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Abstract

An analytical method is developed for evaluation of the effective astrophys-
ical S—factor to a very high accuracy. This method, based on the uniform
approximation, can easily handle situations involving rather strong energy—

~dependence in the S-factor. We analyze the reaction "Be(p,v)®B, which is
considered the primary source of high—energy solar neutrinos in the solar pp
chain.
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1. Introduction

In a recent paper, Jennings and Karataglidis [1] investigated apprbximations to the
effective S—factor for the reaction "Be(p, v)®B using different forms of evaluating the integral
over the Gamow peak. Their discussion is based on an asymptotic series that takes into
account the energy variation of S—factor up to second order( up to S” ). Though their
calculation up to S” is adequate for the above—cited reaction, one may eventually need to
include high-order terms in the series. A uniform expansion, which can generate these high-
order terms, was given easilier by Anderson et al. [2] and by Hussein and Pato [3]. Here we
apply the result of Ref. [3] to the reaction "Be(p,v)®B and assess importance of the term
proportinal to the third derivative of the S—factor 5. For the purpose we first give a short

surmnmary of the results of Ref. [3].
2. Calculation of the third derivative term 5"

Our aim here is to supply analytical evaluation of the rate formula valid for a very great
accuracy. This allows us to extract an expression for the effective S—factor which is needed
in several applications in nuclear astrophysics. The starting point of our discussion is the

rate formula

_ fm N3 poo 3 ~E/kT
R12—47?N1N2(27TkT) fo o(E)o® e By (1)

where N; is the density of nucleus ¢, p,, is the reduced mass of the two-nucleus system, kT
is the stellar thermal energy and v is the relative velocity. The cross-section o{E} is usually

expressed in terms of the astrophysical S—factor S(£)

S(E) 1 _S(E)

~~ e—27r17
E exp(2mm) -1 E

o(B) = : (2)

where 7 is the Sommerfeld parameter n = Z, Zse?/hv. For a non-resonant reaction, such as

"Be(p,7)®B, S(£) is slowly varying function of E and may be expanded as

()= 500+ B0 37 1850 .



where z = E/kT. Another expansion of S(F)

d5(Eo)
dE

1 d%5(Ey)

S(E) = 8(By) + > —T53

(& — Bo)kT + S——r5=(x — m0)*(KT)* + - -- (4)

is also used. In the above By is some convenient reference energy. A possible choice is to
take Ey to be the Gamow peak energy. Using the notation S = S and $™ = d"S/dE",

we have for the reaction rate R;y

Rus =21\r1N2(m2 T) 3 50 £, (a)F T)n , (5)
m n=0
where
fala) = _/Ooom"exp [—~ m]d:r : a= [W@;Zl?ez ] . \/ila_T : (6)

One can calculate the integral in Eq. (6) to high degree of accuracy using the uniform
approximation developed by Dingle [4]. The details of this calculation can be found in Ref.
[3] and the appendix. Using 7 = 3F,/kT = 3(a/2)??, f.(a[7]) in Eq. (6) is given by

1) = a2 Qur) )
where
o= (5) 10 = (5) S s ©

In Eq. (8) Pai(n) is the polynomial of n. Here we give results of I,(7) for 0 < n < 3 up to

third order in 1/7. They are written as

3 —35 665
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iFrom Egs. (5), (7) and (8), we can derive an expression for the effective S—factor
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n=0

where S@(0) = S(0) and S™(0) = d"S(0)/dE". Writing (13) in details up to ny = 3, we

Eo"In(7) - (13)

have

5'(0)
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Sets—mr = 5(0) [ Io(7) +
The above formula should be compared to that obtained by expanding around & = Eq

g s(n) (5,

Seff-ms = »_ ———=Fg" Z ( )n—-r(T) , (15)

n=0 r=0 r

3. Application for "Be(p,7)*B

In the following we use the above formulae (13) and (15) for the reaction “Be(p,v)*B.
An expression of the fitting curve for the S—factor in the energy region E < 100 keV was

obtained by Jennings et al. [5] and is given by

S(E) _ 0.0409

= 0.703 + 0.343F | 16
S(0) —oEmBrE T (16)

where E is in MeV. According to Refs. (1], [6] and [7], the recommended value for S(0) =
S17(0) is 1975 eV barn. The extrapolated expression (16) is useful as it supplies a mean to
calculate its derivatives. These are given up to §" both for the expansions around £ = 0
and F = Fy, in Table I.

" Our results for S.;s_us( expansion around F = 0, given by Eq. (13) ) and Sepz—nr
expansion around E = Ey, given by Eq. (15) } are presented in Tables I and ITI, respectively.
We see clearly that whereas S.f5-pr converges to the exact value at ny = 4( up to and
including S$™ ), Sefs—ms converges faster and only terms up to and including S are required.
It would seem therefore that S.ss_prs is more appropriate for representing non-resonant

reactions.

4, Conclusion



We have found in this paper that as far as the reaction "Be(p, 7)®B is concerned, excellent
convergence is attained in the rate calculation if S¢ss_pr is calculated up to and including
the fourth-order energy derivative term, while Sfs_p7g converges faster and one requires
including only up to the second derivative term. We believe that this conclusion is valid for

non-resonant reactions in general.
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Appendix. Uniform expansion of the thermonuclear reaction rate formula

and the effective S—factor for the non-resonant reaction

In this Appendix we show derivation of the effective S-factors Ses;_prs and Seps_pr for

non-resonant reactions.
A-1. Reaction rate and astrophysical S— factor

‘The reaction rate in the mixed gas of nuclei 1 and 2 is given by

1
1464

R12 N1N2 < O'(E)'U >, (17)

where N;, o(E) and v are the number density of nucleus i (¢ = 1, 2 ), the reaction cross
section for the collision between nuclei 1 and 2 at the bombarding energy( in the center of
mass ) of £ and the relative velocity between the nuclei 1 and 2, respectively. < A > is the

average value over the Maxwell-Boltzmann distribution

H
ZWkBT

<A>= ( )3/2/ d*v A exp[—uv?/2kpT] | (18)

where p, kg and T are the reduced mass My My /(M; + M;), Boltzmann’s constant and the
temprature of the mixed gas, respectively. Transforming the variable in Eq. (17) from v to

E using a relationship F = uv?/2, one obtains

5
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where 7(E) is the Sommerfeld parameter given by
?}(E) = ZldeQ/hfu ) (20)

where Z; is the atomic number of the nucleus 7. On deriving Eq. (19) we employed the

astrophysical S—factor, which is defined as

o(E) = ﬂg-)-e*m(@ : (21)

In nuclear collisions at energies very lower than Coulomb barrier, main energy dependences
are 1/FE and exp [—2#n(E)]. They are attributed to the geometrical cross section of a nucleus
and the penetrability through the Coulomb barrier, respectively. The energy dependence
of the astrophysical S—factor is therefore considered to result from the nuclear structure,
however, to have a very weak energy-dependence.

In general, the nuclear reaction cross section at energies corresponding to the stellar
interior temperature { e.g. Temperature in the center region of the sun is about a few keV
~ 107 K. ) is too small to measure using accelerators. One needs to extrapolate from data
at high energies( ~ a few 102 keV ) to such a low energy region. In some cases the energy
dependence of the astrophysical S—factor can be important to calculate the thermonuclear
reaction rate.

. Furthermore, due to recent development of experimental technique, experimental data
with great accuracy have started to be provided. At the same time they have started to
consider that the weak dependence of S—factor on the energy shoud be taken into account.
Formulae shown in this report is for such a case.

Using new variable x = E/kgT and parameter

Zl 262 b
a:[w\/ﬂ r”; ]\/klg_T:x/kB_T (>0) , (22)

Eq. (19) is rewritten as



R12

_ 1121’;’122 (WN:BT)W fo"" dz S(cksT) exp [—— (:1: + \%)] . (23)

In the next subsection we evaluate the integral (23) by using a conventional stationary phase

approximation.
A-2. Gamow peak energy

-On evaluation of Eq. (23), it is useful to introduce the Gamow peak energy E; and
T = 3Ey/kpT. They are calculated in the conventional stationary phase approximation.

The phase of exponential in Eq. (23),
(24)

behaves like a parabolic function with a positive curvature. Based on the concept of the
stationary phase approximation, we suppose that only a narrow range around the stationary

phase position

w0=(3)" (25)

contributes to the integration (23). g(z) may be able to be expanded as a Taylor power

series in x around zo up to the second order( Since g(z) behaves like a quadratic function. )

9(2) ~ gla0) + 5 a0}z — 20)” (26)

where g"(z) is the second derivative of g(z) with respect to . Eq. (23) is then approximated

- to

NN, f 8\ ° 9" (o) 2
Ry = 116, (TukBT) S(:vokBT)fO exp [— (g(:vg) + 5 (x — xp) )]dﬁ:
NlNg 8 1/2 2m 172
- - _— ) 27
T+ 6 (ﬂ'ukBT) S(xokpT) exp [ g(mo)]{g”(xo)} (27)

The Gamow peak energy F; corresponds to the stationary phase position x, through

EO = mngT . (28)

7



g(xo) and g"(z,) are given by

=33:0=:ﬂ='r (29)
- B

3a__s10 3 fa\ [a\7¥% 3 9
oy 38 sz _ 3 (ay (a\T 3 9 30
glm)=Fz " =5 (2) (2) 20, 21 (30)

respectively, where we used Eq. (25). We reach an expression of the conventinal formula of

the thermonuclear reaction rate

1 8 \2 2 .
ng = N1N2 (WukBT) S(Eg) 5(1{'7’)1/28 , (31)

where the Gamow peak energy corresponds to the stationary phase position ( the position

of the miniroum for g(z) ) and is given by

kaT)% ' (32)

By = mokipT = ( .

On the other hand, 7 is the minimum value of g(z) and is given by

3E, b\ 3 -3
=0 _3{2)". X 33
= %l (2) (kBT) (33)

Concerning the reaction rate expressed in Eq. (31), three corrections are and will be
needed to treat recent and future experimental data of nuclear reactions with great accuracy.
One is for a‘wea,k but significant energy variation of the astrophysical S—factor. Another
is for a significant error resulting from substituting a Gaussiﬁn form for the sharply peaked
exponential in Eq. (26). The other is for effects of electron screening( See Ref. [6], for
example. ). We consider only the first two corrections in this paper.

Now let us introduce the effective S—factor. jFrom Eqs. (19) and (31), S(Ep) is expressed

S(By) ~ {%(m)l/ze*}_lkBLT [D ” dE S(E) exp [— (-@% + 27m(E))]

= \/—g ;—; /Om dE S(E)exp [— (k_f? + 27”7(E))] : (34)



The r.h.s. of Eq. (34) is defined as the effective S—factor.
A-3. Buvaluation of integration by uniform ezpansion

In this subsection we evaluate the effective S—factor

Seff = \/g ;—; /000 dE S(E)exp [— (Eﬁ% + 27T??(E))]
= {g(w'r)l/ze_?}—l fooo dx S(zkpT) exp [w- (:E + %)] (35)

taking a weak dependence of the astrophysical S—factor on the energy into account. As-

suming that S(F) is an analytic function of E, one can expand it as a Taylor power series

in B around £ =0and £ = F,

S(E) = 2% ( j;i E=0) B (36)
S(B) = iﬁ (S, ) BB
=§;$ ( sﬁ;ﬁ, . ) g(—)*(:') E; B, (37)

respectively. Using the power series (36) and (37), one can write Eq. (35) in the form

2 12—+t (kpT)" 7 d*S
=4z T 38
Sers-r {S(WT) ¢ } ,;; n! ( dE™|g=o )fn(a) (38)
2 Y -] o0 (kBT)n dnS n . n .
respectively, where
oo a
= " — — ) 40
fula) = [~ dz amexp |~ (w + ﬁ)] (40)
Using a new variable u = 2™t!, Eq. (40) is transformed to
o) = s [ et (1)
" n+1Jo

with



L ok
Hp(a,u) = u™H + qu” T

(42)

In order to evaluate the integration (41), we employ the uniform approximation. Since the

phase in Eq. (41), H,(a,u), behaves like a parabolic function with a positive curvature, we

may be able to perform a mapping v — t which satisfies

H, (a, u(t)) = t* + A(a)
du

u(t = —00) =0, u(t = 00) =00, — >0 .

dt

The integration (41) thus reduces to

. ]. —A oo du 12
fn(a)—n+1e /_mdt (dt)e )

(43)

(44)

(45)

du/dt can be also expanded as a Taylor power series in ¢ around the stationary phase position

for * + A(a), i.e. t =0, and is written as

du i tk (d’““u
dt _k=0 I\ diktl t=0) ’
the integration (45) is then described by
—A oo dk*}*l o0
= Z—( ke )f dt t* e*
n+1 kI \ dik+1 t=0

x

<

fnla) =

2e—A o0 1 d2k—}-1
. (

)f dt t%* e
=0

+17= (2K)1 \ d2e+1
_ ﬁe—A i i i (d2k+1u )
o4l 2% R\ iR g/

where we used the formula

oo —am2 I, _ (2n - 1)” ki3
fo az e = o g2ntl

We calculate the stationary phase position defined as

O0H,(a,u)

ou =0,

U=Un

(46)

(48)

(49)

to begin with. From Eq. (42), the kth-order derivative of H,(a,u) with respect to u is

written in the form

10



O H,(a,u)

H®(a,u) = S22
= bt {Gk(n) +a(=)Dy(n) T (B21)
k
:IJ( 3—1)) (k>1)
==ﬁ( SHG-1)  (k21) .

Using Egs. (50) — (52), H{!(a,u) is given by
1 _ a u_m}
n+1 2(n+1)

= g W 1 {1—2u_2€n3+1>}.
n+1 2

HP(au) = v {

The stationary phase position u, is then given by

(a) 2!1134-1! " n+l
Up 2= [ = = |- .
) -G)

One can also obtain the following relationship from Eq. (54)

2
=2(=)" .
“ (3)

(50)

(51)

(52)

(53)

(55)

Since u, = u(l = 0){ the property of the mapping © — ¢ ), A(a) in Eq. (47) is calculated

by
A=Hy(a,ut =0)) = Hyla,u,) .

Substituting Eqgs. {54) and (55) into Eq. (42), one can write A(a) as
3 —1/2
Ala) = Hola,u,) = (u-r) + 2(%) : (HT)

ROARONGIS

Substituting Egs. (54) and (55) into Eq. (50), one obtains the following expression

A 7N 1=k(n+l1)
He = BP0, u.) = (3) {Culm) + 21 Dem)}
Using Eq. (58), H{®(a,u,) is expressed by

11

(56)

(57)

(58)



Hy = H (a,un) = (%)_(znﬂ){ni 1 (ni 1 1) * (n :« 1) (2(n1-|- 1) * 1)}

_ (%)_(zn“)%%l—)z . (59)

We here rewrite Eq. (47) so as to have similar a structure of Eq. (27)

)

1 27 V2 | H (0, %n) —goiaay S 1 1 7d2tly
fn(a') = 1{ (2 } (2 ) g™ Hn (@) Z 9%k ol (dt2k+1
n+ - {a, 'u,n) k=0 :

' {271' 2n + 1)? 3(3)2”}1/2 .| H (0, un) L1 (d_%ﬁ_lﬁ )
BEES 3 3\3 2 i 2R \dPH o
2 T\
= — (71'7')1/2 € (—) ZQ%(U”[’F]) J (60
3 3 k=0
where
11 Hf)(a, Up) {d¥+1y 61
Qaor(un[7]) = 22k [l 2 (dtz’“““l t-_-0> ' ey

A-4. Calculation of Qax(un[T])

In this subsection we will show how to calculate Qgx(u,,), i.e. how to derive the kth-order
derivative of u(t) at t = 0. However, it is so elaborated that we will present the derivation
of only the first term of Qox(uy).

Firstly, one differentiates Eq. (43) with respect to ¢t. Noted that we don’t write the

parameter a in H, explicitly in the following.

dH,(u(t))  dH.(u) du _
it du  dt

2 . (62)

If one substitutes u, and ¢ = 0 into Eq. (62), both r.h.s and Lh.s in Eq. (62) vanish so that
one cannot obtain du(t = 0)/d¢. Thus, differentating furthermore Eq. (62) with respect to

t. one obtains

d2H, rduN\?2 dH, rd%u
du? (dt) + du (dtz) 2 (63)

and

12



(% t:O) B HT(LZ)Q(un) . o4

;From Eqs. (61) and (64), one can find easily
Qolun) =1 . (65)

Repeating such differentiations, dFu(t = 0)/dt* is expressed by a multinomial of H (un).
Fortunately, Dingle [4] provided the multinomial for Qx(u,) up to k = 10. We here show

them in case of k = 2, 4 and 6

1

Q) = 37773 (5H§ _ 3H2H4)

1
Qu(un) = 5775 <385H§ 630 H,H2H, + 105 HZH? + 168 HE Hy H; — 24H§H6>
2

1
Qo(tn) = F14720HI0
—51975H3 H? + 36036045 Hj Hs — 249480 Hs H3 H, Hs

(425425H§ _ 1126125H, HAH, + 675675 H2 HS H}

+13608H2H2 — 83160H5 Hy He + 22680 H, HyHs

12060 H HoHr — 1080H3H; ) (66)
where
H, = H® (u,) - (67)

Using Egs. (58), (51) and (52), Hussein and Pato [3] could succeed in reducing the above

expressions to the following simple ones

Qo(un(T)) =1

Qa(un(r)) = é; { 12n2 +18n+5 }
1

Qu(un(r)) = 57125775 [ 144n? + 336n° + 84n* — 144n — 35 }

1
Qs (un(r)) = T2y [ 179878 + 4320n° — 4320n* — 13320n* — 288n° + 6210n 4 665 ]

Qo (in(7)) = m Py(n) (68)

13



where Py(n) are polynomials of n. We can finally obtain the reaction rate formula for the

non-resonant reaction

R 1 NN ( 8 )1/2 2 ( )1/2 -T g
= — — \TT e e
12 1+ 612 1 7T,U,kBT 3 11

and two expressions of the effective S—factor

Seppomr =3 — B} ——= 2
S gom 0<dE" E:o> ,;k! (12)F *

1 ars 7 n o0 ng(n——r)
sS85, ) £ (1) Ettees
1I=Ms n;)n! O\ dE™ | p—p, ;U . ;k! (12)F 7k

with
Pg(ﬂ,)zl

Py(n) = 12n? + 18n + 5

Py(n) = 144n* 4 336n° 4 84n” — 144n — 35

Py(n) = 1728n° + 4320n° — 4320n* — 13320n° — 288n° + 6210n + 665

(72)
(73)
(74)
(75)

(76)

High nth-derivative of S(E) and high-k terms involving 77 can be negligible practically so

that one can set the maximum numbers of n and k, ny; and ky, respectively. For example,

if one chooses ny; = 2 and k; = 1, one can obtain the same expression of Eq. (5) in Refs.

[1] and [6].

Finally, let us show an example of Eq. (70) in case of ny; = 5 and kpy = 3

np =5 7
1/ dS
Seff-mMT= D = Eo( JEn

n=0

) kyp=3 ng('n)
B=0/ {5 k! (12)F 7F

S E"/d*S Py(n Pi(n Ps(n

_ _%< ) {1+ 2(n) n 4(772) -+ 6(7"3) g
oo T dE™ =g (12)7’ 2! (12) T 31 (12) T
5

& EpdS

=2 (dE” E:0> In(7)

n=0
g
2
+ 5y 970) Lu(7) + 155 57(0) Is(7)

= S(0)Io(7) + Eoy SV (01 (1) +

14

|

59(0) 1) + 28 59(0) I3(r)



where

and

S (0)

)

S
~ dE™| =0

-39

665

Iir)y=1+ (1)

35

+

T (12)2 72 T 3T (12)

385

—5005

11(7') - 1+
89

(12)r *

2! (12)% 72 T3 (12)3 73

3005

85085

IQ(T) = 1+ (12)7_

167

RN

21025

1616615

Ig(T) =1+
269

27 "

21 (12)2 72 T 3T (12)F 9

59101

9564065

I4(’7') =1+ (12)7_

395
_[5(7") =1 +

* 2! (12)2 72 * 3! (12)3 73

133345

36159515

(12)7

TomE e Taraep o

15

(79)
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TABLES
TABLE I. nth-derivative of the astrophysical S—factor, S)(E), at the Gamow peak energy
Eyp corresponding to the temperature T. S(E) is caleulated by So[ b/(a + E) +c + dE ], where Sy
= 19.0 eV barn, a = 0.1375 MeV, b = 0.0409 MeV, ¢ = 0.703, d = 0.343 MeV~! and E is in MeV.

These parameters are taken from Ref. [1].

T Ey S S 5@ 53
—2 -1
(1K) (keV) (éVbarn) (10~ barn ) ( 10°2 bam ) ( 107 b )
E=0 19.01 3459 59.79 1304
19 15.45 18.54 26.70 43.44 —85.20
13 16.30 18.52 _26.34 42.72 _83.34
14 17.12 18.49 —25.99 42.04 8158
15 17.93 18.47 _25.65 41.39 ~79.90
16 18.71 18.45 ~25.33 40.77 _78.30
17 10.49 18.43 —25.02 40,17 ~76.77
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TABLE II. The values of S¢js—psr, in €V b, using the fitting function for S(E). Ep is in keV

and T is in 10% K. Sefs—prp refers to Eq. (13).

T=12 13 14 15 16 17
Ey 15.45 16.30 17.12 17.93 18.71 19.49
Sess 18.69 18.67 18.65 18.63 18.62 18.60
Seff—MT
mr=1 k=1 18.62 18.59 18.56 18.54 18.51 18.48
np=1 ky=2 18.61 18.59 18.56 18.53 18.51 18.48
oy =1 ky=3 18.61 18.59 18.56 18.53 18.51 18.48
nr=2 ky=1 18.70 18.68 18.66 18.65 18.63 18.62
nyr =2 kpy =2 18.70 18.68 18.66 18.65 18.63 18.62
o =2 ky =3 18.70 18.68 18.66 18.65 18.63 18.62
n=3 ky=1 18.69 18.67 18.65 18.63 18.61 18.60
ny =3 ky=2 18.69 18.67 18.65 18.63 18.61 18.60
o =3 ky=3 . 1869 18.67 18.65 18.63 18.61 18.60
nw=4 k=1 18.69 18.67 18.65 18.63 18.62 18.60
=4 ky =2 18.69 18.67 18.65 18.63 18.62 18.60
ny =4 ky =3 18.69 18.67 18.65 18.63 18.62 18.60
oy =5 ky =1 18.69 18.67 18.65 18.63 18.62 18.60
oy =5 ky =2 18.69 18.67 18.65 18.63 18.62 18.60
ny =5 ky =3 18.69 18.67 18.65 18.63 18.62 18.60
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TABLE III. The values of S¢sy, in €V b, using the fitting function for S(E). Ep is in keV and

T is in 10° K. Seff-ms refers to Eq. (15).

T =12 13 14 15 16 17
Eo 15.45 16.30 17.12 17.93 18.71 19.49
Sers 18.69 18.67 18.65 18.63 18.62 18.60
Seff—Mms
ny =1 ky= 18.69 18.67 18.65 18.63 18.61 18.60
nag =1 kus = 18.69 18.67 18.65 18.63 18.61 18.59
nr =1 ky= 18.69 18.67 18.65 18.63 18.61 18.59
ny =2 k=1 18.69 18.67 18.65 18.63 18.62 18.60
my =2 ky =2 18.69 18.67 18.65 18.63 18.62 18.60
N =2 kuy=3 18.69 18.67 18.65 18.63 18.62 18.60
ny =3 ky=1 18.69 18.67 18.65 18.63 18.62 18.60
nar =3 ks = 18.69 18.67 18.65 18.63 18.62 18.60
nar =3 ky=3 18.69 18.67 18.65 18.63 18.62 18.60
ny =4 ky=1 18.69 18.67 18.65 18.63 18.62 18.60
n=4 ky=2 18.69 18.67 18.65 18.63 18.62 18.60
ny =4 ky=3 18.69 18.67 18.65 18.63 18.62 18.60
nr=5 ky=1 18.69 18.67 18.65 18.63 18.62 18.60
N =5 ky =2 18.69 18.67 18.65 18.63 18.62 18.60
Ny =5 k=3 18.69 18.67 18.65 18.63 18.62 18.60
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FIG. 8. Neutren skin thickness as a function of the initial proton fraction for a droplet with

A = 20. The meaning of the lines is the same as in Fig. 4.
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