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Abstract

We construct a three-dimensional analytically soluble model of the nonlinear
effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR)
based on the SU(2,1) algebra. The full 3-dimensional model predicts further
enhancement of thé Double GDR {(DGDR) cross sections at high bombarding
energies. Enhancemerﬂ: factors for DGDR, measured in thirteen different pro-
cesses with various projectiles and targets at different bombarding energies
are well reproduced with the same value of the nonlinearity parameter with

the exception of the anomalous case of 1%Xe which requires a larger value.




One of the most interesting applications of Coulomb Excitation in heavy ion collisions
[1-8} is investigation of multi phonon nuclear Giant Resonances (GR) [2]. Possibility to ex-
cite multiple GR involves Bose statistics of collective excitations and constitutes the “family
property” of vibrational coI.lective motion in both finite (nuclei, clusters) and infinite quan-
tum systems. Within this concept, making no distinction between infinite and finite systems,
the excitation process can be modeled via a multidimensional quantum oscillator coupled lin-
early to the external time-dependent field, providing excellent agreement with the single-GR.
experimental data [2].

Validity of this completely linear theory has been questioned by nearly all the exper-
imental data wherever multi-phonon GR has been observed [2]: the double Giant Dipole
Resonance (GDR) excitation cross sections [8] are found about 1.3 — 2 bigger than follows
from theory. This shortcoming of the linear theory, known as “enhancement factor prob-
lem”, has been addressed widely in current literature within a number of approaches: higher
order perturbation theory [9], anharmonic effects {7], [10], concept of hot phonons [11-13].
Clearly, nonlinear effects, that in principle can not be neglected in finite Fermi systems [14],
are not easily dealt with either at a microscopical or even at a phenomenological level [7].

It is therefore appealing to construct a natural, soluble “minimal extension” of the har-
monic model of Coulomb excitations, in which deviations from the linear scheme are rea-
sonably described via a few parameters. Without dealing in depth with the microscopic
theory, we present here such a “minimal extension”. This single-parameter nonlinear model
can be solved exactly using algebraic properties of boson operator combinations forming
algebra SU(2,1). The model allows us to correlate all the experimental data for the “en-
hancement factors” in various nuclei and various bombarding energies, using a single value
of the universal nonlinear parameter.

Within the semiclassical approach [15] to Coulomb excitation, the projectile motion is
approximated by a constant velocity v on a straight line classical trajectory with impact
parameter b and internal excitation is treated quantum mechanically. The intrinsic state

{¥(¢)) of the system undergoing excitation obeys the time-dependent Schrédinger equation,
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WO/otT(1)) = [Ho+ V()] [T(®), ¥t =—o0)) =10}, (1)

where Hy is the intrinsic Hamiltonian and V() = v ()[D1, — DY) + w()D] + h.c. is the
channel-coupling interaction with Dt and D the dipole operators acting in the space of the
multi-GDR states created by the boson operators dt, with the angular momentum projection
m (A=c=1). The functions vy()(¢) describe the interaction with the électromagnetic field
[2], [4] (see below). The excitation probability of an intrinsic state |N) with N phonons in

a collision with impact parameter b and the total cross section oy are
Py(b) = [(N]9(t = co))?,  on =2 f bPy (b). (2)

The internal nuclear Hamiltonian Hy is nearly harmonic [2], [16], [17], so Hy = wN =
w Y, 4} dy,. In principle, this does not exclude anharmonicities [18] in the transition oper-
ators D1, D when expanded in terms of phonon operators

Dl=d +z> didl, do + 3 wmdbdl, dl, +2; 3 dbdl, dodl g + ., (3)
m1 ma mima

These effective nonlinearities [14], [3] could result from perturbation theory treatment of
anharmonicities in the phonon Hamiltonian, from coupling to other degrees of freedom, both
collective (e.g., quadrupole GR) and noncollective [11} etc. The linear limit of the problem,

DI, = dl, is exactly soluble giving the Poisson formula for the excitation probabilities

N o0
Py =arbe, p= X lahm= T [ va(etatf (4)
m=0,£1 m=0,+1

where the amplitudes o/*™™ are given by the modified Bessel functions K, and K, [2].

In order to reduce the number of unknown parameters in Eq.(3) it is reasonable to
restrict the higher-order nonlinear corrections ocz;. We save the first, dominating, nonlinear
term in (3) with its coefficient 0<z<1 and save only those terms in (3) which match terms
appearing in the expansion of the square root, DI, — df (1+ 2z Y, dtd,,)"/%

The nonlinear effects are now controlled by the single parameter . This may be justified,

by noting that the leading term is saved, while the ansatz for the higher order terms, which




should be small anyway, obeys the basic requirement that they get smaller as the order
increases. Further, this parametrization leads to a soluble problem.

The group theoretical solution is based on the consideration of the eight operators

1
Dt = (dt, —d})k+N/2, Df =div2k+ N, J*=_z(df—dh)ds,

T o912
1 1
D0 = 2[4 — ) (d — do) + 20k + N)] . DY =3 [2k+ N +dfd)].  (5)

and D™=(D*)!, Dy=(D{)t,J-=(J*)! with k= the Casimir invariant. They form a
closed SU(2,1) algebra, the non-compact analogue of SU(3). The pairwise commutators
between (5) can be evaluated directly: Three of them are [D~,D¥]|=2D° [Dy,Df]=2Dj,
[J=,Jt]=2(D3—D"). The other nonzero omes are [D~,D°|=2[D~,D§]= [Dy,J |=D7;
Dy, D§j=2[Dy,D°|= {D~,J*|=Dy, and [D~,D{]=2{J~,D%= —2[J~,D3]=J~. The remain-
ing nonzero commutators are given by Hermitean conjugates to the above. In the interaction

representation, the evolution equation iZ|4(t)) = e*HotV (¢)e~*Ho!|yp(t)) (1) with (3) reads:
i(0/08) | (£)) = 2612 [61 (£) D + 57 (£) D™ + 5o (t) Df + 5 () D5 | [9(2))- (6)

where #; = ve™* and @y = vee™*/+/2. Any product of exponentials involving the operators
from the set (5) can be reduced to a simpler exponential {(see, e.g., [19]), as due to closure of
the pairwise commutators between (5), no new operator structures arise while re-arranging

order of the operators in the time-ordered exponential that solves (1),(6)

w(®) = Teop { [

eiHDTV(T)e—iHonT} 10) = oD DT F I+ eDO+dDg 090 ga' DT+ Dy ) (7)
—00

where the eight time-dependent c-numbers, the Latins a — g, must be chosen so ¥(t)) (7)
obeys the Schrodinger equation (6). The ansatz (7) can be simplified using D~|0) = Dy10) =
J*|0) = 0; D°|0) = DY|0) = k|0), which follow from (5). The expression (7) then reduces to

(1)) = [1 = 4z (ja() + BOR)] T 40RO+ E ), (3)

where the first factor comes from unitarity,(1(¢)|#(¢)) = 1. The phase @(¢) is unimportant

for the following. Substituting (8) into (6), we obtain, after some lengthy algebra using
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heavily the operator identity e*Be™# = B+[A4, B]+ (1/2!)[4, [4, B]] + ..., the two nonlinear

equations for the amplitudes o and 8
i00/0t — Qo =By(t), 08/0t — QB = Bo(t), (9)

with @ = 4z{ii5(¢)8 + 7} (t)a] and the initial condition a(—oc) = B(—oco) = 0. After
projecting the asymptotic state (8) at ¢ = co onto the states with definite number of GDR
phonons, we obtain the non-Poissonian expression for the excitation probabilities
_ — NN
[(% + N) [4e (Ja® + |B72)]
NIT(%) [1 -4z (Ja? + BP)] ™

where & and § are the asymptotic solutions of the system (9} at ¢ = oo. Their values
“can be easily tabulated by solving (9). If z — 0, Eq.(10) is reduced to Poisson, while the
solutions to (9) are reduced to the harmonic amplitudes (4), || — jefo™| = Z£ K (¢)
and |B] — |afe™|//2 = z—ifiKo (€). Thus, the harmonic results are restored. At nonzero
nonlinearity £ > 0, the multiple GDR excitation probabilities Py turn out to be enhanced
as compared to their values P{%™ in the harmonic limit, Eq.(4). The cross sections oy
and their harmonic values,o%*™ are given by integrating in Eq.(2) from the grazing value

1.2(A}® + A!®). The enhancement factors ry = oy /%™ can be studied and compared

with the data. The functions v, (t), in the notations £ = £, r = &t are [4,5]
Zopey New2 e
t)=Ff° ty=F - — igw? == e . (1
Ul( ) f 3 UU( ) \/_ l: ng f] F 2h2 [AzfgmN . 80MeV ( )

where f = (14 72)~% and v = (1 — v2)~%. In the strength F, my and e are the proton
mass and charge, 2, N and A denote the nuclear charge, the neutron number and the mass
numbers, the labels ez (sp) refer to the excited (spectator) nucleus in the colliding pair.
Let us discuss the energy dependence of the two-phonon enhancement factor ry. In Ref.
[20], we have studied this behavior at the bombarding energies in range 70 — 700MeV-A,
using truncated (two-dimensional} dynamics and neglecting the longitudinal response in

the excitation process (vp = 0). Within this “toy model” [20], the dynamics is described



" of the function

by the three operators D,D* and D which form the SU(1,1) subalgebra of the SU(2,1).
This “transverse approximation” works rather well in the above energy interval [20]. The
enhancement factor drops as the bombarding energy grows. This is not the case at higher
energies, when the transverse approximation breaks down and full solution based on the
SU(2,1) algebra is required. This is illustrated in Fig.1, where the enhancement factor 75 is
shown as a function of «y for the case of Pb+ Pb collision in the energy range up to 4 Mev.
The results of the transverse approximation are shown for comparison.

The remarkable fact about the full 3-dimensional model is that the enhancement factor ry
starts to grow again as the relativistic factor  passes the “extremal” point around y ~ 1.3.
In the “transverse approximation”, as shown analytically in [20], r; drops steadily at high
bombarding energies. Thus the 3-dimensional SU{(2,1) model predicts a new interesting
qualitative effect Which can be tested in experiments using higher bombarding energies.
This behavior of ry is related to the y-dependence of the “scaled” longitudinal function %
(Eq.11) [4,5): (t) = wy(t)e™ = Fv/2 [wfy;t‘?r- (feif") —i—z‘%fe"ff]. The y-dependence of the
two terms here is very different. While the first term scales as <y, the absolute maximum of
the second one scales as £/y = v2. The first term is proportional to the time derivative
Hf%,; which dies out at f=%oco. Therefore, in the harmonic limit, when
the longitudinal amplitude 8 reduces to thé simple integral over time of the function g,
the first term simply vanishes. The harmonic solution is then given by the integral of the
second term to give o ;yl-Ko(f) which dies out as 1/ as bombarding energy grows, and the
longitudinal response becomes negligible at higher bombarding energies as is well known
[2-4]. This is not the case at nonzero nonlinearity  # 0: the amplitude 8 is now given

by the solution to the coupled nonlinear system (9), and the first term in ¥ not only does

contribute but in fact becomes dominant. Unlike the second term, the first one grows with

-y and this determines the behavior of the enhancement factor.

We present below in Figs.2a-d exact numerical results for the cross sections calculated
according to Eqgs.(2), and (10) and using numerical solution of Eq.(9). Since the nonlin-

ear parameter z is an internal property of the nucleus in which the GDR is excited, it is
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reasonable to expect that it varies from one nuclear species to another. For the sake of
comparison with the experimental data, it is expedient however to choose a single average
value z = 0.29 for all cases and use it to calculate the cross sections. As seen in Fig.2, the
nonlinear model can in this way (no fitting} reproduce rather well the experimental values
of 7y for the twelve excitation processes of Pb (Fig.2a,b) and Au (Fig.2¢), using different
bombarding energies and projectiles. An exceptional case is Xe, where considerably larger
value of z is required. To illustrate this, the optimal values of z for each individual datum
.a,re shown in Fig.3, together with the adopted average value.

In conclusion, we presented a simple soluble model to account for the nonlinear effects
in the transition probabilities for the excitation of multi-phonon Giant Dipole Resonances
in Coulomb excitation via relativistic heavy ion collisions. The solubility of the model is
based on the group theoretical properties of the boson operators. It allows to construct
the solution for the dynamics of the multi-phonon excitation within the coupled-channel
approach. The well known harmonic phonon model appears to be a limiting case of the
present model when the nonlinearity goes to zero. The main advantages of the limiting
harmonic case (unrestricted multiphonon basis, preservation of unitarity and possibility of
analytical freatment) remain present in our nonlinear scheme. Therefore, the model can be
viewed as a natural extension of the harmonic phonon model to include the nonlinear effects
in a consistent way while keeping the model solvable.

At low enough bombarding energies, the enhancement factor drops as the bombarding
energy grows. This is consistent with the data and gives results similar to those recently
obtained in a different context, with a theory based on the concept of fluctuations (damp-
ing) and the Brink-Axel mechanism [11], [12]. The interesting property of the full three-
dimensional results obtained here is that the enhancement factor starts growing again at
high bombarding energies (~ 0.3—0.4GeV- A for heavy colliding nuclei.) Besides being an
interesting prediction to be tested in experiment, this behavior allows one to separate the
effects of nonlinearity considered here and the effects proposed in works [11-13]. The work

has been supported by the FAPESP and by the CNPq.
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Figure Captions

| Fig.l. The enhancement factor ro as a function of -y for °Pb+*%®Pb collision. The 3D
results vs. the transverse approximation results (SU(1,1) toy model, {20]) for z = 0.19.

Fig.2. (a) Enhancement factor r, for the DGDR, excitation in 2 Pb as a function of v
(open symbols connected by a line). The data [8] (filled symbols): triangle up - Zn projectile,
triangle left - U tagret, circles - Pb target and projectile. Theoretical values are given by
the corresponding open symbols. The value of the nonlinear parameter is kept fixed,
r=10.29.

(b) The same as in Fig.1a. Square - Ar projectile, diamond - Kr projectile, triangle down
- Ho, and circle - Sn.

(c) The same for the DGDR in Au. Circle - Kr projectile, square - Au projectile,
diamond - Bi projectile and triangle - Ne projectile. Open circles - theoretical values for the
Bi projectile (the results for Kr and Au projectiles are the same around « ~ 2).

(d) The same as in Fig.2(a,b,c), but for the DGDR in Xe.

Fig.3. The optimal values of the nonlinear parameter z for the thirteen processes dis-
cussed in the text as a function of the strength parameter F/w [see Eq.(11)]. Circles:
Excitation of the ***Pb projectile at bombarding energy ¢ = 0.64 GeV p.n. on the targets
(from left to right): 1 - %8n, 2 - '%5Ho, 3 - 28Pb, and 4 - ¥*3U. Triangles up: Excitation
of the *Pb target: (from left to right): 1 - 3Ar projectile, £ = 95MeV p.n., 2 - %4Zn pro-
jectile, e = 80MeV p.n., 3 - 3¢Kr projectile, ¢ = 95MeV p.n.. Diamond: Excitation of the
208Ph target on 2"?Bi projectile at € = 1 GeV p.n. Squares: Excitation of the 17 Au target:
(from left to right): 1 - ¥Ne projectile, £ = 1.7GeV p.n., 2 - %Zn projectile, £ = 1GeV
p.n., 3 - ¥Kr projectile, ¢ = 1GeV p.n., 4 - 3Kr projectile, £ = 1GeV p.n.. Triangle down:
Excitation of the *®Xe projectile on the **®Pb target at bombarding energy £ = 0.69 GeV |
p.n. (the “Xe anomaly”). The value of the parameter z = 0.29 used in calculations of the

enhancement factors in Fig.2 is shown by the solid line.
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