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Abstract

Fundamental symmetry violation effects in various nuclear phenomena are
considered and their microscopic origins are discussed. We use the Uni-
fied Theory of Nuclle.a.r Reactions to investigate symmetry violation effects in
neutron scattering at low energies. Both Parity nonconservation and Time-
reversal symmetry breaking are considered. The observation of sign corre-
lations in the longitudinal asymmetry of polarized neutron scattering from
232Th at epithermal energies is analyzed. We provide quantitative explana-
.tion of the magnitude of PNC effects in nuclear compound states and give
relation between observable Time reversal violation effects and the magni-
tude of microscopic subnuclear TRSB forces. The PNC effects are considered
for neﬁtron—rich nuclei where the halo phenomenon seems to enhance it by an

order of magnitude when compared to stable nuclei.
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I. INTRODUCTION

The electron-neutrino, i.e. the leptonic, manifestations of the standard model have been
much studied. No deviation from theory has been found. The standard model also predicts
a weak interaction between nucleons and more generally between hyperons and nucleons.
It is the hadronic aspect of the standard model with which we shall be concerned in this
paper.

The observation of parity non conserving process is the tool with which one probes the
weak interaction between hadrons. Parity conservation has been directly studied in nucleon-
nucleon scattering. It has been studied by the observation of the mixing of a small magnetic
dipole component of the opposite parity. In an electromagnetic decay, say of the electric
dipole variety, the recipient level will have a parity opposite to the decaying level. The
small component can also be responsible for a: decay. However its radiation will be that of
a magnetic dipolé so that the limited gamma ray will be a coherent mixture of electric and
magnetic dipole radiation. This fact can be observed by determining the circular polarization
of the emitted radiation. If it exists, parity is not conserved. This effect is a consequence
of the interference between the electric and magnetic dipole components and is thus linear
in the weak interaction strength. From the experiment one can obtain the magnitude of
the matrix element of the weak interaction. At a pion Compton wavelength the ratio of the
weak to strong nucleon-nucleon interaction is of the order of 10~7. If the strong force has
the magnitude of 10 MeV, the weak force has the magnitude of 1 eV. This is an extremely
small force. Amplification is essential if it is to be brought within reach of observation [1].

Amplification is obtained if two levels of differing parity are approximately degenerate




for then the mixing of those two levels will be especially strong. Such near degeneracy can
be found in several nuclei and as a consequence the ratio of weak to stro.ng matrix elements
can be raised from 107 to roughly (it varies with nuclei) 10~*. This effect has been observed
in a wide variety of nuclei.

The recently discovered symmetry breaking exhibited in the formation of compound
- nuclear levels by epithermal neutrons provides new insights into the nature of the weak
interaction and the structure of the compound nucleus. When very slow neutrons bombard
a heavy target nucleus a compound nucleus with excitation energy of about 6-7 MeV is
formed. Generally a high density of resonances is seen. Because of the low neutron kinetic
energy only s and p waves are involved and the compound nuclear levels which are excited
are correspondingly constrained. We shall refer tlo these levels as s and p-levels. They have
opp:osite parity. Parity noncon-.ser.va;tion :occurs when, -because of the weak interactions, the
s r;nd p levels mix. Such mixing is .enhanced in the é;);npound nucleus because of the close
spacing of the s and p levels. An additional enhancement occurs if several levels belonging
to the same doorway states are involved.

Similar remarks may be made about time reversal. There will be levels of differing time
reversal properties, odd or even. Mixing these will lead to time reversal symmetry breaking.
Needless to say the weak f01-'ce stands on its own as an important vehicle with whose help
several properties of the strongly interacting system can be studied.

'The very close spacing of the s and p levels, together with the huge complexity of the
compound nuclear wave function introduce an enhancement factor that would amplify the
signature of parity or time reversal nonconservation. This makes the use of the compound

nucleus to study fundamental symmetry violation a natural undertaking.
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Further, owing to the complexity of the compound nuclear wave function, it is expected
that the measured quantity, the longitudinal asymmetry at a given resonance, to be random
in sign. The large value of the asymmetry and its randomness have been nicely verified
in a number of nuclei. Only one exception, #*2Th, has presented a challenge. Here the
randomness is not complete. Instead, the average va,l'qe of the asymmetry was found to be
large and positive. This has become known as the sign correlation problem. Several reviews
on parity violation in the compound nucleus have been published. [2-6]. A most recent review
by Mitchell, Bowman and Weidenmuller [5] concentrates on the statistical features of the
TRIPLE data.

In so far as parity nonconservation (PNC) is used to further test the compound nucleus
model, and more importantly, to set measurement standards for the future investigation of
time reversal symmetry breaking (TRSB) tests, it is important to have at hand a unified
reaction theory whic-h can address the statistical and nonstatistical aspects of symmetry
violation. The purpose of this paper is to supply this theory.

Of course, besides PNC and TRSB, there is another discrete symmetry that is also
broken in the nucleus, namely isospin. The force that is responsible for the breakdown
in the EM one, several order of magnitude larger than the weak force which is our main
interest. Though some of the reaction theory techniques used here are similar to the one
developed in this review, we shall not dwell upon this issue in the following.

The paper is organized as follows: In Section II, a summary of the experimental results
of the TRIPLE group is given. In Section III, a full development of the reaction theory
needed to study symmetry violation is presented. Here, the hierarchy of complexities (optical

potential, 2 particle-1 hole doorways, 3 particle-2 hole hallways, etc.} is exhibited in the




formulation. In Section IV the data on PNC in the compound nucleus are analyzed using
the result of Section III. The sign correlation effect in 232Th is traced to the 2p-1h doorway
states which are taken to be responsible for the PNC. This -is discussed in Section V. The
rms value of weak matrix element exctracted from the data is also discussed in Section V. In
Section VI the optical model description of PNC is developed and applied to the TRIPLE
data. In Section VII the strength of the PNC matrix element is calculated for neutron-rich
(exotic) nuclei_, and compared with that of stable nuclei. In Section VIII, the TRSB is
considered both in the isolated resonance and the overlapping resonances, statistical, cases.

Finally, in Section IX, concluding remarks are made.
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II. SUMMARY OF THE EXPERIMENTAL RESULTS FROM THE

TRIPLE COLLABORATION

In this section we give a brief review of the experimental result of the TRIPLE collabo-
ration [7-16). The undertaking of the TRIPLE group followed the earlier discovery [17] at
Dubna of the very large parity violation in the scattering of slow polarized neutrons from
heavy target nuclei.

Measurement of the PNC longitudinal asymmetries were done for the following targets:
WTH108 Ag 118Cq, M5In, 127] 232Th and 8U. For the epithermal energies considered here the
dominant partial wave is [ = 0 (s-wave). Several p-wave resonances are populated as well
with much smaller cross section. It is the mixing of these p — waves with nearby s-waves
owing to PNC that is extracted from the longitudinal asymmetry

oot

=25 (2.1)

F;

t

+ a,g")
where the index i refers to the p-wave resonance being probed and o*(~) refers to the
total p-wave cross-section with positive (negative) helicities. If one uses the usual sum-
over-resonances form for the scattering amplitude and with the use of the optical theorem,
one may write for B the following expression, assuming the p-resonance is mixed with one

s-resonance

(i|Vencli) [T, Vii [T,
P=2—t, /= = 2 j 2 2.2
E s; T EPi Iy, AE?'J' FP:‘ ( )

where 'y, and I'; are the neutron decay amplitudes of p — wave and s — wave resonances

respectively. Since the compound states |7) and |f) are very complicated, one expects the



matrix element (¢|Vpyclj) to involve a much reduced overlap and then a smaller value when
compared to single particle matrix element. The reduction factor is roughly /D where D is
the average spacing between resonances [17],[18], see also [3) for review. On the other hand,
the energy difference E,; — E,,,'becomes smaller as the excitation energy is increased and it
goes as D. Writing B, — E, . ~ A D, and V}; = (i|Vpyclj) = VD (Vene), where (Venc)
designates average single particle value of the PNC matrix element, we find [17D]

1 (Vene) [T,

P, = gl NC)
7o a \T,

(2.3)

RY:

Further, expressing I';; and I',, in terms of their respective reduced widths, Is, =7 50
02
Loi =7y, (kR)z, where the factor (kR)® accounts for the effect of the ¢ = 1 centrifugal

barrier, we have finally

QM%J' ‘ (2.4)
A [+}
‘Ypi

: 111

7= |75 [
The first factor in Eq. (2.4) is the dynamical enhancement factor which can be as large as
10°. The second factor is roughly 10° for epithermal neutrons scattered off heavy targets.
The first factor grows with excitation energy while the second decreases. Further, there is an
important oscillatory behavior of the reduced resonance amplitudes with the mass number.

2

This is exemplified by the strength unction, (%) as a function of A4, shown in Fig. (1) for

s—and p— waves. The factor ;—L in Eq. (2.4) is equal to \/§:1 and accordingly, one would
pi

expect a good target choice would be such as to have a minimum in $; and a maximum

in S, (A ~160). However, a minimum in p-wave scattering implies a smaller cross-section

thus making the measurement more difficult. Thus a more judicious choice has be made

such that S is large enough to make the p-wave cross-section easily measurable and yet

maintaining ,/5* as large as possible.



Having dwelled upon the physical parameters in the longitudinal asymmetry which would
help make the optimal choice of néutron energy and target mass we turn now to the
experimental results, obtained using an experimental set up as shown in Fig.2 (for details
see, e.g., Ref.[5]). A typical measurement of the helicity dependence of the neutron cross
section at a p-resonance is shown in Fig.3 for 238U,

The results for P; are shown in Table I, for the targets indicated. It has been shown by
the TRIPLE group [7-16] that the P; data for all targets except 2%2Th are consistent with an
‘average value of F; equal to zero, in accordance with the statistical nature of the compound
nucleus. As an exarﬁple we show in Fig.4 P, vs. E, for n+28U for 0 < E,, < 3eV.

The analyses were performed using a generalized form Eq. (2),

2 [T
P = — /2 V= Vi 2.5
; g:(Ej_Ei Fi) y =D AV, (2.5)

Thus since V;, = 0, P = 0. This is confirmed for 107199 Ag 13Cd, "5In, '*'I-and %*U.

The rms value of V;,, defined by

M= (V) (2.6)
2
4 = QW%

was found to be M =~ 1meV, which corresponds to a PNC spreading width Tpye =
~ of the order of 1.35 x10~7eV. Table I summarizes the results f01l' several target.
The **Th case warrants special care. In Figure 5 we show the p-wave asymmetries
for n+%2Th at 0 < E, < 300eV. Here the average value of P; is large and positive, in
the resonance region, P; = 0.08. The contribution of the background here is almost three
orders of magnitude smaller [8], consistent with zero value for {Ponres)- Statistical analysis
done in this case yielded value for the rms value of the PNC matrix element M, and the

corresponding PNC spreading width I'p v which is of the same order of magnitude as in the
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other cases that have been already mentioned. More recent data on this system indicated
“that (P) dips into negative values at E, > eV [19]. So far only one point was measured in
this region. It would be of great importance to extend the rﬁeasurernent to higher energies
to verify the average trend of P.

In order to understand the origin of the non-zero value of {P;) for Thorium, we shall apply
-in the following sections the hierarchy-of-complexity description of section III. We shall show
that the origin of the non-statistical behavior in P; can be traced to simple p-wave 2p-1h’
doorway states which are parity mixed with nearby s-wave 2p-1h doorways.

Further, we shall demonstrate that a more appropriate quantity to analize is the cross-
section difference, Ag; = of” -~ crf_) ~ 2¢;P;. The reason being that the average (Ag;) can
be directly compared to optical model calculation. Further, in cases where the ¢’s are small
and difficult to measure, as is the case at higher neutron energies, one would be bound to
be content with the analysis of Ag. |

To conclude, the experimental findings of the TRIPLE Collaboration can be summarized
as follows

1. The longitudinal asymmetries, Py, for p-wave resonance scattering of epithermal
neutrons from several targets are large.

2. The average longitudiﬁal asymmetry, (P), is roughly zero for all cases studied except
in *2Th where it is found to be positive and significant {~ 0.08).

3. The average longitudinal asymmetries of all cases studied in the off-resonance region
are practically zero.

4. The PNC spreading width is found to be weakly dependent on the mass number of

the compound nucleus involved (I'* ~ A'®) with average value of ~ 107 7eV [20].
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III. SYMMETRY VIOLATION WITHIN REACTION THEORY

At very low energies one expects the population of widely spaced, isolated, resonances
in the compound nucleus.: To describe the scattering problem, we use the unified theory
of nuclear reactions of Feshbach [21] together with the optical background representation
(OBR) method developed by Kawai, Kerman and McVoy [22]. We also allow for the existence
of a single doorway to test its influence. Further, we allow the Hamiltonian of the system
to be a general one, containing both PNC and TRSB terms.

The many-body Schrdinger equation describing the n 4+ Target system can be written

as usual, within the Feshbach formalism:
(E— PHP)PY = PHQQV
(E-QHQ)QV = PHPPYV, (3.1)
where P projects onto the elastic channel, as well as the 2p-1h doorway state, and Q onto
the compound states. We consider all the subspace Hamiltonians to contain a symmetry

conserving part H,, and symmetry violating part, H,. The second equation in {3.1) can be

formally solved for Q¥, and when the solution is inserted into Eq.(3.1), we obtain:

(E—~PHP - PHQGoQHP)PY =0

1
- L 3.2
Go= 5080 (3.2)
We now perform the OBR on Eq.(3.2). We do this by writing:
GQ = GQ + (GQ - GQ) (33)

where Gg is the energy-averaged compound propagator which is given by
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& - 1
T E-QHQTil/2

(3.4)

with I denoting the energy interval that contains many compound resonances but still smaller

than the width of the doorway.

Equation (3.2) can be written as :

Go = Go + G*(i1/2)GoGY’ (3.5)

~ and thus we can write formally:

(E- PHP - PHQG’QQHP) P

-PHQG”’*(’;) GQ(Z) GY’QHP PU

= PVQGoQVP PY;

U2 i 1/2
PVQ = PHQGY ( s ) (3.6)
We then obtain the desired solution:
PO =PV + GoptPVQ ! QVP PY
E-QHQ - QVPGONPVQ
=Py + py/! (3.7)

The energy average of the second term on the RHS of Eq. (3.7) is identically zero by

construction. The solution P\IJ is the optical model wave function and GOpt is:
GOpt =(E - PHP —~ PHQGQHP + iz)™! (3.8)

The S-matrix element for the transition a — & is directly obtained from the asymptotic

form of P¥:

Sab = Sap — i z ;@_'”b (3.9)
Cq
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where S, is the optical + doorway S-matrix while the +'s are given by:

Yoo = V2 (3| Hop|¥5H) (3.10)
Yoo = V21 (¥ | Hpola) (3.11)

In the above equations |¥{*)) is the optical + doorway solution (P¥(+)) and the complex

energles, € and vectors |g) and (g] are the solutions of the equations:

(QHQ + QVPGELPVQ)lg) = &,lq) (3.12)
(QHQ™ + (QVPGSLPVQ)*)|g) = &2l) (3.13)

We set ¢, = E, — i, /2.

Equé,tion (3.9) is the starting point for discussing symmetry violation in nuclei. For PNC,
4 = . However, v depends on the helicity of the impinging neutron. Here one attaches to v
the helicity label, ¥*). For TRSB, ¥ # < and one has to define and calculate the observables
sensitive to the difference {5 — ). This is left out to Section VIIL

In discussing Eq.(3.9) one has assumed that all the compound nucleus states can be
treated on the same footing. However, if simple 2p — 1A doorway states are present and
should be considered explicitly, the formalism above can be easily generalized. For this
purpose a further splitting of the projection operator Q is required Q@ = D + ¢, where D
is the doorway projectors. If P is assumed to be coupled to the genuine compound states
projected off by ¢, only through D, one can obtain easily the necessary modifications in the
physical observables [21,23]. Depending on convenience, one may take D to be part of a
new P projector, namely P’ = P+ D and g.

14




Assuming that the doorway state is contained in P/, allows the Yqa S to have the following

structure:

Yea = 'YqDCDa (3.14)

where the coefficients Cp, are random in sign and average t0o zero over many resonances.
Further, the same doorway state would cause correlation among channels to which it is cou-
pled to. A full account of the formalism with ideas of intermediate structure and doorways
has been given long time ago [24] and has been reviewed recently by Feshbach [21}. Thus we
shall not repeat this formalism here, but point out in the next section the qualitative effect
the doorway state has on the scattering observables.

In the following, we discuss the application of the reaction theory to PNC and TRSB.
For this purpose, it is useful to write the scattering amplitude that is obtained from Sg,

Eq.(3.3), for a given partial wave

:."'qa'Yqb 315

The total cross-section, a Vs directly obtained from f,, through the optical theorem. For

very low energy neutrons, [ = 0 dominates, and we can write

(@) _ E ' _ 4 . q7q074‘0 3.16
Op = kImfaa-— Imfaa 1\22 E E‘)2+F2/4 ( . )
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IV. PARITY NONCONSERVATION (PNC) IN THE COMPOUND NUCLEUS

From the previous section, The cross-section for positive helicity, {*), and negative
helicity, o(~), for p-wave resonances can be generally written as

o) = 2 Im£2)(0) (41)

where f&) is given by

1 ,Y(:t 7,5*’62"“‘*)

(4.2)
2kE ~E, +il,/2

f_;gi) = féi)

2 :
Above, £ is the factor 21 + 1 for p-waves, 7! = v5 + 4% T, = ('yg) with S(W) standing

for the strong (weak) resonance amplitude. Since V5 > vy, we have

52 W.$
fo — L (%) £2%"% (4.3)
P T OkE-E,+il,/2

Thus, at a p-wave resonance, E = E,, and taking 75¥" to be real,

2 Ww.5
)~ 5 AT (T3 =275
P - Tp k2 I‘ *

r

(4.4)

Eq.(4.4) is the basic formula used to analize PNC in the compound nucleus. If we ignore
the contribution of (&;(f} - 5'}3")) 8] then we get

(+) — (=) w

oy ol

P (+) (-) 27?5 )
Op "+ 0p Tp

for each resonance.
Using first order perturbation theory for the treatment of the PNC interaction, we use

the following form for the p-state wave functicn

Py2) = |p1se) "'Z ,1/2 (|31/2IVPNC|P1/2> (4.6)
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The state |p} ,) is what we called |¢) in Eq.(1.15). With (4.6), we have for fy;;‘:/z, the following
(see Eq.(3.11) for the definition of 4, which is equal to 4,, when time reversal symmetry

is not violated)

1

'Y;T/z =ver Z(wé_”HmrSlﬂ)Es _E, {81/2|Venclpry2) = (4.7)
1
— E PNC
- 23:7*112“_“33 —5 Ve (4.8)

Notice that |si/) and |p;/,) are complicated compound nucleus states. We shall use the
labels v and p to designate |s1/2) and |p1/2}, respectively.

With (4.8), we obtain the well-known formula for P,

Pi=2) f'_l_—El‘z'Vﬂ ¢ (49)
v v p’Ty
or
P =9 1 Ff v PNC
=0T (7) w 10

wherg D,.=E,~ E, and T, is the neutron width of level g.

The statistical theory of the compound nucleus tells us that the I';’'s obey the Porter-
Thomas distribution, the energy spacing of levels with mixed parities the Poisson distribu-
tion and the weak matrix element V7Y is Gaussian distributed with a zero mean value,
(Vf NCY = 0. Accordingly, (B,) = 0. The average value of Pﬁ can bhe related to the second

moment of the V/N¢ distribution, M? = ((I/L""UNC)V)

1 /TANY? 1 T\ V2
P2 = tv o PNCy-PNC
E =T (E) 5o(F) W

v pw b

=2 fo'—;,y G‘;)W

u

= AZM? | (4.11)




The quantity Aﬁ can be calculated for each p;/» resonance. From the experimental data
one determines the ensemble average of P? and thus from Eq.(4.11), the important quantity
M? is found. This quantity is directly related to the average weak spreading width of a

given p-wave nuclear level *

2m [ ([ VENC )2
D,

M= ) (4.12)

2
It~ 271'—1%—— = 2rM?%p (4.13)

with p being the density of states of the sy/5 levels. Since M goes roughly as pl—l,z, we expect
I'* to be weakly dependent on excitation energy and as a consequence on the mass number
of the nucleus [20a]. The results of the TRIPLE data [7-16] summarized in Section II seems
to bear out all of the above properties of the PNC in the compound nucleus except for 22Th,

where (P,) was found to be large and positive ({P,) ~ 0.08 £ 0.06 ).

18



V. THE SIGN CORRELATION PROBLEM AND THE ROLE OF 2P-1H

DOORWAY STATES

We discuss in what follows a possible cause of the large and positive value of (P) in
232Th. Several theories have .been proposed in the recent literature. These range from
distant doorways [25], to parity doublets owing to octupole deformation [26,27]). A very
good account of the theoretical literature can be found in Ref.[28]. In the following we
describe the model of Ref.[29].

A very natural mechanism that could account for this sign correlation is to assume that
the compound nuclear process occurs through a single dominantly p-wave local doorway
which contains a small parity violation. For simplicity we start with this extreme hypothesis.
Below we will consider the more general case including more doorways. This doorway
is relatively simple but statistical combination of two particle-one hole (2p-1h) states in
233Th. In passing we note that it is the dominance of local doorways which may give rise to
intermediate structure in the energy dependence of nuclear cross-sections and their statistical
nature which gives rise to fluctuations in strength functions from nucleus to nucleus over
and above the general optical model trend [23.24]. We stress that our local doorway states
[29] are statistical in nature, in contrast to the collective 0~ doorway (giant monopole)
states considered by Auerbach and others [25] as responsible for the sign correlation. We
assume that parity violation occurs through the coupling of our p-wave doorway to an s-wave

doorway, located nearby. Then:

e = ConYDyp, Vg = CopVDs (5.1)

where Cyp are taken to be random. Taking D to be in the vicinity of the compound

19




resonances in question, we obtain with the aid of perturbation theory:

,},w
P = 27—‘08- (5.2)
Dp

which represents the average value of P, being independent of q. In Eq. (5.2) M is a
characteristic weak matrix element between p- and s-doorways and AF is the corresponding

characteristic energy distance between these doorway states given by, e.g.,

r r Ty +py)2]?
a2 21 (B~ ) (5012 1 [ -+ E25E0] 7

In order to estimate the size of (5.2) we take the smooth energy dependence out of the
- partial width amplitude in the usual fashion, i.e. we define (1/kR)(~y(°)/'yg];), where {0 are

the reduced widths. Thus:

(py = oM 20y 1
AE O kR

which will have a definite si.gn for a given nucleus é,s seen in the data.

Properties of simple two particle-one hole states can be deduced from the exiton model,
usually employved in pre-equilibrium studies [30]. The density of 2p-1h doorway states cou-
pled to total angular momentum J at an excitation energy E* in the compound nucleus is
given by [31]

g E*? (2] + 1)exp[—(j + 1/2)/307

4 (27m)1/203 (5:3)

pao—10(E", J) =

where g is the average spacing of single particle levels, and o is the spin cut-off parameter.
For the deformed nucleus **Th, g ~ 103/eV !, ¢ ~ 4.0, and taking E* = 6Mel", J = 1/2,
we find pap_y = 34MeV ', Thus the average spacing, Daoy_1n = (pap—1n)”! =~ 30keV. For
a simple local doorway to dominate the 2p-1h doorways must not be overiapping. Thus we
take I' @ D = 30keV. Then AE of Eq. (5.4) becomes roughly AE ~ /3T'p ~ 50keV/.
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Taking for M¥ ~ 1.0eV [1] and kR =~ 1073 for E, ~ leV, we find that the data
(< P >=0.08) require:

0
2,
| (O,I

which seems to contradict the fact that p-waves are resonant while s-waves are off resonance.
This requires an enhancement which may come about if the particular statistical doorway
involved in M™ couples strongly to s and less so to p or if the particular matrix element
M is larger than average. This will be a statistical phenomenon associated with random
properties of the local doorways.

The fluctuation part of P can also be analyzed within the local doorway model. If we

consider nearby local doorways_. which foir simplicity we collectively call D', then:
Yo = C4pVDp + C'q_D"YD'Ip; | Ye = Cop¥ps + Con Y (5.6)
where:
Cop < Copr (5.7)

on average. Then:

R At ,
P~ bs y Con {”ﬂjs - ’”’”] (5.8)
7Dp CqD TDs ’YDP

The variance of P is then given by

v = /(P2 qD’ 2y 10 _ 202, (5.9)

’YD.-; ’YDP

From Ref. [2] we find v to be about unity. Because of (5.7), we find

10 - 1221 > g (5:10)
YDs 7Dp
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which is entirely reasonable. Thus the fine structure analysis furnishes us with constraining
relations involving the weak and strong decay amplitudes of D and D'.

In the above discussion we presented qualitative considerations concerning the role of the
simple 2p — 1h doorway statés in the sign correlations seen in the longitudinal asymmetry
of epithermal neutrons scattered from **2Th. We emphasised the statistical nature of these
simple nuclear states. Further, a typical nucleus which does not show the sign correlation
phenomenon, and belong to the same actinide family, 2*8U, is used to elucidate better the
phenomenon. An important physical quantity that enters in the analysis is the density of
states of these doorways. In the following we present a detailed quantitative calculation of
p2p—14 in both 23Th and U, using a deformed mean field description of these nuclei. The
details of the calcula.tion.c.;an‘be found in a recent preprint [32]. The method used is the
microscopic combinatorial approach of [33]. The numerical results for Pap—1n are compared
with analytical, equi.-distant model, formula of Ericson [31].Effects of deformation on the
le§e1 density has been first studied by Bjornholm, Bohr and Mottelson [34] within the Bethe-
Fermi theory. Here we have extended their studies to the calculations of the density of states
within the exiton model.

In Ref.[32], a microscopic combinatorial approach is used to calculate the level densities
for a given number of excitons (# of excitons = # of particles + # of holes) using a
deformed Saxon-Wood shell model. The details of this model are given in Ref.[33]. A part
of the residual interaction, namely pairing, was taken into account by applving the BCS
theory to each configuration. Both the spin and parity distributions were obtained and the
effect of deformations is assessed. Quadrupole and octupole deformations are taken into

account.




The result for pop..1s for ?*Th and 2°U are shown in Fig.(6) for the j = 1/2 positive
parity levels. The density of negative parity j = 1/2 states is in principle the same (see,
however, below). In the same figure the results obtained- from the Ericson formula for
pap—1n of Eq.(5.5) is also shown for comparison. It is clear from the figure that Eq.(5.5)
underestimates pgp_1 at E* =~ 6.0 MeV in 2*3Th and 23U (corresponding to E, ~ 1 eV on
23Th and 2**U) by a factor of 3. This stems not so much from the equidistant single particle
level approximation of the Ericson formula but rather almost exclusively from deformation
[32]. This is clearly seen when a spherical S-W potential is used, Fig.(7). With the above,
the average spacing, D), at the above excitation energy is roughly the same for both 233Th
and U and is ébout D ~ 10 keV. This is, as expected, three times smaller than the value
employed in Ref.[29] and used in the previous section.

An interesting feature of the result concerns the number of positive and negative parity

states for a given value of j. In figure (8) we show the fraction of positive parity

.o A
P(F)H (=)
levels (with respect to all levels) for j = 1/2 in 2*U (a) and ***Th (b) vs. excitation energy.
The sharp, albeit small magnitude, oscillation around the value 0.5 is very clear. Clearly

the fraction of negative parity levels , is given by the value in figure (8) subtracted

(=)
P
from unity. At E* ~ 6 MeV, the negative parity fraction for 2**U is ~ 0.49, while it is 0.51
in 2°Th. This translates into DS}, (*83Th) ~ 1lkeV and D), (**U) ~ 13keV. This
fact encouraged several authors [26,27] to suggest that the pear-like shape associated with
octupole deformation results in parity doublets which when taken explicitly into account
can, in principle, lead to positive longitudinal asymmetry. This suggestion, however, was

shown to be inconsistent with actual doublet spacings seen in 2*Th {35]. Further, and more

importantly, recent measurement on 28U [36] has unambiguously demonstrated that this
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nucleus also has significant octupole deformation. Thus from the collective point of view
2337Th and #°U are very similar.

The presence of a dominant local doorway that gives rise to a large value of < P >
is certainly possible in some nuclei. The probability P that |7(°’/7§§2, is, say f, can be
calculated as follows. Since the local doorways are statistical in nature, the v}, and 7}(9; are
the Gaussian distributed with about the same width. We thus have:

p (122 - lymd:r/d e (12 g = 22
i v s (12— g) = 2L (5.11)

—00

Thus, within our model, the probability for the occurrence of the phenomenon of large parity
violation with sign correlation goes as (1+ f2)~!, which is small for f ~ 4 which we found in
.n+232Th. Therefore such a phenomenon is not a global one that is exhibited-by nuclei over
- the periodic table. It happens in 22Th due to a statistical fluctuation among the properties
of local doorways. In fact,‘in all other systems studied by the TRIPLE Group the average
value of P was found to be zero and its magnitude smaller so that f ~ 1. This implies that
a local dominant 2p-1h doorway state, seemingly so conspicuous in 23Th, does not occur
in the other nuclei studied. With no single dominant doorway present, e.g. if two closely
spaced doorways are relevant in the energy region of interest, the sign correlation disappears.

Our analysis points to the conclusion that the phenomenon of "sign correlation” is purely
a conventional nuclear structure problem, and it is not connected to "exotics”. Further, the
phenomenon occurs in Th by statistical accident. Before ending we mention that in Th
the single particle p-wave is resonant whereas the s-wave is not. Even so, f ~ \7(0} /7 |
was found to be a.bou‘g 4. It seems to us that a more favorable case would be to have the

p-wave off-resonance and the s-wave on (A ~ 170). This would give rise to a larger f, with
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higher probability. Of course, this will be experimentally more difficult because the p-wave

resonances in this region may be too narrow.
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VI. OPTICAL MODEL DESCRIPTION OF PNC

Our doorway picture emphasizes the role of a local 2p-1h doorway state which is re-
sponsible for the weak cou;;lling between the p and s waves. In #*2Th, this doorway state is
reasonably well separated from other doorways, whereas in, e.g., 228U, where no sign corre-
lation is seen, there are several 2p-1h doorways present in the energy range of interest. In
the following we address another question also relevant to the parity non-conserving (PNC)
neutron reaction, namely to what -extent is the total cross-section difference (Ac,) accounted
for by an optical model which contains an appropriate one-body PNC. The quantity (Ac,)
is just o,g"") - c:r(g‘) where o, is the cross-section at the gth p-resonance and the superscripts

+(—) refer to positive (negative ) helicity of neutrons.

Before we start our discussion of the optical model analysis, we give first a derivation of

the symmetry violating optical potential, based on the theoretical discussion presented in
Section III.
The optical model operator can be read off from Eq. (3.6), if we write H = Hy+ V', with
Hy being diagonal in channel space and V is the interaction:
't = PVQGoQVP + PVP
Go=(F—-QHQ+iI)™! (6.1)
Writing V' as a symmetry conserving piece V, plus a symmetry violating piece 1,,, we may
write, to first order in V,:
Vopt = PV,P + PV,P + PV,QGLQV,P + P,QGLQV,.P + PV,QG5QV, P
+PV,QGLQV,QGEQV,P (6.2)
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Thus the symmetry violating part of V,, is:
Veptw = PV.P + PV,QGHQV, P + PV,QGLQV, P

= PV,P + PV,”(E)P (6.3)

where we have denoted by V,”(E) the dispersive component of the symmetry violating part

of the optical potential. From the general properties of Q&, we may write a dispersion relation

for V2(E):
P ImVP(2)
D = v\ 6.4
ReVP(E) W/ iz, (6.4)

where P stands for the principal value.
So far in the application to-data analysis of PNC, the dispersion component has been

dropped. As for PV, P, it is.common to use an expression obtained by Michel [37}:
- PV,P ={7-p,0(r)} (6.5)

Where the symmetrical form insures Hermiticity and the real nature of ¥, guarantees even-
ness under time reversal.

The calculation described below use the form (6.5). It would be interesting to assess
the importance of the dispersion part of the PNC interaction PV.?(E)P. This we leave
for a future work. The optical model approach to the longitudinal asymmetry has been
considered in [38-41].

The interaction of a neutron with a spin zero target of mass number A is taken to be
the sum of complex strong (parity conserving, PC) and weak (parity non-conserving, PNC)

potentials.

V= Vs(r)) + VPNC (66)

27




Vs(r) = U(r) + Vso(r)i - § (6.7)

Vene = PV,P =G - pv(r) +v(r)d - ¢ (6.8)

The scattering amplitude which describes the scattering of neutrons from a spin zero

target nucleus is generally given by [40]

F(6) = Fs(0) + Fpnc(8)

Fs(6) = f(8) +ic - (k x &) .9(6) (6.9)
and
Fpno(9) = ~&- (k+ f;') h(9) (6.10)

Partial wave expansion yields

A

FOh ) = %Z [0+ D=2 41772 Py - )
{

n oA 1 . . o
g(k . k.r) — EZ [tg_l+1/2 N t{_!—-lﬂ] P[’(A . kf) (6.11)
!
and
sa 1 1 27 +1 . Y s a,
h(k-k') = El—i—ﬁ-f»' > '72 b1, [Pt(k k) + Pk k )] - (6.12)

~ where {; are the elements of the T-matrix which is taken to be of the general form

f t]
b Ll Li+1 (6.13)

His1 prm
The diagonal terms t-,’;, and t{+1’,+1 enter in the definition of Fs while t{,,+1 defines the PNC

‘amplitude, Fpyc(6), Eq.(6.10).
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For the purpose of evaluating the observables it is useful to remind the reader the relation

between the t,’ ¢’'s and the elements of the S-matrix
Sf;p = dyp + 2it{‘p (6.14)

Given the amplitude F'(¢) in spin-space, one may immediately calculate all the spin observ-
ables. To do this, we remind that the initial density matrix for an arbitrary polarized beam

of spin 1/2 particles incident on a spin-0 target is:

Pi =

[ R

(1+7-B), | (6.15)

where P (|B| < 1) is the polarization of the incident beam. The density matrix of the

scattered beam can then be written in terms of F(0) as:
psc = Fp F¥. (6.16)

Of course, the total cross-section, or, can be immediately obtained from the optical model

theorem, vis

or = TImF(O) (6.17)

which can be written as a sum of the total elastic (shape elastic), og and absorption (com-

pound) , 455, cross-sections.

We find

T 27+1
aE=§Z_ [ISf’z—1|2+|3111+11 + 18Tl + 1S 1+1ﬂ -
J

2
L T 2i+1 . , ,
G kg 3 =52Re (St (ST— 1+ Sty +1)] (6.18)
J
27+1 . .
Taps = 1;5 Z [1 - le,1|2 +1- ISI}+1.£+1|2] +

J

LA 2_7 +1 . .

i
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2r 27 +1 ; ;
O'T — O'E + JABS = 7&5 Z """72_ [1 — RGSET'I_,_I + 1 - ReS{+1,l+1] +
2

L 27 2i+1 ,
to- kﬁ ; 5 2R (StJ,l+1) (6.20)
The Spiﬂ-averaged total cross-section is
- 2r 27 +1 . :
J

Finally, the spin average, optical, longitudinal asymmetry coefficient, P, defined as

0'+"“‘5'_

2 e 6.22
is found to be
s (9 ]
Popt = 12 E_;r(2.? + l)ReSl,H-l (623)

TABS

-Secondly, we can evaluate the final spin polarization and rotation. The details are given in

Ref.[42].
~ From Eq.(5) we can calculate the polarized cross-sections (fj%), as:
(j—;) = 1 (pyc) = &‘% (1+2(9)) - B) + 4(1 + cos) Re(gh*) (k- — &) - B, (6.24)
P,
where we have introduced the unpolarized cross-section:
j—;’z— = |f1* + sin®8|g|> + 2(1 + cosd)|h|?, (6.25)

and the polarization vector P(f):

P(6) = 2[(k x k) Im(fg") - (k+ &) Re(fn™) - (k= &) (1+ cost) Re( )/ (j—g) (6.26)

The final polarization of the beam is calculated from:
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15'(9) — tr (&psc)

tr (Psc)
= 5 = = [7(7 B+ (7 B)~2(F7) B]
_ P(@)+ P, - P
Py(0) = 0+ ?.( ) +{ i’ } (6.27)
14 P(8) - B +2(7 x 7) - B/ (%)
7= ng+i(k+k)h (6.28)
In Eq.(6.28) we have introduced the spin rotation vector @(8)) given by:

36) = 2 [(A X k’) Re(fg*);— (k + k’) Im(fh*)] (6.29)

P
We find from Egs.(8),(10) and (11}), to leading order in PNC effect that all the PNC

spin observables are along the direction of k + &, i.e., in the scattering plane in contrast ot

~

the PC pieces which are in the direction perpendicular to that plane (along # = k x k)

2(1 + cosf) Re( fh*)
g‘% .

Gpne - = 2(1+ cosfd)fm(fh*) (6.30)

aa

Prpne k=~

Whereas the parity conserving counterparts are given, from Eqs.(10)) and (11}, by

Ppc'ﬁ=2 ] 9#
aQ

Qpc - f = 2sin (df 7) | . (6.31)
da

Ate sufficiently high energies, the parity conserving amplitudes, f(6) and g(#) are given by

A(1/2 1),

IR XY IR
g(0) = 5 {517 = 5 ) (6-32)

f(8) =

while the PNC amplitude, h(6)) is given by [42]

1
h(6) = 5sio’s  (6.33)
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where sy/* refers to s{ and the non-diagonal amplitude 5.}’ is proportional to the PNC

interaction.
Using the above expressions, we find

2Resi{;2
(1 —{so0|?) + (1 — |s12{?)
12
Re [(s1? — 1) s

Popt =

Pene -k = —2(1 + cosb)

|sg* — 12
G- =2 oy AT
fre = el 247~ ()]
G - it = 25ind s (" ;;2 Esi[; —i) ] (6.34)

* In the following we calculate Py, Ppc, Qpc, Peyc and Qpye for n+232Th in energy

region 107°MeV, using the Madland-Young [43] (MY) strong optical potential given by

U(r)) = =Vofelr) — iWo f1(r),

1 (1 (52

V, = 500.378 — 27.0073 (N —Z

) — 0.354E o (MeV)

R, = 126443 fm, a, =0.612fm,
N-Z

Wo = 9.265 — 12.666 ( ) — 0.232E, + 0.003318E2,,(MeV)

R; = 1.256A4Y3 ay = 0.553 + 0.0144E 4 (MeV)

h
myc?

1
Vsolr) = Véoo);féo(r),

Vil = 6.2MeV,
Rso = 1.024Y3 fm,

Aso = 0075fm (6.35)
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This potential is appropriate for treating low energy neutron scattering from actinide nuclei.
As for the Michel-typePNC interaction Vpyc, we use the form (6.5) with the following

general shape for the formfactor v(r))

. _ 1/3 =7
v(r)) = —;—e‘r,-hcw‘7 [1 + exp (r___sz))] ,

ro = 1.25fm, a=06fm |, (6.36)

|
|
and g7 is of the order of unity. . . l
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Optical model calculation of the longitudinal asymmetry.

In the following, we use the formalism developed above in conjunction with the Madland-
Young optical potential and Eq.(6.36) for v(r) to calculate the longitudinal asymmetry for
232Th. . | |

The strong potential, Eq.(6.35) gives for the s— and p-wave strength functions S;, S in

232Th the values (at E, = leV):

So= — T2 10107,
271’\/EL,11,(6V)
1 T(p1/2) 2 T(p3/2) ( k*R? ) a
S = |z + = =2.0x 10 (6.37)
' 3 QTI'“ELab(BV) 3 277\/ ELab(eV‘) / 1+ k2R2
where
T(s1/2) =1-[S*P, Tl j)=1-|Si> (6.38)

In Eq.(6.37) and (6.38) T refers to the transmission coefficient and R in Eq.(6.37) is taken
to be 1.25A'2 fm. The above values of Sy and S; (both shown vs. A in Fig.(9) ) are in
reasonable agreement with the experimental ones given, respectively, by 0.84 & 0.07 x 10~
and 1.48 + 0.07 x 10~%. The value of S; in Eq.(6.37) could certainly be improved by a
convenient fine adjustment of the parameters of the M-Y potential.

The compound nucleus resonances in the n+2*2Th system start at a neutron Lab. energy
of 8 eV. Therefore we have to know the value P, (p1/2)/e; at this energy. We have calculated
Popi(pl/2)/e7 as a function of E, and concluded that it exhibits an E;!/? dependence as
observed by the TRIPLE group [7-16]. In Fig. (10), we show P, (p1/2)) vs. 4 at E, = 8eV.
At E, = 8 eV we get B, (pl/2) = 2.37 x 10~*(E, = 8eV,e7 = 1). Thus to account for the
experimental value of P(p1/2) in the resonance region (E, > 8 eV), which is 8 £ 6% we
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have to take for £ = 108 £ 81. Qualitatively similar conclusions were reached in Ref.[38]
who use a different optical potential. However, the above conclusion is misleading since the
optical Popt is obtained from energy averaged cross-sections , while (P,) is calculated from
résbnance averag;éd ratios of resonance parameters. In order to make sensible comparison
between the TRIPLE data and the optical model, we have to analyze the cross-section

difference af(,‘” - ‘7;(7_)-
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Optical Model Analysis of the TRIPLE Data.

From the optical model point of view, the quantity < P, >, is rather cumbersome to

analyze. A more natural quantity to discuss is the ratio of energy averages:

_ (Ao)g _ Ao p
2(0’)E - 20’01”

P (6.39)

which will behave differently from (P,)g, where (...)g implies energy average. It is simple

matter to show that:
7T
= il 6.40
Topt = 00 + 3 D(a)q, (6.40)

and therefore:

2D 2D
EAO’apt = <A0)q + ;_"'I";AG'Q, (641)

where (Ac), is the cross-section difference at the peak of the resonance (g), averaged over
q, and [ and T are the average spacing and width of the resonances. From the data of Refs.
[9,10] we constructed Ag, for n+?*2Th and n+é38U, shown respectively in Figs. (11) and (12
). The average, {Agy),, over the resonances in the energy range 1 < E,, < 400 eV is {(85+12)
mb for n+*2Th, and (18.2 % 18.7) mb for n+238U. In performing these averages, involving
experimental points with error bars, we followed the procedure of [35]. The data points were
scaled by E,. It is obvious from this analysis that (Ag,}, for n+***U is consistent with a
zero value, whereas for n+232Th it is appreciable. To understand this difference in behavior
between the two rather similar systems we performed an optical model calculation following
the procedure of Refs. [38] and [40]. The results are previously summarized in {45].

In view of Eq.(6.41) the optical model cross-section differences must be multiplied by
the factor (2D/nT) , before comparing with the experimental (Ac,), given above. The
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value of 2D /7T was found to be 297.1 for n+%2Th and 197.6 for n +238 /. For 232Th,
we used It = Iy = 24 meV and D; = 11.2 eV. For 238U, we used I'; = I, = 23.2meV
and Dy = 7.2eV (the notation I'y, D; means width and si)acing for the p-wave (I = 1)
resonances). With the exception of the D, value for **Th, these numbers coxﬁe from the
book of Mughabghab on nuclear resonance parameters and thermal cross sections [46). We
obtained the value for D; in #*2Th by averaging over the spacings of 22Th p-wave resonances
below 100 eV. The value of £7, which appears in the PNC piece of the optical model potential
was set equal to unity. The parity conserving part of the optical model potential is that of
Ref. [43], which is appropriate to the actinides.

The results 22Ac,,, for are shown in Figs. (13) and (14) for the two systems under
discussion. The values of 22Ac,, at E, = 1 eV is 0.4 mb for n+22Th and 0.68 mb
for n+238U at E, = 1 eV. Therefore it is reasonable to conclude that the n+**U system
exhibits a "normal” beh.:;wior since its (Ady), is consistent with the optical value of 0.4 mb:
namely PNC transitions whose average is zero and whose resonance background,, is basically
the low-energy extrapolated optical model result. On the other hand, the n+*2Th system
is "abnormal” in the sense that (Aog), = 85 mb (see above) is more than two orders of
magnitude larger than the "scaled” optical model result (scaled in the sense of the factor
2D/aT. This is certainly rélated to the fact that < P, >, is zero n+**®U and relatively
large in n +232 Th.

We further investigated the behavior of the two systems by examining the p-wave and

s-wave optical transmission coefficients and compared them with the corresponding exper-

Co.n

imental values, namely 27 o

and 2m3= where Ty, ( I',) is the s-wave (p-wave) neutron

width. The values of I'o, and Ty, for **Th and U were taken from Refs. [2] and [46].
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Again, the comparison showed the ”abnormal” nature of 2*2Th when compared to 2387], The
experimental values of 2#5302, averaged over the resonances, for n+2**Th are slightly lower
(== 20%) than the optical transmission coefficients whereas 27 3= shows conspicuously larger -
values (=~ 30%) than the optical transmission in the energy range, 100eV < E, < ZOOeV..
This behavior is not shared by "t287.

The existence of a local doorway that is required to explain the sign correlation has
clearly important implications on the energy averaged cross-section. Within the energy
range where the averaged cross-section is calculated we are assuming that there is only one
doorway present, as we emphasized earlier [29]. The contribution to the optical interaction

that arises from the doorways is given by [45]:

AUE) Vop(r)[Vop(r') £ Vi3 (1)
corway | E—ED'{-?P%)/Q

(6.42)
.-to first order in the weak force, where Vp;(r) is an appropriate form factor representing the
doorway coupling to channel i. In (6.42) I‘i is the spreading width of the 2p-1h doorway,
due to its coupling to the compound nuclear states.

(£}

It is clear from Eq. (6.42) that if treated as an optical potential , AUy, ., Will contain

a PNC part which is complex:

AUII;NC :21"po(T)VDIE(7J) (6.43)
T —E+iTh/2

In the optical model calculation of {4], whose results for Ao are shown in Figs. (6) and (7),
an empirical local energy-dependent optical potential [43], was used to generate distorted

waves that are then emploved to evaluate the first-order perturbation matrix element:
fenc o Im(EVENC gy (6.44)
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where VPNC is just the MMichel-type interaction, Eq.(6.5). It is clear from the discussion
above that the reported OM calculation is incomplete, since, to say the least, I/ must be
complex. Further, the imaginary part to be used in a consistént optical model analysis of the
TRIPLE data must arise entirely from the doorway (see Eq. (8.23)). It is, however, conven-
‘tional to use an empirical complex potential to represent the parity conserving interaction
since there are other doorways and, when used at higher energies the averaged potential will
contain the contribution of many terms, of the type given in Eq (6.42). Roughly speaking,

the parity conserving (PC) imaginary part will then be given by:

ImAUDoorway = ""27FVDP(R) VDp (T’) f‘lbpp (645)

where pp is the 2p-1h density of states. It is usually assumed that when an equivalent
local potential is constructed from Eq. (6.45).a.nd extrapolated to low energies, it can be
represented by the empirical imaginary potential. On the other hand the PNC interaction
to be used must be complex, on account of the local doorway contribution. We believe that
the difference between the optical model A using the real PNC interaction and the data
resides in this fact.

We now use the above argument to further pin-down the nature of the local doorway
state. We calculate the contribution of the single local doorway to the energy averaged
cross-section. This is straightforward, since is separable. We find, taking for an "optical

potential”, a background real piece plus the parity conserving part of (6.42):

27 YPsvopl b
AdYp = Aoy + <X IDsVDp2 D __ 6.46
(Bl T (Ep +T%/4) (6.46)

where I'p is the total width of the doorway, I'p = I+ FL. The escape width I‘B accounts
for the doorway decay to the open channels. We obtain from Egs. (6.4) and (6.41) the
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following form for (Agy),:

o (B DA e

Note that the factor -fr—?- refers to the fine structure compound resonances, whose value for

n+22Th was found to be ~ 300. From Eq. (6.47) we find that (Ac,), is independent of
energy. This is so since 75, ox (kR)® , and 78,/vpp ox k~!. We choose E, = 1 eV to
evaluate the RHS of (6.47). In Ref. [29], vps/yp, was identified with < Py >4, which, at
this energy, =~ 0.08. Using for (Acy,), the value cited earlier, namely 85 mb, we ﬁnd_t'he

following numerical value for the doorway factor inside the square brackets,

277’?%),,1-‘13
(Ep + F /4)

] ~ 1.7%x 1077 (6.48)
As in [29] we take Ep ~ I'p = 30 keV, which then gives for the partial p-wave neutron
. width of the local 2p-1h doorway, 2#7201, ~ 6.3 meV, several orders of magnitude larger
than the average width of the compound p-wave neutron resonances, quite consistent with
our doorway picture. At this point it is important to remind the reader of an interesting

relation involving the doorway strength function and that of the compound nucleus [21].

This relation reads:
(6.49)

For p-resonances in Th, (I';/D,), in the energy range of interest, is 2.1 x 107°. In Ref. [29]
we have calculated Dp, = 1/pp, which came out to be about 30 keV. Taking half this value
for the negative parity states, therefore we get the following value for the average escape
width of the p-wave 2p-1h doorway, I‘Ep 2 31 eV . Within our model, the value of the total

“width of the doorway is assumed to be I" = 30keV. Thus, most of this width is spreading.
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Optical model calculation of Spin Polarization and Rotation.

- Though difficult to measure, the final spin polarization and rotation of the ongoing
neutrons are interesting quantities to investigate. Here we present the elements of our
calculations using the optical potential of Eqgs.(6.35) and (6.36) {42].

The results of our calculations are shown in Figs. (15) and (16) for the angle-independent
pa.fity conserving and parity non-conserving spin polarization and rotation quantities defined
above, vs. E,, in the range 10eV < E,, < 10keV. At 10keV, the S-matrix elements s}/z -1
and s:f/ 2 — 1 are about 1% of the value of the element 5(1,/ 2 _ 1 and are increasing. We
thus expect the deviations of the angular dependence of the spin polarization and rotation
functions from the forms given in Eq.(6.34) to also be about 1% and increasing. From
the ﬁgures we observe that %i‘icé is about 7 x 1072 at E,, = 10eV and decreases to 1.3 X
107* at E, = 10keV. .The. quantity %’%ﬁa, on the other hand, is 1.5 x 103 at E, =
10eV and decreasing to 6 x 107° E,, = 10keV. We now have to make contact with the
longitudinal asymmetry anomaly discussed extensively in Section V, namely the extracted

(+}

(-)
o, —
value of resonance-averaged T 2u2l=or (P12

207 (py1/2)

), where a}i) (p1/2) is the total cross-section for
=+ helicity neutron populating a p /; resonance in ***Th, was found to be positive and large,
0.08 4 0.06. The optical model calculation performed required a vlue of &7 of 108 & 81.

As emphasized above a more natural quantity to compare the data with is the optical
model cross-section difference. Thus

8
DGy = k—’Z’Resgﬁ . | (6.50)

Within the doorway model of Section V, 3%2 acquires the following structure -

-1 o,
sppr = == ——tBe ID: (6.51)
2 E—-FEp+ —22
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Clearly the same degree of enhancement of {Aar(P)/2) over the optical value, due to the
doorway, would manifest itself in Q?,NC; and P}, since all the quantities involve the same
33{2, Eq.(6.34). To get an idea, the optical model value of Restl,{2 at B, =1V is 7x 100712,
to be compared to the dootway Rest)® (Eq.(6.51))= 6 x 10~°. We expect an enhancement

of more than two orders of magnitude in P2y and Q%yc over the values shown in Fig.(15).
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VII. PARITY VIOLATION IN EXOTIC NUCLEI

In recent years the field of neutron- and proton rich nuclei has flourished into a worldwide
experimental and theoretical activity. A natural question to ask is to what extent the r.m.s.
value of the PNC matrix elemt;nt extracted by the TRIPLE Collaboration compares with
its value in these exotic nuclei.

The answer to the above question would shed light on the general properties of instability
of the nuclear systems subjected to both strong and weak hadronic forces. Needless to say
that the instability of drip-line nuclei arises from the diminishing intensity of the strong force
at the larger radii where, e.g., halo or skin nucleons reside. The study of the weak force
operating in this loose region is therefore very important in elucidating the full nature of the
instability of unstable nuclei. To remind the reader, the extracted value of the single particle
matrix element MM™ is >~ 1.0eV, which compares well with typical structure calculation
[47] based on existing theory of the weak interaction or within the Standard Model [48].

In this section, we consider the Parity Nonconserving (PNC) mixing in the ground state
of exotic (halo) nuclei caused by the PNC weak interaction between outer neutron and
nucleons within nuclear interior. For the nucleus * Be as an example of typical nucleus with
neutron halo, we use analytical model for the external neutron wave functions to estimate
the scale of the PNC mixing. The amplitude of the PNC mixing in halo state is found to
be an order of magnitude bigger than that of typical PNC mixing between the “normal”
nuclear states in nearby nuclei. The enhanced PNC mixing in halo cloud is proportional to
the neutron weak PNC potential constant g/ only.

So far, the PNC effects have been probed in “normal” nuclei. Physics of “exotic” nuclei
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studied with unstable nuclear beams [49-60] appears to be one of the most promising modern
nuclear areas. Due to their specific structure, exotic nuclei, e.g., halo nuclei can offer new
possibilities to probe those aspects of nuclear interactions which are not accessible with
normal nuclei. It is therefore interesting to examine possibilities of using exotic nuclei to
investigate the effects of violation of fundamental symmetries, i.e., spatial parity and time
reversal.

Some aspects of the Weak interactions in exotic nuclei have been discussed in literature
[50],[51] in relation to the beta decay and to possibilities to study the parameters of the
‘Cabibbo-Kobayashi-Mascawa matrix. To the best of our knowledge, however, the issue of
the PNC effects in exotic nuclei has been addressed only recently [61].

The aim of this Section is to give an estil';late of t'he magnitude of the PNC effects in

halo nuclei. We confine ourselves to the case of nucleus ' Be, the most well studied, both

Vexperimenta.lly and theoretically [4'9,50,51,54,55}.'W.e find that the ground state, the 25/,
halo configuration, acquires admixture of the closest in energy halo state of opposite parity,
1p12- This effect originates from the weak interaction of the external halo neutron with the
core nucleons in the nuclear interior. As a result, the neutron halo cloud surrounding the
nucleus acquires the wrong parity admixtures that may be tested in experiments which can
probe the halo wave functions in the exterior.

The magnitude of the admixture is found to be ~ 1078 x ¢" that is an order of magnitude
bigger than the PNC effects in normal spherical nuclei. What is important to notice is that
the enhanced effect we have found here is proportional to the neutron weak constant g!¥
only. The value of this constant remains to be one of the most questionable points in

modern theory of parity violation in nuclear forces [62]. The enhanced PNC mixing in halo
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found here can be therefore useful in studies of the neutron weak constant.
Proton and neutron weak potential strengths

- The knowledge about the proton and neutron constants g}’ and g’ accumulated to date

can be summarized as follows:
gy =45£2, g =1+2 (7.1)

These values correspond to the microscopic parameters of the DDH Hamiltonian [48] de-
scribed above and they are found in reasonable agreement with the bulk experimental data
on. parity violation. The above relatively small absolute value of the neutron constant that
~ follows from DDH analysis, results basically from cangellation between 7- and p-meson con-
tribution to gv s while both terms contribute coherently to the proton constant gy . One
should mention that due to this difference between the absolute values of the proton and
neutron constants, the proton (;onstant tends to dominate most measurable PNC effects,
especially when both g;’v can g7 contribute, provided that DDH model gives correct es-
timates. In this sense, one usually measures the value of g;’V , and it is difficult to probe
g7 unless special suppression of the proton contribution occurs, and contribution of g¥¥ is

highlichted. By contrast, the case we consider in this work is sensitive to the value of the

neutron constant only.
Halo structure effects on the PNC mixing

The basic specific properties of the halo nuclei are determined by the fact of existence

of loosely bound nucleon in addition to the core composed by the rest of the nucleons [52]
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(we will be interested here in the most well studied case of neutron halo). The matter
distribution is shown schematically in Fig.(17) (part a).

In one-body halo nuclei like ' Be, the ground state is particularly simple: it can be
represented as direct product of the single-particle wave function of the external neutron,
Whato, and the wave function of the core. The residual interaction V& can be neglected
as the many-body effects related to the core excitations are generically weak in such nuclei
[63]. The problem is then reduced to a single-particle problem for the external nucleon. The
PNC potential matrix element between the ground state of halo nucleus and a state with

opposite parity is

[ .

a :
(¢:010|WPNC|¢}:010> = gftv—“(w;alol{(&nﬁn)? pC}|¢}Talo>i (72)
- : 2v/2m .

where pc(r) is the core density. Due to relatively heavy core for A ~ 10, difference between
the center of mass coordinate and the center of core coordinate can also be neglected.

The effective potential that bounds the external neutron is rather shallow yielding small
single-neutron separation energy, and one can expect small energy spacing between the
opposite parity states. The PNC effects can therefore be considerably magnified. The
spectrum of ' Be is shown in Fig.(17)(part b). To evaluate the PNC mixing f#4L0 in the
ground state of this nucleus, it is enough to know the single-particle matrix element between
the ground state 2s and the nearest opposite parity state 1p, and use their energy separation
that is known experimentally.

The second effect of halo is that the value of the matrix element of the weak interaction
‘operator between the halo states can be dramatically reduced as compared to its value in the

case of “normal” nuclear states. The single-particle weak PNC potential in (7.2) originates

46




from the DDH Hamiltonian [48] which is a two-body operator. This fact is hidden in the
nucleon density of the core p.(r). The external neutron spends most of its time away from the
core region where only it can experience the PNC potential ;:feated. by the rest of nucleons.
Indeed, the dominant contribution to the matrix element (7.2) must come from the regions
where the three functions can overlap coherently: v, (r), ¥, (r) and the core density

Peore(r). The latter one is essentially restricted by the region of nuclear interior, r < r,

- thus reducing the effective volume of required interference region to %m‘ﬁ. Normalization

condition implies that the extended wave function of the bound state halo ¥, (r) must be
considerably reduced in the volume of coherent overlap $7r?. By contrast, in “normal” nuclei
the radii of localization of the wave functions with opposite parity that can be mixed by the
weak interaction coincide generically with the core radius r.. The resulting suppression for
the PNC halo matrix element (1, (7)|W,|¥i,, (r)) with respect to the matrix element for

the normal nuclei can be extracted from the following simple estimate

(d';aiolwspl'w:alo) N( Te )3

(ﬁ'r-z‘arma[ I Wsp [ w:ormal> Thalo
3
L(Hm) L1 3
6fm 25 30

where we have used the mean square radii of halos from Ref. [51]. This suppression factor
can cancel out the effect of tile small energy separation between opposite parity levels which
would suppress the PNC mixing. This simple estimate does not take into account the
structure of the halo wave functions which can be quite substantial and may even lead to
further suppression in the PNC mixing. In the following, we present a detailed analysis of
the related effects. In particular, we find that the crude estimate (7.3) turns out rather

pessimistic. .



Halo Model and Evaluation of the PNC mixing in the ground state of ' Be

The form of the single-particle wave functions of halo states can be deduced from their

basic properties [55] and their quantum numbers [51]. The results of the Hartree-Fock

calculations which reproduce the main halo properties (e.g., mean square radii) are also

available [51]. We use the following ansatz for the model wave function of the 2s halo state:

Y5 = R2S(T)Q;'=zol/2,ms Ras(r) = Co(1 = (r/a)*)exp(—r/ro) (7.4)

Here, Ry,(r) is the radial part of the halo wave function and Qf;‘{ /2,m 15 the spherical spinor.

As we can neglect the center of mass effect for the heavy (4 = 10) core, the halo neutron

coordinate r in Ry,(r) = % X2s(r) is reckoned from the center of nucleus. The constant Cj is

e <]
determined from the normalization condition, [ dr{x.,(r)]*> = 1 (we choose the radial wave . -
T 0

functions to be real). We have
| 23/2a2

rg"2\/45'r3 + 2a* — 12a%r}

Co= (7.5)

The parameters rg and the a are the corresponding lengths to fit the density distributions
obtained in Ref. [51] and the mean square radius. The value of a is practically fixed to be
a = 2fm what corresponds to the position of the node. Recently, the node position have
been restored from the analysis of the scattering process in work [55].

For the wave function ¢, = Rlp(r)ﬂf,-::ll s2.m Of the excited state 1p, the following simplest
form of the radial wave function turns out to be adequate

Ryy(r) = Cireap(—r/ry), (7.6)

5/ and the only tunable parameter r, is

where C' is the normalization constant Cy = Zor
related to the 1p halo radius. The mean square root radii for the halo wave states (7.4) and

(7.6) are given by
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6(4578 + 2a* — 12a%r2)\ /* 15\ 1/2
2 = 0 0 2 = | w— . 7.7
(r2s) =0 ( 105ri + ot~ 15a22 ) ' V{ip) ( 2 ) n @7)

The matrix element of the weak interaction (7.2) between the ground state and the first

excited state reads

(2l W) = 78)
g [ ) () g+ 2 4 S 20

The core nucleon density p.(r) has been tuned to reproduce the data obtained from Ref.

[51]. We found that their results are excellently reproduced by the Gaussian-shaped ansatz

pe(r),
pe(r) = poe=(r1Re)” (7.9)

with the values of the parameters py = 0.2fm™3 and R, = 2fm, as shown on Fig.(18).
Using the model wave functions (7.4),(7.4) and the core density (7.9), the required inte-

grals can be done analytically, and we arrive with the result
(2s|W|1p) = ig?  z (7.10)
V2m

where

R = PoRgcocl{i’sz(y) - {3 (&)2 + 1} Li(y) +

a

+ (%—c)zfe(y) & [13(3;) - (%)

2

™

rs(y)]} (711)

where y = E:lrotn1) and the functions I, are given by

rory

1]
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where erfc(y) is the error function

erfe(y) =1- -%h/dtewp(—tzﬂ).

To obtain the results for the PNC weak interaction matrix element, we used the parameters
ro and r in the halo wave functions to fit the radial densities of the halos obtained by
~ Sagawa [51].

The results for the best parameters are shown in Figs.(19) and (20) for the 2s and the
1p halos, respectively. One sees that the agreement for the densities is very good. Below,

we use the values

ro(best wvalue) = 1.45fm,

ri(best walue) = 1.80fm, (7.12)

" to calculate the matrix elements in Egs. (7.8,7.10,7.11). The radial wave functions x are
given in Fig.5. We used also deviations of the both r¢ and r; from (7.12) to check robustness
of the results with respect to variations in the halo structure details. The values of the halo
radii given by (7.7), \/(r3,) = 5.9fm and \/@ = 4.9fm are close to the values of Ref. [51]
6.5fm and 5.9fm which agree with experimental matter radii.

Substituting the values (7.12) into our expressions for the matrix elements we obtain the

following value of the matrix element (2s|W,,|1p)naro

(Ip|Wpl28)paro = —10.2 g, €V,
= =10.2 eV (for g¥ ~1 ). (7.13)
- It is seen that this value is only few times smaller than the standard value of the matrix

element of the weak potential between the opposite parity states in spherical nuclei (see
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e.g., [1]), that is typically about one eV/. This results the wave function structure and comes
basically from the facts that the 2s wave function crosses zero line near the core surface
ﬁrhile the 1p radial wave function does not have nodes. Thus the functions X1p and dye,/dr
look similar and are folded constructively with p.(r) in the region of interaction (nuclear
interior), see Figs.(21) and (22).

The matrix element of Wy, between the “normal” nuclear states can be evaluated for
example, in the oscillator model. Taking the typical matrix element between the states 2s

and 1p and using the same formula (7.8), one has

W

1/2 |
<1pIWsp125>osc = “ingVGPG (%) (714)

where w =~ 40472 MeV is the oscillator frequency [64]. We used here the constant value
.of core nuclleon density, pg ~0.138 fm~Y/3, This is very good approximation for the case of
- normal nucleus (see, e.g.[18]).

Recalling the energy differerhlce between the ground state and the first excited state 1p

that is known experimentally,
|AEyaro|l = Epije — Eq1j2 = 0.32MeV (7.15)

we obtain, using Eq.(7.13), the coefficient of mixing the opposite parity state (1p) to the

halo ground state 2s:

1fHALO _ |(1p|W,p125)| - 0.2eVgW
sp IAEgar0| T 0.32MeV

~ 0.6 x 1078¢g%

~0.6x 107% (for g¥ ~1) (7.16)

This PNC mixing is about one order of magnitude stronger than the scale of single-particle
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PNC mixing in “normal” nuclear states that can be extracted from Eq.(7.14). In the case

of normal p — s mixing, we have

w

sp . w - \/§m
~ 0.7 x 10~"g¥

I. nermal| _ l(lplwsppS)l _ ngvpo (m)1/2

~0.7%x 1077 (for gV ~1) (7.17)

‘in the same region of nuclei with A ~ 11. The above value (7.17) for the normal PNC

mixing is rather universal and it is practically insensitive to variations of the details of the

normal nuclear wave functions and core densities [18]. Comparing Eqs.(7.16) and (7.17), we

obtain the halo enhancement factor tlo be

HALO
Vo™ 7l ~ 9 (7.18)

l ;}orma!

This result is quite remarkable in a number of respects. First, if is seen that in experiments
when the halo wave functions in nuclear exterior are probed, the value of PNC mixing is even
stronger than in “normal” nuclei. Secondly, this PNC mixing is dominated by the neutron
weak constant g). Such experiments with neutron halo nuclei would thérefore provide
unique opportunity to probe the value of this constant. Usually, sensitivity of experiments
to the value of this constant is “spoiled” by comparably large value of the proton weak
constant g, cf. Egs. (7.1).

In order to assess reliability of the results, we have studied stability of the enhancement
factor against variations in the parameters of the halo wave functions. As one can see from
the results presented in Table I, the matrix element (7.13) is changed by few per cent only
when the wave functions are deformed. The enhancement factor (7.16) is therefore quite
stable.
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‘Having in mind to present a first estimate of the PNC effect in halo nuclei, we have
chosen here the simplest possible case of one-body halo where the existing data allow one
to rely on simple analytical model of halo structure. In thié work, we confined ourselves to
the case of exo‘.cic nucleus ' Be for which we presented detailed consideration.

The analysis presented above rests basically on the most reliably known facts: the quan-
tum numbers of the states involved, the halo radii which match the matter radii known
from experiment, and the Hartree-Fock wave functions. With these input data, the further
quantitative analyéis is a straightforward analytical exercise which does not require any ap-
proximations. Stability of the results has been checked analytically. The PNC enhancement
factor of one order of magnitude allows one to to speak about qualitative halo effect that
should not be overlooked. ;

: It is the matter of further studies to check universality of the effect while going along
the table of exotic nuclei. One sees that other exotic nuclei with developed halo structure
manifest similar properties (see, e.g., [51]). Indeed, the effect of PNC enhancement found
here results basically from the two facts:

(1) small energy separation between the mixed opposite parity states

(ii) considerably strong overlap between the mixed wave functions and the core density,
which saves part of suppresslion in the PNC weak matrix element.

The first of these points is rather common for nuclei with developed neutron halos.
Systematics of separation energies for single neutron [52] shows that the ground states of
halo nuclei can be distanced from the continuum by typical spacing epato ~ (2mrhao)” Y2 ~
few hundreds of KeV. Even in the cases when no bound states with parity opposite to that

of the ground state occur. the PNC admixtures to the ground state wave functions must
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exist. In these cases, the PNC admixtures can be evaluated by means of Green function
| method.

"The second point (ii) is related to the wave function structure and requires further studies.
It would be also interesting to study the PNC effects in proton rich nuclei 52],[53],[54].

One of possible experimental manifestations of the discussed effect is related to anapole
moment [65] which is attracting much attention in current literature [66] in view of new
experimental results (detection of anapole moment in nucleus **C's [67]). Since the anapole
moment is created by the toroidal electromagnetic currents which results from PNC, its
value grows as the size of the system is increased [68]. In the case of a halo-type nucleus
which we considered here, the value of the anapole moment can be therefore enhanced due

to the extended halo cloud. We hope to address these issues in following publications.



VIII. TIME REVERSAL SYMMETRY BREAKING

The breaking of CP symmetry observed for neutral kaons [69] implies, because of CTP
invariance, time reversal syml;letry breaking (TRSB), which has never been demonstrated
experimentally. Because of the results of tests looking for TRSB effects, expectations are
that they will be small. We believe, however, that the amplification which occurs in low
energy neutron reactions may make them visible - and in any event will provide limits [70,71].
In this Section we apply the results of section III to extract time symmetry breaking from
both resonance and energy averaged experiments. In the following, we will discuss first,
isolated resonances and then we turn our attention to the case of overlapping resonances
r.egime. o .

. We consider ﬁ1‘§t the ca.sé of isolated resonances. This situation is usually encountered at
neutron energies in the electron volt region. The parity non-conservation experiment of the
TRIPLE Group was performed under these conditions. The study of TRBS in the isoclated
resonance regime has been discussed recently [72,73]. Here we present a different point of
view concerning this matter. It is convenient for the discussion to use the K-matrix, which

at a given isol ated resonance , we write, in the presence of TRSB, as:

1 '7qc7*
K9 — —..301ac 8.1
“ 2rE— Eq ( )

K7 is hermitian but neither real, nor is it symmetric (see discussion in section II). Note that
E, in (37) is the real energy of the compound level, g. The T-matrix is obtained from the
K-matrix through

1 Yge Vo
T = gc 8.2
T 2 E ~ By +1T,/2 (82
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with I'] being the radiative decay width of resonance g, which is the dominant piece of I';.
The above form of TZ, establishes the link with the discussion at the beginning of the paper,
i.e. for the present case fygc = Revy,e and Ay = ilmy,. = iy, Going back to Eq. (8.1), we
introduce the eigenchannels that diagonalize K, by the requirement v4 ¥ 1o fo = Afc
which is solved by A = Lo |y,e[* aﬁd f¢ = vg. All other solutions have A = 0. Thus there

is only one physical eigenchannel for each level g. We thus write for K, in operator form:

k= 1505

where |4,) is a unit vector with onents T Note that this eigenchannel also
A with comp m g

diagonalizes T:

|2

1Yy
q=
T E —¢g,+il

3130} G (83

~If we repregent the TRSB measurement operator by @r, then the difference in total cross-

sections with two different neutron helicities and a polarized nuclear target is:

27 1

Agg = -5 Im Yacl 071 7qe 8.4
T =12 niE_€q+in/2§(;qc| 7| Vger) (8.4)

where ¢ denotes the entrance channel, and ¢’ the channel that 6 couples. Since 07 is by
definition Hermitian and antisymmetric, {¥4|07|7,} must be purely imaginary. Accordingly,

we have at the g—th resonance,

2m 2 . . 85
Ao-q = Er_q Z [ igc! Tge — '7qc'7qc} (BT)cc’ ( . )
c.c!
As noted above we have v,, = Yee T 1 » where 77, is the (real) strong T-even amplitude.

Thus to first order in 4", and defining (87)c = i, where 6.. is antisymmetric:

Yoo vew ] Bece (8.6)



For the special case of two channels, one (c;) coupled weakly and the other (cp) coupled
strongly:

2m 4
Aoy = ﬁf’;"}'g:ﬂ;co (8.7)

The asymmetry, P, = ‘2—;;1 is then given by (ignoring the background contribution):

_ e,

P
T,

(8.8)

| Generally, P, will have a vanishing average value because of the random nature of g

, and g, - This situation changes if a local 2p-1h doorway dominates the TRSB mixing.

Just as in th PNC case, discussed extensively in the previous sections, the P,, Eq. (3.8),
will have a definite sign.

We mention here that the detailed nature of the T-violation experiment depends on

the T-violating operator 7. Several forms may be cited. For parity non-conserving, time

reversal violating, these are:

brpy = (G- ) (8.9)

brps = (6 xI)-f (8.10)

The time reversal violating P-even interactions are more complicated. We list these

operators in terms of the uhit vectors § = B — iz, p= L+k and A= pPXq

b7y =[5 x I'-4] | (8.11)
brp =16 xI-q] (I-4) | (8.12)
brs=il6xI-p](I5) (8.13)



where £ is the spin of the nucleon, I the spin of the target nucleus. In a neutron transmission
experiment where the total cross sections are measured, only Orp2 and O3 survive. It is
clear that in order to see time reversal violation both for P-odd and P-even, we must have
at least two channel spins coupled by the violatiﬁg interaction. As. examples we mention the
transition caused by the T-odd, P-odd interaction and the transition 1P, —° P, caused by a
P-even, T-odd interaction. In particular, the transition P —3 Sl. mentioned above, which
could occur in the neutron scattering from a spin 1/2 nucleus, is particularly interesting‘ as
it resembles the P-odd T-even case studied in Ref. by the TRIPLE Group except for the
change in channel spin. We suggest that to get a measurable P,, Eq. (8.8), one comes in a
1P, state in a nucleus where the single particle P-wave strength function exhibits a minimum
:‘and comes out in a cenﬁrifugal barrier uninhibited %S;-state sitting at a maximum in the
corresponding s-wave strength fungfcion. In the A 2 180 and 140 region one encounters such
a situation [46]. The nucleus 1:‘f.‘jLa, considered in Ref. [74] seems to be a good candidate to
study TRSB.

We now turn to the case of overlapping (statistical) resonances. For this purpose we use
the methods employed by Kawai, Kerman and McVoy (KKM) [22] to obtain the average
fluctuation cross-section. Because of time symmetry breaking the S matrix is not symmetric,
Sab 7 Spe (Eq.(3.9)). We write 3 = 7% + Ay, and v = v~ A~

The energy averaged fluctuation cross-section is given by:

(00 = (SHSED | (8.14)
which, with the usual random phase assumption, gives:
(o) = 2873 Vo VaaTab) (8.15)
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We now introduce the following quantities obtained by applying the KKM analysis [22]:
X=n(r), X=2(37) X =2(r7), (8.16)

In Eq. (8.16) 29 = /2% , where " and D are the average width and spacing of the resonance.
This constant will drop out in our final expressions. The average on the RHS of Egs. (8.15)
and (8.16) is carried out over the compound nuclear states as indicated by the subscript g.

In terms of this quantities, the energy average fluctuation cross section is given by:

(oly) = XoaKyp + XX, (8.17)
and

(0lp) = XaaXop + Zoa X3 (8.18)

As in the KKM example the above quantities can be related to the transmission coeffi-

cients which are given by the optical model:

)

= XTrX + | X (8.19)

Top = 6o — (55+) - ((Sf’Sf’+)

ab ab

where S is the optical model S matrix. In principle three other transmission coefficients can

be defined:
T=XTrX +|X] (8.20)
T=XTrX++ XX (8.21)
T=X*Tr% + XX (8.22)

29




Assuming pair correlations among the 4’s and the random independence of y* and Ay we

find (it is assumed that the number of levels is large),
X=X eX4s (8.23
where

Xoy =20V Ve Tab = Lo{A% 550

We can now formulate the consequences of the above analysis. First note that according
to Eq. (8.23), (crf:;) = (agfal) . Thus it is not possible to detect time reversal symmetry
breaking by comparing the energy averaged cross sections for ¢ — b with that for & — a.
Detailgd balance holds in the presence of symmetry breaking. An early experimental test
of this was reported in [75]. Figﬁre (23) summarizes this results for p +*" Al — ao +%* My.
To observe symmetry breaking we have to analyze the appropriate cross-section correlation

function Cyy:

t_fi L _fl
. = (ggbgga> — (Ugbo-afb> (8 04)
(Uabgab>

It can be shown using the pair correlation assumption that to first order in N, where ¥V is

the number of open channels,

- _fi
(5102 — (al))?

Cap = (5{;)2 (8.25)
where we have introduced the pseudofluctuation cross-section (&c{;)
(Ga) = (SavSia) = Keg X + Xan Xy
=(X°—x),, (X°—x), + (X°+ :r)zb (8.26)
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From Refs.[22], we know that the non-diagonal term in (8.26) is N~! smaller than the first,
diagonal one.
From Eq. (8.17), Eq. (8.23) and Eq. (8.26), and negfecting the non-diagonal terms

(Xap = 0 = z4;), one finds, to leading order in the TRSB matrix element, the following form

for Cas:
maaXbb + Xaambb
Cop ~ —4 8.27
ab Xaa Xbb ( )
When written in terms of the transmission coefficient, we find:
~ taa |, tob

where Ty, is the optical transmission matrix element in channel a without TRSB, and {4, is
just the difference (T,, — T3) -
Equation (8.28) clearly shows that C,; depends on the channels. This is in contrast to

F Pl ot
the result of Refs. [75],(76] and {77]. In particular Ref. [77] calculated |Cyp|? = (a1 T1n) ~(up)”

(1)
using the theory of random matrices and claimed that is does not depend on a and b. The
reason for this is that the authors of [77] consider TRSB to be entirely in Haq and do not
consider its effect on Hp,,. Thus, if treated as purely internal mixing, the TRSB is channel
independent (in C,). In fact to first order C does not depend on the symmetry breaking as
contained in Hy,.

The use of symmetry breaking one-body potentials to treat energy-averaged observables
has already been discussed in Section VII in the case of parity non-conservation following -
the procedure suggested by Michel [37]. An optical model description of TRSB has been
presented recently [78]. It would be profitable to calculate Cyy, Eq.(8.28), using one-body

models of TRSB.
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IX. CONCLUSIONS AND DISCUSSION

In this review we have discussed fundamental symmetry violation in nuclear reactiops.
The unified theory of nuclear reactions is used for the purpose. The problem of parity
nonconservation in epithermal neutron scattering is discussed. The data seem to follow
nicely the prediction of the statistical model except for ***Th. The role of simple 2p — 1h
doorway states is poinrted out as a possible cause of the sign correlation in the longitudinal
asymmetries of the n+22Th system.

The optical model description of the PNC is fully developed and several observables
are calculated. The optical cross-section difference o{*) — (=) where + and — refer to
positive and negative helicity neutrons, is compared to the available data involving several
target nuclei. V.In particular, we found that the data on n+%*®U can be nicely accountewd
fbr by the optical model calculation, while the same is not true for n+22Th, where the
calculation understimates the data by about two orders of magnitude. This discrepancy is
attributed to shortcoming of the optical potential in this case which should contain explicit
refernce to the 2p — 17 doorways which is needed to explain the sign correlation. It would
be imprtant to extend the optical modelanalysis to other systems and to establish possible
general correlation between the avaergage longitudinal asvmmetry and the average cross-
section difference. Such a study would be useful to further elucidate the reaction dynamics
involved in PNC.

Another important conclusion reached in this review concerns Time Reversal Symmetry

Breaking (TRSB). It is emphasised that in studies of deviations for detailed balance, the
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cross-section correlation function is channel-dependent, contrary to the findings of other
authors. This conclusion warrants further theoretical scrutiny and eventually should be
put to the, understandably very difficult , experimantal test‘. The problem of TRSB is also
considered in the case of isolated resonance. Several options for observables aer available her.
A.sho.rt account for the fundamental theory of symmetry violation in the nucleoﬁ-nucleon
system is presented.

Before ending, it is useful to hit the highlight of our conclusions and point out future
directions.

1. In the analysis of the longitudinal asymmetry, Bmu, one usually uses the expression

Py = Y AV, (91)
1/2 1/2
Ay = 2 (_I.:.'i) = 2 (.ll) (9.2)
E,-E, \T, Sup \Ip

where p and v refer to compound nuclear levels with opposite parities. Randomness of the
weak matrix element guarantees that the ensemble average of P, is zero. The average of P?

1s calculated by considering A4,, and (u!VPNC|v) as uncorrelated

(P2 = (Z A ) (| VENE )2y Z A2, M2, (9.3)
Now the average of (Pﬁ) over all the u resonances gives

1

¥ (P2) = (> AL M = A2M2, (9.4)

from which 312 is extracted since A? can be calculated from the known energies and widths.
We point out that .42 can be confronted directly with the assumed random matrix en-

semble that represents the compound nucleus. In fact, we can write

(9.5)



Statistically, the s and T distributions arve independent which should allow a detailed sta-
tistical analysis of A% independent on the system. This should furnish another test of the
statistical theory and would allow the extraction of M? from the data more directly.

2. The recent extended data of the TRIPLE Collaboration indicated that at about
E, ~ 300 eV the asymmetry becomes negative in n-+-232Th. Presently a more careful
analysis of these negative asymmetries in Thorium are being performed using our suggestion
of looking at o’ff} —O‘L—) rather than P,. If confirmed, the dip of P, to predominantly negative

- values at £, > 30 eV in Th, would supply a very important test. of the statistical nature
~of the 2p — 1h doorways: An average of P, over resonances in a wider energy interval may
-end up being zero after all even in >2Th.
3. The weak spreading Width deserves more investigation, especially with regards to its
mass-dependence. The analysis of the TRIPLE data indicated a rather weak dependence on
'.the mass number of the compound states. However, once A2 is known apriori, following the
proposal above, and if knowledge of (O"LH - Jf:)) from the global optical model calculation
reported in this review can be transformed into knowledge of cross-section variance analysis,
((O’f;H — ai‘)f), one would he able to obtain the mass dependence of the PNC spreading
width more precisely.

4. At a more fundamental level. we have found in Section VI, that the optical potential
appropriate for systems that exhibit the sign correlation effect contains a PNC term which
is manifestly complex. Thus we propose that analvsis of epithermal neutron scattering data
should be performed with a real Michel-tvpe PNC potential added to it a doorway inspired
imaginary part.

5. The r.m.s. value of the PNC matrix element extracted by the TRIPLE Collaboration
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are consistent with those expected for stable nuclei. There is ongoing great effort in the
field of neutron- and proton-rich nuclei. Certainly, important change may be inflicted on
the strength of the weak matrix element due to the loose nafure of the excess nucleons. We
hav_e calculated such a change in the case of the light halo nucleus !*Be. We found that the
strength of PNC mixing in the halo nucleus is almost ten times larger than in stable nuclei.
A not-so-trivial fact since the instability of halo nuclei stems from the strong force and not

~the weak one. Our finding shows an enhanced B-decay of these nuclei which contributes
further to their instability. Similar effect should be manifested in proton-rich nuclei such as
®B. Further, stronger PNC admixture in the halo wave function combined with its extended
range would result in an appreciable enhancement of the anapole moment, an object of great
importance in the physics community.

6. The Time Reversal Symmetry Breaking is also investigated. We have found that the
deviation from detailed balance symmetry can be quantitatively studied by looking at an
appropriate correlation function. We found that in the overlapping resonance region this
correlation function is channel-dependent contrary to the findings of other authors. This
finding certainly deserves further theortical scrutiny to understand the differences cited
above and warrant a careful , thogh understandably difficult, experimantal test.

We have also looked into TRSB in the case of isolated resonance. We point out that, as

in PNC, one may encounter a sign correlation “problem”, not necessarily in 232Th.
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Figure Captions
Figure 1. The s- and p-wave neutron strength functions plotted against mass number
(4) [2].

Figure 2. The TRIPLE experimental system [7-16}.

Figure 3. Transmission spectra for the two helicity states near the 63-eV resonance in
2381, The resonance appears as a dip in the transmission curve. Since the transmission
at the resonance is significantly different for the two helicity states, the parity violation is

apparent by inspection [2].
Figure 4. Parity violating asymmetries P versus neutron energy E, for 22Th [9).
Figure 5. Parity violating asymmetries P versus neutron energy E, for 238U [10].
Figure 6. The 2p — 1k level density for #%U and #*Th. The Microscopic Combinatorial
Method results are compared with the equidistant Ericson formula. See text and Ref.[32]
for details.
Figure 7. Same as Fig.6 but with no deformation.
Figure 8. The parity distribution of levels obtained using the Microscopic Combinatorial

Method [32].
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Fig.9. The singlet, S; , and triplet, S;, strength functions vs the mass number A4,

obtained with the Madland-Young optical potential.

Fig.10. The optical asymmetry calculated with the Madland-Young potential vs. the

mass number at E, = 1eV . The parameter &7 was set equal to unity. See text for details.
Figure 11. Cross-section difference for 232Th resonances. See text for details.
Figure 12. Cross-section difference for 28U resonances. See text for details.
Figure 13. Optical model calculation of A¢ for n+232Th.
Figure 14. Opti.cal model calculation of A¢ for n—f—%”U.

Fig.15. The optical model angle-independent parity conserving spin polarization and

spin rotation quantities vs. E,, for n+%*?Th. See text for details.
Fig 16. Same as Fig.15 for parity non-conseving quantities.

Fig.17. a) Schematic plot of matter distribution in halo nuclei. The dark region corre-
sponds to the nuclear core, the grey region shows the halo neutron cloud.
b) The spectrum of the bound states ! Be.

c) Hlustration of the single-particle PNC mixing in the sround state of ! Be.



Fig.18. The core density distribution (logarithmic scale). The dashed line corresponds

to Ref. [51], the solid line gives parametrization (7.9).

2
Fig. 19. The halo density in the ground state, pasija(r) = £ (Rgsl/g(r)) . The
dashed line corresponds to the Hartree-Fock calculations of Ref. [61], the solid line gives

parametrization (7.4),(7.12).

2
Fig.20. The halo density in the first excited state, pipi/o(r) = = (R1p1/2(7')) . The
dashed line corresponds to the Hartree-Fock calculations of Ref. [51], the solid line gives

parametrization (7.6),(7.12).

Fig.21. Plot of the radial wave functions of the states [2s1/2) and 11p1/2), xos1/2(7) =

: T‘stuz(?‘) and X1p1/2("_’) = 7'Rlp1f2(7’)-

Fig.22. Plot of the functions contributing to the weak PNC matrix element. The function

X119 ) ) r‘f’
5(r) = g o)+ Xe22l) y docier

X1p1/2(7) (dot-dashed line) depends on r in the way similar
to X251/2(7) (dashed line). The combination ygs2(r)pes(r) that enters the PNC matrix

element in Eq.(7.8) is shown by the solid line. It contributes coherently to (28] TWp|1p)-

Figure 23. Left-hand side: Excitation function of the reaction T Al(p, ag)?* Mg folded
with an energy spread of AE = 2keV and a mean energy loss tp = 4keV (solid curve)

plotted together with the excitation function of the reaction “Me(a, po)?" Al (open circles,
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not all measured points shown normmalized to the (p, ap) excitation function. The quantities
AFE and tg result from a computer search minimizing z2. These fit parameters can be
determined precisely because of the steep slopes left and right of the maximum. Middle
part: a comparison of the forward and backward reaction cross-sections near and at a
deep minimum with same procedure and normalization factor as at the maximum. Right-
hand side: The region around the minimum displayed on an enlarged scale. This figure

demonstrates the validity of detailed balance for the cross sections measured [75].




‘Table Captions
. Table.l.

Relative signs of parity violations observed by the TRIPLE Collaboration. “Total num-
ber” is the number of parity-violating asymmetries observed in each nuclide; only asymme-
tries with statistical significance greater than three standard deviations are included. The
columns labeled “positive” and “negative” are the number of asymmetries with + or — sign
relative to the sign of the effect at 0.74eV in 3°Lu [7-16].

Table.Il.

Weak spreading widths I = 27v2/D obtained by the TRIPLE Collaboration [7-16].

Table.IIl

Stability analysis for the matrix element of 1V, between the halo states 25,2 and 1p; 2.
The results for the values of the parameters 7 and r; differing from the best values are shown.
The central entry in the table corresponds to the best value. It is seen that variations in 7y

and 7 do not affect (2s,5|¥7,i1p1/2) any considerably [61].



10

10°x S,

1.0

0.1

DEFORMED OPTICAL MODEL
= = = DEFORMED OPTICAL MODEL

L3 1111

2S5 38 4S5
- \ ]
4 L . ]
- 1y T ' .
= ey & j .
n 'l 8 L-‘ i fi; : » .

! i 3 ; &P L - 9 i

, \ i 1] } :
-1\ l il =
T DI L N
: :. t )

i I , | I 1 | | ’ ] ! 1 ! | | | ! | ! | | 1

20 40 80 180 200 220 240 260

80 100 120 140 160

Figure 1a




10

104x SI

1.0

0.1

DEFORMED OPTICAL MODEL
~ — — DEFORMED OPTICAL MODEL

2P 3P 4P

1 Iilllll

lIIlIIIl

T ENOU N NI NNNUN NI U DUTUNS SN B ST

20 40 80 80 100 120 140 160 180 200 220 240 260
A

Figure 1b



—//H

/L

4

Om

5m

6 m

8m

56 m

Pulsed epithermal
neutron beam

Tungsten
spallation
target with
water
moderator

3He .
AHe Flux Monitor

Spin Flipper

target

Figure 2

Polarized Proton
Target

Transmission /
g

Evacuated
beam pipes

55 neutron

detector array




Gl

=
o

w
™

ot

(01 X) sjunoo



$ 2an31y

(A®) 3

0l

Gl

(%) d



G sy

002 001

[
i
1
3
1
|
]
1
]
i
—e—i
I
—




1h: states)

1_
7 (2p

J

Level density (IVIeV'J)

160.00

120.0C —

oy
©
o
S
|

P
O
o
S
|

00.00

Partial level density

Pi=+1
Microscopical calculations

—- Th233

o= J239
--------- Wiliams formula

0.00

2.00 4.00 6.00
Excitation energy (MeV)

Figure 6

8.00



State density (MeV'1) (2p - 1h: stétes)

60.00

40.00 [~

20.00

00.00 |
0.00

Pi=+1

Microscopical calculations

«em. = Th233
—— U239 )
------- Wiliams formuia .

2.00 4.00 6.00
Excitation energy (MeV)

Figure 7

8.00



0.52

Positive paraty levels / all levels

_J

o F
Uranium 239

N A R R N P

400 8.00 12.00

Excitation energy (MeV)

It 1 b
r\Thoriumzss

0.48 |-
0.00
@ 052
@
>
@
©
@
QO
>
o
>
o
33]
o
© 048
2 .
7
Q
o
0.00

400 8.00 12.00
Excitation energy (MeV)

Figure 8




10* 5,

7.5

5.0

2.5

0.0

Figure 9a




10* s,

10.0

7.5

5.0

2.5

0.0

100 150
A

Figure 9b



0 50 100 150 200 250

Figure 10



200 [

100

-100

Ac (mb) |
. |
T I T T 1 Pl | L I T T

-200 |

lIlIIIIII‘II!I'IIII

O

Figure 11



Ac (mb)

200 [T T T T 1 ]
100 [ —]
u e E % { ® -
o8 @ ; “ =
-100 |— i _]
-200 |- —
-300 L__y SR A |
0 100 200 300

Figure 12



0.20

Iili!EIl'IlIlIl]IlIliIl

0

Figure 13



0.70

0.50

Figure 14




10

n+ 232Th

E, (keV)

Figure 15



10

n + 232Th

1
10 10™ 10° 10
E, (keV)

Figure 16



) O H W N = W = = . . L]
-184 keV 10,
504 keV ~ woeeon 28t
c)
2s 1P | V'

Figure 17



0.0

\ ! ! f

4.0 8.0 8.0 10.0
r (fm)

Figure 18

12.0



61 2an3yy|

(wy) 2
00l Gl 0¢ Sc 00

([“*s2]d)*"Bo



0'Sl

qclh

001

0T 24n31y

(wy) 4
G/l

0'S

G

(Z/Ld ] d)OLGO]



| ( QAnsiy

00l GL oS G¢ 00




77 g1y




{4s7qui) Bsprop (Po'd) 1y -

<

Al Lil =< "g>
m - 1,

nE.aMou ) ER -
Iv,,(d ") oW, ®

THR R R T TR T S S

42 4
Al /93

\u

cl

e 142

(ssqus) op/op (°d‘ 0) B, ,

€7 2ANs1Y

i oLLLLL
Q. .Q
(o )y, —

0
N
l.l—
2
T ro
R
L
o
X
g 90
2
S
g

0

¥o

90

—1 80

{4srqui) Bsprop (°n'd) 1y sz

{1syquu) Tsprop (°d* ) By v

-
o

™
o

A /7S
¥y oL erol

H_.____\\l

L2l =< "y > i

L] d -
m_.avnM 79 ?@w
_<hNA d"0) m—zvm ¢

R I R I
Z9L 19/ 7/
ASI /%3

20

vaQ

o¢

80

(1syqu) tprop (°d* 0) By, .




TARGET TOTAL NUMBER POSITIVE NEGATIVE

SIBy

93Nb

H03Rh

107Ag

109 Ag

104Pd

105Pq

106Pq

108Pg

113Cd

115[

1178n

121§h

1235

127]

131Xe

133Cs
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Br
Nb
Rh
Ag
104.105Pq
106.108pd:
113Cd
15[
1178n
Sb, I
Xe
Cs
La
Th
U

C.M. Fvanble et at, Physical Review C 46, 1542 {1992}
E.l Sharapov et al, Physical Review C 59, 1131 (1999)
D.A. Smith et al, Physical Review, to be published

L.Y. Loure et al, Physical Review C 59, 11 19 (1999)

D.A. Smith et al, unpublished

B.E. Crawiord et al, Physical Review, submited

S.J. Seestrom et al, Physical Review C 58, 2977 (1998}
L.Y.Loure et al, PhD Theis, NCSU 1996 (in progress)
D.A. Smith er al, unpublished

Y. Matsuda et al, PhD Thesis, Kioto 1998

J.J. Symanski et al, Physical Review C 53, R2576 {1996}
E.I. Sharapov et ai. Physical Review C 59, 1772 (1999)
V.Y. Ynon et al, Physical Review C 44, 2187 (1991)

S.L. Stephenson et al, Physical Review C 38, 1236 (1999)
B.E. Crawiford et al, Physical Review C 38, 1225 (1998}
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L n

NUCLEUS . ¥ (10-7 eV} unless noted

93Nb < 1,0

103Rh 1,42+ 1,4
- 0,59

107Ag 2,67 + 2,65
- 1,21

109Ag 1,30 + 2,44
- 0,74

104pd 2,53 + 10,4  preliminary {very)
- 1,7

106Pd 3,6 + 5,1 x10°6
- 24

108Pd < 1,2x10°6

113Cd 16,4 + 18,0
- 8,4

115[n 0,94 + 0,94 preliminary
- 0,34

1138n 0,86 + 1,94 preliminary
- 0,54

1218h 6,45 + 9,72 preliminary

. - 3,66

1238h 1,2 + 15,0 preliminary
- 0,96

1271 2,05+ 1,91 preliminary
- 0,43

133Cs 0,006 + 0,154 x 107
- 0,003

232Th 9,7 + 2,7

: - 1,8

2381J 1,35 + 0,97
- 0,64




ro = 1.40 rg = 1.45 ro = 1.50
o~
r =175 1.168 1.052 0950 .
&
ry = 1.80 1.110 1.000 0.903
ry =185 1.056 0.952 0.860
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