).
8] B. Binegar, J. Math. Phys. 23, 1511 (1982).
34] C. Aragone, S. Deser, and Z. Yang, Ann. Phys. (N.Y.) 179, 76 (1987).
35] M. Vasiliev and I. Tyutin, Teor. Mat. Fiz. 113, 1244 (1997).
]

oo

[
[
[

[
[36] A. Vshivtsev, B. Magnitskii, V. Zhukovskii, and K. Klimenko, Phys. Part. Nucl. 29, 523

(1998).

[37] P. Townsend, K. Pilch, and P. Van Nieuwenhuizen, Phys. Lett. B 136, 38 (1984).

[38] S. Deser and R. Jackiv, Phys. Lett. B 139, 371 (1984).

[39] 1. Gel'fand, M. Graev, and N. Vilenkin, Generalized Functions (Aca.demlc Press, New York,
1966), Vol. 5.

[40] A. Kihlberg, Ark. Fys. 28, 121 (1964).

53




[41} I. Gel’fand and A. Yaglom, Zh. Ehksp. Teor. Fiz. 18, 703 (1948).
Bhabha, Rev. Mod. Phys. 17, 200 (1945).

[43] 3. Lubanski, Physica 9, 310 (1942).

[44] L. Castell, Nuovo Cimento A 50, 945 (1967).

[45] P. Dirac, Proc. R. Soc. London, Ser. A 155, 447 (1936).

[46] M. Fierz and W. Pauli, Proc. R. Soc. London, Ser. A 173A, 211 (1939). .
7] V. Bargmann and E. Wigner, Proc. Nat. Acad. USA 34, 211 (1948)

-K. Loide, I. Ots, and R. Saar, J. Phys. A 30, 4005 (1997).

Ivanenko and L. Landau, Z. Phys. 48, 340 (1928).

Kahler, Rend. Math. 21, 425 (1962).

Benn and R. Tucker, Commun. Math. Phys. 89, 341 (1983).

Bullinaria, Ann. Phys. (N.Y.) 168, 301 (1986).

Obukhov and 8. Solodukhin, Theor. Math. Phys. 94, 198 (1993).

Ivanenko, Y. Obukhov, and S. Solodukhin, On antisymmetric tensor representation of the
Dirac equation, Preprint IC/85/2, ICTP, Trieste, 1985.
[66] A. Wightman, in Lecture Notes in Physics (Springer-Verlag, Berlin, 1978), Vol. 73, pp. 1-101.
[67] W.-K. Tung, Phys. Rev. 156, 1385 (1967).
[58]
[

H.
d.
L.
P.
M.
V.
[48] W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
R.
D,
E.
L.
J.
Y.
D.

Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969).
Velo and D. Zwanziger, Phys. Rev. 188 2218 (1969).
. Velo, Nucl. Phys B 43, 389 (1972). .

Caprl and R. ‘Kobes, Phys. Rev. D 22, 1967 (1980)
arish-Chandra, Phys. Rev. T, 793 (1947)
Krajcik and M. Nieto, Phys. ‘Rev. D 15, 445 (1977).
65] D. Gitman and A. Shelepin, Kratk. Soob. Fiz. (Lebedev Inst.)ﬂ]21 (1998).
66] V. Ginzburg, Acta Phys. Pol. 15, 163 (1956).
67] V. Ginzburg and I. Tamm, Zh. Ehksp. Teor. Fiz. 17, 227 (1947).
68] P. Dirac, Proc. R. Soc. London, Ser. A 322, 435 (1971).
69] P. Dirac, Proc. R. Soc. London, Ser. A 328, 1 (1972).

] A
63]
]
]

54

G.
G.
D. Zvanziger, in Lecture Notes in Ph'yszcs (Sprmger—Verla.g, Berlm 1978), Vol 73, pp 143—164
i
R.




