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Abstract

We discuss the origin of the difference between the harmonic value of

the width of the multiphonon giant resonances and the smaller observed

B

value. Analytical expressions are derived for both the effective width and
the average cross-section. The contribution of the Brink- Axel mechanism

in resolving the discrepancy is pointed out.

*Supported in part by CNPq and FAPESP.



In a series of publications [1-3], we have advanced the idea that the excitation of
the double giant dipole resonances (DGDR) in heavy-ion collisions proceeds in two
distinct, incoherent, ways: the usual sequential excitation via the single giant dipole
resonance (GDR), usually referred to in the hte:gature as the “harmonic” cross sec-
tion [4], and the fluctuation excitation that involves the “internal” decay of the GDR

-into the complicated background states followed by a collective excitation of a GDR
on these stétes, a manifestation of the Brink-Axel mechanism. This development is
important as it supplies a possible explanation of the enhancement factor that the
harmonic cross section must be multiplied by in order to account for the data [5,6].

- There has also been some discussion in recent years related to the fact that the
observed width of the double giant dipole resonance deviates from the harmonic value
of twice the single giant resonance width. As we have commented previously, [1] this
is a natural result of the incoherent contributions to the cross section, even when the
resonances themselves are purely harmonic. In fact, due to the energy dependence of
the incoherent contributions to the excitation cross sections, we expect the effective
n-phonon width to be energy dependent. The purpose of this letter is to derive an
analytical expression for the effective energy-dependent width of the n-phonon excita-
tion distribution. For this purpose we use multistep distorted wave series in conjunc-
tion with statistical averaging that allows us to significantly extend the result of our
previous publication [1]. The method enables us to calculate the inclusive n-phonon
cross-section in closed form and allows us to identify the physical quantity responsible
for the cross-section enhancement. This quantity is the product of the damping width
of the single phonon resonance times the collision time evaluated at the grazing impact
parameter b,,.

It is convenient to introduce projection operators: P will stand for the entrance
channel, d; the 1 phonon channel, ¢; the corresponding fine structure subspaée ete.
We use multistep distorted wave picture. Thus for the excitation of e.g. 2 phonons,

one has



o® = (0, £V & v w£+),0>‘2 . (1)

In the above V' stands for the Coulomb interaction responsible for the excitation ,

£ stands for the appropriate distorted wave and G{™ is the Green’s operator in the

subspace d; + ¢;. This is given by
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where, gt = (B — H; — 'U-ijG;-'Uﬁ)_l, G = (E™) — Hy) " H; = hye + s, and
EW = E 4 je, with h.y representing the Hamiltonian of relative motion and h; the
nuclear Hamiltonian of ion ;.

The interaction V' connects the ground state to the one-phonon doorway state dy.It
can also connects a state in g;to a one-phonon Brink-Axel state. Thus the amplitude

that enters into the definition of the cross-section o?) separates into two pieces
- -1
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The fine structure states {q:} are quite complicated many particle-many hole config-
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urations. In this respect, a statistical treatment of the second, fluctuation, contribution
is called for. Thus we take the energy average of ¢ to represent the theoretical cross-
section to be compared to the data. When performing the energy average, the cross
term in Eq. (4) vanishes since it is linear in the assumed random coupling v,,4,. Thus
o@ is given, as usual, by the incoherent sum of two terms. The first term is the coherent
“harmonic” cross-section. Here the Green’s function (E — Hy, — vgq qufuqldl)"l is re-
placed by an average over the gy states (E — Hy, — m)_l. The correction to
this approximation involves fluctuations that corresponds to the process d; — ¢ — dy,
which is negligible. The average v4,q, Gy, Vg4, 1S as usual written as Ag, — ir—gk, which
defines the resonance shift Ay, and width I'y, respectively. These two quantities satisfy
a dispersion relation. The fluctuation contribution to =@ involves an average over the

q; states.



This average is easily performed if we recall that the ¢; Green’s function is a large
sum of random contributions. Thus, writing first
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where we have employed the scattering engenstates of A, { m§c+)>}, we can reduce

the average above into
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The average over {¢; } makes the double ¢; sum collapses into a single sum {(g; = ¢}).

Further, since there are many ¢, states, we replace the ¢; sum by an integral > =
. fn
[ deq,p(q,), where p(g,,) is the density of the g; states. The ¢, integral can be easily

-performed if we assume that the numerator is slowly varying. Only the two £, — poles

will contribute. Thus
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where we have introduced the spreading width of the doorway state dy, defined by

T3, = 21y (@] vido)[* (7)

and also introduced a representative excited intrinsic state |f) (24)), which acts as a
ground state for the Brink-Axel phonon excitation.
The energy correlation function |—T'oq, + % (g — Ek:)l'"l controllers the magnitude

of JJ(%). For g = ep, and T'gy, — 0, the contribution is much smaller than a,(f’) since

4



only one k integral survive in the former. On the other hand, if fgql is much larger than
the range of values of £ — &y which an relevant for the integral, then ‘55,21) would be —%11-
times a regular cross section. However, fgql is by definition <« Ifﬁ, and therefore this
last case does not occur. Therefore we may simply say that the correlation function
introduces a characteristic time, the “correlation” time, 7, which depends on the

bombarding energy. Accordi:ﬁgly we write for O'ﬂ the following

o) =T (B) (o7, 11V10 (e) ) (dhilgav10aP)| ®)

where the integrals [ (2‘17’: (2” ‘a:,g}*')> ’x,(c+)> <m,(c+)’ <:c§j) have been set equal to

unity since the distorted waves sts {z(+)} is complete.

Now since <£L‘f ,1{V]0 (edl)>, contains one Brink-Axel phonons in the final state,

“where as the corresponding amplitude in the harmonic cross-section, <:nf 2|V 1>

(-) 3
- . APy
contains 2, we can make the approximation - =
<:c ¢ ,2|V|1> V2!

Thus we find for crﬂ , the following reasonable approximate form
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- The second term above gradually becomes insignificant as the bombarding energy
increases.
The calculation of the cross-section for higher number of phonons follows a similar
procedure. Keeping track of the number of routes that can be followed to reach the
final “state”, we have for ¢®®

2
_ It 7, T . (B
o® =@ [ 14 g%() n },1' (_d;f.ﬁ(_)) _ (11)

The generalization to n-phonon is straightforward



7 = o™ 4 o) Z (= k)in (:) (Tay7e (E))*
— (J'(n) + Z G_(n) i . (12)

Note that o8 is the cross-section for the excitation of n-phonon states that proceeds
though n — 1,n — 2,..., phonon states which have finite life times (width). In this
respect we are generalizing the concept of harmonic cross-section. The consideration
of the width of the intermediate states and the fluctuations that result from the decay
of these states go hand in hand.

Our analytical formula for the average cross-section is quite reasonable when com-
pared to numerical solution of the evolution equation for the density matrix of the
system reported in ref. [3] if the correlation time is identified with the collision time
at the grazing impact parameter, 7, = b,/yv, Fig. 1. In view of this we are confident
in applying our theory to calculate other observables such as the width of the final
channel.

Taking a Breit-Wigner form for the spectrum of each of the component in (12) and

evaluating this at the peak, we can define an effective width as

o™ =X APk o

= : (13)
n'}:‘dl E=1 (ﬂ' - k) I-‘dl Pg}}
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(ﬂ) (n)
" + Xgo; (k) 1
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Eq. (14) for Fgf"} (E) shows that the effective width attains the harmonic value

nl'g, at high energies. At low bombarding energy the value can be signiﬁcantly smaller

E - (n) (k.‘)
than nl'y, owing to the Brink-Axel reduction factor | 1 + "‘T . This is

demonstrated in Fig. 2. The B-A mechanism thus supplies a correlation between the

experimental effective width and the corresponding cross-section. For two phonons we




Lt o
z;; = 5“'}:—'1“3‘}‘-"'1'5 This relation is independent of the system. In figure (3} we exhibit
,

the available data taken from ref. [6]. Although it is claimed that I'ps; = /2T, our

have

result does not exclude a more subtle connection between Iz and I';. This relation

may be used to define an effective phonon number ngf} = —o—— Which is
1+ & _k_n»-k"ﬂ (k)
=L e

' o(n)
smaller than n. This gives an immediate qualitative explanation for the enhancement

in the cross-section too. Since neff < n, the energy FE, ., < nE;. Accordingly, if

eff
one were to use anharmonic damped oscillator model with the following sequence of

2
energies, 0 — £ — 2E; — %El — 3F: — %Eh ..., one would obtain larger

cross-sections o®@; o®, .. when compared to o, ¢&7.... In a way, this supplies a

simple connection between the Brink-Axel model and the anharmonic models [7-9]. In
Fig. 4 we show the result of a calculation following this line as compared to the result
of ref. [3]. The agreement is spectacular.

In conclusion, the Brink-Axel mechanism supplies a natural explanation for the
cross-section enhancement and the width reduction of the multiphonon states. The

(n)

. . T
and the width reduction H’i-ii can be co-
1

g‘{'"')
gD

enhancement factor of the cross-section
related by the effective number of phonons. This concept should be quite useful in
future work on multiphonon physics. Further, our results here should also be relevant

to other multistep reaction phenomena such as preequilibrium processes [10].
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FIGURE CAPTIONS

1: The quantity %"2 as a function of the bombarding energy for the 2%Pb +

208Pb system.

2: The effective width I‘S;I}, Eq. (14) vs. the bombarding energy for the
208pb+-208Ph system.

3: The effective width reduction vs. the cross-section enhancement. The data

are from Ref. [6]. See text for details.

4: The multiphonon cross-section calculated for the damped anharmonic oscilla-
tor (long-dashed line). Also shown is the cross-section from Ref. [3] (solid line)
and the simple harmonic oscillator cross-section (small dashed line). The results

shown are for the system “*Pb+2%®Ph. See text for details.
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