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Abstract

We give a simple argument for the cancellation of the log(—%*) terms (k is
the gluon momentum) between the zero-temperature and the temperature-

dependent parts of the thermal self-energy.

There have been many studies of thermal Green functions in gauge field theories [1-7],
which show that their behavior at finite temperature is rather different from the one at zero
temperature. In particular, it was recently pointed out by Weldon [8] that in QED, the
logarithmic branch cut singularities cancel to one loop-order, in the thermal self-energy of
the electron.

The purpose of this note is to show that in the Yang-Mills theory, a somewhat similar
behavior occurs in the full gluon self-energy, which includes finite temperature effects. Of
course, in this theory, the massless gluons are quite modified by these effects and the gluon
propagator requires the Braaten-Pisarski resummation. Nevertheless, it is interesting to re-
mark that, even before such a procedure is carried out, the one-loop log(—k?) terms cancel
in the sum of the T' = 0 and the T' # 0 contributions to the gluon self-energy. As we shall
see, this happens because the log{—k?) terms appear in the thermal part of the self-energy
only in the combination log(—%*/T?). But one can show that the log(T?) contributions have

- the same structure as the ultraviolet divergent terms which occur at zero temperature [9].



Consequently, the log(—4?/T?) terms combine directly with the log(—42/u2) contributions
which occur at T' = 0 (u is the renormalization scale), so that the log(—k?) terms cancel
in a simple way in the thermal self-energy of the gluon. The branch cut in the log(—%?)
contribution at T' = 0 is associated with the imaginary part of the self-energy, which gives
the rate of decay of a time-like virtual gluon into two real gluons. Although this contri-
bution cancels at 7' # 0, there appear then additional, temperature-dependent logarithmic
branch points. These singularities indicate processes not available at zero temperature,
where particles decay or are created through scattering in the thermal bath.

'To one-loop order, the thermal self-energy of gluons generally depends on three structure

functions, IT*, I1Z and 1I€ [10]

105 (ko, B) = g°Cao® (1" PL, + IIE P, + n°pg), (1)

where the projection operators Pg;;L are transverse with respect to the external four-

momentum £ and satisfy: k'PJ = 0 and ¥'PL # 0 [6,7]. Furthermore, the projection
operator Pg, can be written in the plasma rest frame as follows [10]
PS = 1 [fff;i (Koky — Muok?) + p > V} . (2)
K | k|
Although IT¢ vanishes at 7' = 0 because of the Slavnov-Taylor identity, it is in general a
non-vanishing function of the temperature, so that k*1l,, # 0 for the exact self-energy.

We will discuss here, for definiteness, the retarded thermal self-energy of the gluon, which
is obtained by the analytic continuation kg — kg -+ i€.(A rather similar analysis can be made
in the case of time-ordered self-energy, following the approach presented in reference [11]).
In order to illustrate in a simple way the mechanism of the cancellation of the log(—k?)
contributions, let us first consider the special case of the Feynman gauge, where II¢ vanishes
even at finite temperature. Then, IIT and II* can be expressed in the plasma rest frame
in terms of linear combinations of 1L} and Tlp. After performing the integration over the
internal energies gy, I1% and Iy can be written as an integral over internal on-shell momenta,

g = (|41, §), as follows




L% = g*Ced® (T; — 10k210) (3)
and

M2 = 2g%C0%|E|? (I +41,) . (1)
- where (x is the cosine of the angle between £ and §).
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The two terms in the last square bracket are associated respectively with the T' = 0 and the

T # 0 contributions (N is the Bose-Einstein distribution).
In order to express the integrations in (5) in terms of known functions, it is convenient

to define the variable

Kz)=———7%—.
)= ©)

Then it is straightforward to show that
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The above form shows that the integrals appearing in the calculation of the gluon self-
energy can be naturally expressed in terms of the quantities K. (which are proportional to
the light-cone momenta kq & ks, if one chooses, for example, the third axis along E)

The |q] integration of T' = 0 part of Iy, gives
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Using the fact that ReK(z} > 0, the |} integration of the T # 0 part of Iy (where we may

set € = 0), yields the result [12]
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where the logarithm of the gamma function is analytic when K — 0. Then, the approxima-

tion

v () = T =0 ’ﬂ)(m ’;‘) (i

would simply lead, after performing the |7] integration in equation (7), to the first two
terms in the exact expression (10). As far as the log(K) contribution to the T' # 0 part
is concerned, one may effectively replace in Eq. (7), for small ig], N(|g|/T) by —1/2.
Consequently, this contribution will cancel the log( K) term associated with the T = 0 part
of Iy (this cancellation can also be explicitly verified from Eqs. (9) and (10)). |

By itself, the K-integration of the log(K/T) term in Eq. {10) gives the contribution

i K, K, K.
—— (KL + K_)lo +(Ky—K_)lo —2(K,—K )| =
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The emergence of the log(—k?) term in the special combination log(—k?/T?), is a direct
consequence of the fact that the integrand in Eq. (10) depends only on the dimensionless
ratio K/T. Similarly, the log(X/u) term in Eq. (9) yields a contribution which, apart
from sign, can be obtained from Eq. (12) by the replacement T' — u. Consequently, the
log(—k?) terms will cancel between the zero-temperature and the temperature-dependent
contributions, leaving a net factor proportional to log(u?/T?). After calculating the contri-
butions from the first and third terms in Eq. (10), we obtain the following result for the

temperature-dependent part of Iy:
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Next, consider the /; integral which can be written as:
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Note that the T' = 0 contribution, associated with the factor of 1 in the second square
bracket, would apparently lead to a quadratically divergent integral, which however vanishes
in the dimensional regularization scheme. On the other hand, this factor yields a leading

thermal contribution which is quadratic in the temperature

, .
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The |7]-integration of the second term in the second square bracket of Eq. (14) is identical
to the one which occurs in Iy, so that it gives analogous log(K'} contributions which cancel
between the 7" = 0 and thermal parts. As we have seen, only such contributions would give
rise, after the K-integration, to individual log(—k?) terms. It is possible to evaluate exactly
all other temperature-dependent contributions to I7, in terms of logarithmic functions and of
Riemann’s zeta functions with arguments (1+ K. /T'), which are analytic when K. — 0 [11].
Since the complete expression is rather involved, we indicate here, for simplicity, only the
logarithmic temperature-dependent contributions to f;:

1 2 TR ko + ||
log — _E'_ _ 0
() = 19272 log K 647T!E|3 log ko — |E|

(16)

In a general gauge, II%; and IIp will have a similar behavior (in particular, the leading 7%
contribution is gauge independent). In this case, the thermal contributions to II¢ = k,II5/ I%|
are non—vanishing, and can be written as {13]

1-¢ &B3q k2 1dk-q\k-gky— K
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where £ is the gauge parameter (£ = 1 in the Feynman gauge) and the derivative d/dgy acts
on all terms at its right. Performing the |g] integration, the terms involving log(K)} factors
turn out to be proportional to

K%k

Ky )
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However, the coefficient of the log(—%?) term, which is obtained after the K-integration is

performed, actually vanishes:
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Thus, the full self-energy of the gluon, which includes the thermal effects, does not contain
log(—k?) contributions. Essentially, these effects replace the zero-temperature log(—&2/u*)
term by a log(7?/u?) contribution. Although this correspondence seems plausible, it is
not so obvious. For instance_, it would not hold if the thermal contributions would involve
individual terms like log(k2/T2), log(Jk|?/k?), etc. To discard this possibility, it is necessary
to show that the log(—%?) and log(7?) contributions appear in the thermal part only in the
combination log(—k&?/T?). Furthermore, in order to explain the cancellation of the log(—4*)
terms between the zero-temperature and the temperature-dependent parts, one must also
argue [9] that the log(T") dependence of the self-energy is simply related to its ultraviolet
behavior at zero-temperature. Here, these properties of the thermal gluon self-energy have

been explicitly verified to one-loop order.

ACKNOWLEDGMENTS

We would like to thank CNPq (Brazil) for a grant and Prof. J. C. Taylor for a helpful

correspondence.




REFERENCES

1] H. A. Weldon, Phys. Rev. D26, 1394 (1982).

[2] E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569 (1990); B339, 310 (1990); Phys.
Rev. D45, 1827 (1992).

i3] J. Frenkel and J. C. Taylor, Nucl. Phys. B334, 199 (1990); B374, 156 (1992).

[4] R. Baier, G. Kunstatter, and D. Schiff, Phys. Rev. D45, 4381 (1992), ibid R. Kobes,
(. Kunstatter, and K. Mak, Phys. Rev. D45, 4632 (1992).

[5] J.-P. Blaizot and E. Iancu, Phys. Rev. D55, 973 (1997); 56, 7877 (1997).

[6] J. I. Kapusta, Finite Temperature Field Theory (Cambridge University Press, Cam-
bridge, England, 1989).

[7] M. L. Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England,
1996).

[8] H. A. Weldon, Phys. Rev. D59, 065002 (1999).
[9] F. T. Brandt and J. Frenkel, Phys. Rev. D55, 7808 (1997).
[10] H. A. Weldon, Annals Phys. 271, 141 (1999).
[11] A. P. de Almeida, J. Frenkel, and J. C. Taylor, Phys. Rev. D45, 2081 (1992).

[12] 1. S. Gradshteyn and M. Ryzhik, Tables of Integral Series and Products (Academic, New
York, 1980).

[13] F. T. Brandt and J. Frenkel, Phys. Rev. D56, 2453 (1997).



