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Abstract

Following previous discussions concerning the
field theoretical derivation of Kadanoff's scaling
lawé, wé apply the method of "Soft Quantization" to the
derivation Qf a homogeneous renormalization group
equation. This equation is similar to the one proposed
recently by S. Weinberg. 1In addition to our attempt to
close the "communication gap" between physicists work-
ing on Critical Phenomena and High'Energy Physics, we
discuss some new applications of such homogeneous dif-
ferential equations to perturbations around scale

invariant models.
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1)

In a recent paper S. Weinberg derived a homoge -

neous parametric differential equation which for certain
problems in high energy physics seems to have a larger

range of applicability than the Callan-Symanzik 2),3) equa

4

tion. A similar equation for the scalar A° coupling has

been known to physicist working on applications of field
theoretical methods to critical phenomena. 1In fact it is
the infinitesimal version of the Kadanoff scaling law 4)

for correlation functions at non-critical temperature. In

5)

reference this equation was derived on the basis of

"normal product" properties. Subsequently its validity

6)

was argued on the basis of loopwise summations . Using

methods similar to those of S. Coleman and E. Weinberg 7),
8)

the authors in reference gave ‘a ‘third arqument in favour

of its validity and also showed how results of Kadanoff 9),

Wilson 10) 11)

+ Riedel and Wegner can be obtained in a

very economical way by using methods of renormalized quan-
tum field theory. In this note we want to give first a
finite (i.e. without using cutoffs or regulators) deriva -
tion of the homogeneous scaling equafion in D=4 dimensions

and then point out some interesting applications to perturbha
tion around exactly soluble models. We also derive a similar,
slightly more complicated homogeneous scaling equation,which
stays infra-red finite for D < 4. Our derivation 1is an
elaboration of the remarks made after formula (7.13) of

5)

. In the BPH renormalization approach, in the
12)

reference
'version of W. Zimmermann , one obtains the renormalized
Green's functions by application of the finite part pres-
cription to the Gell-Mann Low formula for the time ordered

functions (for brevity we argue with an A4 selfcoupling) :




<TX> = Finite part of < T X, QXP';[“K.‘{(A‘,: dx >{;j
- (

N

. 1)
‘§:> ]] A(&) ) QQ = omission of vacuum bubbles.
1

i -
With the help of Feynman rules in momentum space
and by the application of Taylor operators on each renor

12) one obtains absolutély convergent

malizarion part
Feynman integrands, i.e. any subintegration leads to a
convergent expression. By adding finite counter terms to

the Lagrangian, i.e.

n y
4 z 2 4k YUY X —C
;',/»C,H S A ARA - ?3}154 ra A + b3, 4234 _47/@ A )

one obtains through formula (1) the Green's functions
(resp. vertex functions) with prescribed normalization

conditions 13)

at fixed spots in momentum space. The
desired homogeneous equation (1) is however only consist
ent with normalization at fixed value of the mass parameter.
Hence one needs a Taylor subtraction scheme in which the
Taylor operatoré acts not only on the external momenta of
the renormalization subgraphs but also on their mass. Such

a scheme was proposed by Gomes, Lowenstein and Zimmermannl4)

in connection with the treatment of Symmetry-breaking 15).
Adapted to our situation, we define the following"Taylor"-
operators on renormalization subgraphs:

a zero degree Taylor-operator:

’fw)F(ﬂ,m)‘: F(@/4) (3)

"and a second degree "Taylor“operator
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The F(pi , m) are either the selfenergy or the
vertex-normalization parts. The renormalized Feynman
integrand associated with a graph f‘ is given by the

forest formula 12)

which just solves the problem of over
lapping Taylor operations. Note that the Taylorvsubtrac—
tion scheme (3), (4) does not creates infrared divergen-
cies. The first subtraction of the two point function is
done at m = 0, but the highér subtractions, which if done

at m = 0 would lead to infrared divergencies, are actually

done at m = yu,.

It is now easy to see that the chosen Taylor sub-
traction scheme gives the following normalization condi -

tions for the yerfex'functions

(4) .
" ipzo, meu) s -e) (5a)
(2) .
ol “ipzo, men) = ¢ (55)
] o -t
P (p=o, mp)* (5¢)
‘ DOmE
and l"(z)(P,—o, m=0) =0 (5d)
As the usual BPHZ Taylor-subtraction would cor-
-1 (N)
respond to "intermediate" normalizations of [ at p=20

(and m arbitrary), the Lagrangian (2) with the Taylor
subtraction scheme (3,4) and a=b=c=0 leads to the norma
lization (5) for the vertex functions. If one wants to
change (5) one has to add finite a, b and ¢ counter-terms.
- For the derivation of the parametric différential equations
we follow the usual procedure of the normal product forma-
lism. Defining integrated composite fields ("differential

vertex-operations")
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With the help of the renormalized Gell-Mann Low
formula (The subscript of N is related to the degree of
the Taylor operator for graphs containing the composite
vertex), we first note that there is an algebraic iden-
tity between A\ and the A, :
' . '/'li'\’)
J jHN) _ ( . =~ A, ,
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The parametric changes for the vertex functions

may be expressed in terms of the differential vertex

operations 16) ("renormalized Schwinger action formula")
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Note that it is £he validity of these rules which
allows to reinterprete the original Lagrangian (which was
just a "bookkeeper" to manufacture the renormalized Gell-

Mann Low perturbation theory) as a composite field:

i(x) =4 t\jqa‘Aa"A - m* N AL - N (11)
EIACK: o2
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The integrated bilinear field equation 17):

TN, pFAJO X ST = 4T, pAloX 3 Sor
+r A <Th/&%"](x)_f> + ,_Z 8 (x-%,) éTX?

3!
(12)
gives the counting identity 16):
V) (N)
(13)
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We now have five operations ,g%nl ’ ;l , O , N

2\ oMt
and the mass insertion Z&O expressed in terms of three

(linearly independent) [\. , 1 =1, 2, 3. Hence there
must be two linear relations between the five operations.
In other words, in addition to the already established

relation

wa-AWW

bml (14)

there is a homogeneous parametric differential equation




Qultey - 25N #2y=C

(16a)
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! /
where the /\t. s and /f(zq/,_- s only depend on g .

Since the determinant is nohvanishing in lowest
order this system is soluble for § ,}3 and Y, in
perturbation theory. However for the determination of
these coefficients it is more convenient to use the
normalization conditions (5) directly. The "mass" m2
is according to (14) a parameter "conjugate" to the

composite operator N [AZJ . In the field theoretical

18)

treatment of critical phenomena this operator re -

presents the energy fluctuations and therefore m2 is the
same as the temperature t (more precisely the deviation
from the critical temperature). Once one is aware of
this physical interpretation, the statement that 15 is
the "would be" anomalous dimension of the energy fluctua
tion (i.e. it is the anomalous dimension at a scale in -
variant point )0 where é?(\ﬁ = 0 ) is to be expected.
In order to see this formally, we derive the parametric

differential equation for

('J) ) ) 3 "ﬂ('V
PAz = Z TN o X 5 (17)

Going through the standard arguments 19) 20) we

obtain
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where gxz is given in terms of "cat graphs" 5)
The normalization condition
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On the other hand from (14) one has
]I} (1) " \2)
:;}..q S VL (21)
am- F=0 2 A p=0
the normalization condition (5¢) reads
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and hence together with (21) and (20) gives:
oZB = gAL (23)

Anybody who is familiar with the theory of critical
phenomena will now realize that the homogeneous parametric
differential equation (18) at a zero of f% is nothing but
the infinitesimal version of the Kadanoff 4) scaling law

(m2 = t) at zero magnetic field

. . !
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dimension of the field = 222+ )%_ (25)



The inteqration of (18) for}} # 0 leads to a
generalized scaling law which in case of the existence of
a long distance zero /\o of 8 with p,()“')) () corrects
the Kadanoff scaling law. The generalization to correla-
tion functions with higher number of energy fluctuations
and other composite fields are straightforward and entire
ly analogous to the derivation in the case of Callan Syman

zik equation 19) 20).

The inclusion of broken symmetries does also not
present any difficulties. Since the renormalization theory

of broken discrete symmetries as the linear breaking of the

21)

A4—model is a bit tricky , we will only comment on a

continwous broken symmetry, say in a two component model,

when Ward Takahashi identities simplify the renormalization

procedure. It has been demonstrated elsewhere 22)

23)

that the
loopwise reswwmation procedure of B.W. Lee can be already
performed in the Lagrangian by using "soft quantization"
around the pion mass. Suitable normalization conditions con
sistent with this quantization lead to three parametric dif-
ferential equation, an inhomogeneous "Goldstone-Limit" equa
tion involving only the mass insertion operator, a Callan-
Symanzik equation having the bilinear mass insertion and in
addition a trilinear insertion (which also can he neqglected
at high space like momenta) and a homogeneous Gell-Mann Low
type renormalization group equation. However by changing

the quantization in such a way that also the symmetric mass
in quantized softly, i.e. by using Taylor-operators which
act on the symmetric mass in the same way as (3) and (4) ,

we obtain a subtraction scheme which is compatible with the

normalization conditions { t = (symmetric mass)2J :
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We obtain two inhomogeneous differential equations

) PlN’ :

1{N) )
expressing R “ and in terms of bilinear mass in-

A,) { )
sertion as well as the homogeneous equation

v
. -
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Ny ‘f‘)ﬂ'/u 2 2 (26)
The integration of this equation with the methods

of characteristics leads for’ﬁUb7 =0, ﬁ%)& > 0 to the

Kadanoff scaling law with thé built-in cérrections 5) .

Starting from such homogeneous equafions in a situation

with several coupling terms, Di Castro, Jona-Lasinic and

Pelitti 8)

showed that all the critical phenomena problems
which had been discussed previously in the Kadanoff-Wilson-
Wegner framework (including tricriticality, cross-over in-
dices) may also be very elegantly described in standard

local quantum field theory language.

The normalization condition and the related Taylor
subtraction scheme (3), (4), (5) on which we have hased
our consideration lead to the infraredfdivergencies for
super-normalizable couplings. Thus our model in D = 4-¢
dimension develops the well known poles at rational ¢ 24)

due to the normalization (5d). This shortcoming can be

repaired by replacing (5d) by

e | (27)
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The corresponding Taylor-operators are slightly

modified. Instead of (4) we have:

1t Flom e 2 (3E)

L . o
ms=
4 (28)
, y . - P
o v b w2 2) I3
& ST p /p=0 INT s
L < L k« !m=_/1 !E:!:\'”
The Lagrangian in Normal product notation has now
the form |
) ‘ " ~M A - ’mz—ﬁ?’ M f 7;(
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e ] 1 — '4\, N [AL{/] (29)
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Note that part of ‘the mass term is quantized soft i.e.
with N2 .
The inhomogeneous equation (9a) as well as the
relations (9b) follows as before. The mass term in the

counting identity (13) consists now of two parts

| e , s (N
NF’””) -'/‘Z' q) A,_g ’-\—’ZA,. "")’(WZ"A/AO -‘Alﬂzl "

e N : v (30)
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Finally ;Lu?éz, is (as can be checked directly
e

by use of the forest formula) a Linear combination of the

linearly indépendent operators: /_\"1 , A, g ,Ag and
2 .2 _ A
et do = 4y (N
P |
D ) ]'I[N) 4 \ ) A J A I ~ A l '
M2 = Ay F Y By v B, 797 (31
. (.),/"l .
The Zimmermann identity reads
4 ,
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2 - o2 A AT
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The X' s and ) s can be computed from the
normalization condition (27) and (5b), (5¢c), (5d). They
are numbers which just depend on g , in particular because

(27) fxi'= 0 . Hence again using (9a) we see that 3

°g '
2 2
N - Z(m —/4/) 337‘"7_ ’ Qlu:bg/«z + O(q(mz,/“?%;n-z and

iy A_ + )\;/(Mz— L) %ﬁ" are linear combinations of
Al ’ A , and A3

The linear relation must be of the form

_ ) "
LQ/“Z‘}' Y dm) } ’A/)fp( i

(9_//{ ¢ + m=>

where Si ’ 51 ' and Jk» are only functions of
g . Again one shows from the normalization conditions

that
0y 4 51, o B’A

and

L8 = )2

By using the methods of characteristics one ob -

tains a global scaling law of the form

- D-2 — {N)
_m DN -‘V"(Y’- .
| (eeee Rv) m//“/‘ar,\ = A ox w ! ]
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(},
[T
g x = " f, 1) %’
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(
m2 : 5ol (&
d _ . _ =2 420 S 9)
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For,X —b () the assumption of the existence of a

long distance eigenvalue )\

\, still leads to the scaling

2
law (24). The reason is that asymptotically the m

still behaves as .
- 7(‘L" ('Ss.c)
W A m?

Where 510 is the value of Si at /\o .
The new nofmalization leads to a more complicated "effective
scaling mass" but asymptotically anything looks as in the

old framework.

The only additional problem is to show that m -+ 0

a2)
really means zero mass, i.e. | —_— 0
"):O w0

For this we hawve to use the existence of a zero ,Xo of }3

with P'(,\,))O . Fortunately the existence of such a
zZero can be argﬁéd on much more solid grounds than in the
case of a non trivial short distancé (Gell-Mann Low) zero.
Namely in two dimensions we know that the soluble Lenz-Ising
model leads to critical powers for correlation functions at
large distances. On the other hand according to Wilson 10)
the Lenz-Ising model can be approximated to arbitrary ac-
curacy by 4th degrees polynomials. The evidence for scale
invariant power behaviour at criticality for three-dimension
al systems comes from high-temperature expansions as well
as from Wilsons "approximate renormalization-group" discus-

sion 10).

For a detailed treatment of Kadanoff scaling laws

in D - dimensional a% - theories based on our new normaliza



tion conditions in particular for the proof of existence of
the m + o correlation function for nonexceptional momenta

we refer to a forthcoming publication.

We finally would like to mention another interesting
application of homogeneous parametric differential equations
| involving the "temperature".

Consider mass perturbations in the Thirring model:

£ - £Tk v ¢ Ni@@': (33)
where § is the two component Thirring field.
In this case the "temperature" normalization oondi

tions (5) together with soft quantization via "Taylor"

operators (3;4) lead again to (18) with

= <7 §(z<,) - B(x,) 3()’1) $(/N)>

25)

(2N)
r

But an adap&ation of an argument to the case

of soft quantization leads immediately to [ﬂ(A)= 0. By a

simg;e reparametrization of the coupling constant in the

massive-. theory, one can arrange things in such a way that
4q.~ . - i'- .

the anomalous-dimension of § and '\L}§§’J are identical

to those in the massless Thirring model 26), namely

Xi = )«’?- amd X§§ () = L[%" +W nJ

4 *
(34)

Note that Mfé runs through the range of all
values allowed by general principles of positive definite

metric quantum field theory:
for -~ o <xL0™ ) 0 < b-‘%& +4 = dim ¢ § £ o0
In order to construct the (nontrivial!) massive

theory from the massless one, one may think of two dif-

ferent methods:




A) Use the standard Gell-Mann low perturbation theory for
time ordered functions (1) where instead of free field
products the Xo is replaced by products of operators in
the Thirring model. In such an approach the perturbation
by gl\/f.é@[c\??‘ would either become infinitelly strong at
long distances if Aim 5@4 lor at short distances for

dim & & >2 .

In the first case one has to add renormalization
counter-terms of dimensionality smaller than two, whereas
the second possibility leads to a nonrenormalizable situa-
tion with increasing perturbation order. It is obvious
that for the first case-the counter-term is again of the

§§ form, since the mass operator is the only symmetry
preserving operator of dimension smaller than two. In the
nonrenormalizable case din§§ >2 , it seems that the scaling
equation (18) restriéés the structure of possible counter-
terms. 1In fact this "nonrenormalizable" interaction may
be the first example of a case where the usual infinity
ambiguity of counter-terms is eliminated by the requirement
that scaling equations holds in every order of the perturba
tion parameter t . These remarks are at the moment some-
what speculative because we have not carried out any detail
ed investigation of this perturbation theory.
B) Using techniques which were recently developed by Syman
zik 27), one may construct asymptotic expansions for small
t . The use of differential equétions (18) instead of the
Callan-Symanzik equation turns out to be somewhat more con
venient. In the case of the Thirring model this asymptotic

expansion is an expansion of F(N)

fractional powers of t = gl-®

(24) for $< 4 into

. The coefficient functions




of this expansion are functions of the momenta (respectively
of the coordinates, since these computations for the Thirring
model are somewhat simpler in x-space) which can be computed
solely within the massless Thirring model with the help of
Wilson's operator product expansion. A detailed discussion
of the application of Symanzik's methods to the massive
Thirring model will be given elsewhere. The connection of
this approach with the conventional perturbation theory
discussed previously is at the moment not completely clear.
In our opinion investigations on the massive Thirring model
as we proposed will be important for the further development
of "Constructive Quantum Field Theory" which up to now has
been mainly concerned with a particular class of super-renor

malizable theories 28).

Finally we want to point out that the Thirring model
provides a nice illustration for the concepts of "thermo-
dynamic relevance" introduced by Kadanoff, Wilson and Wegner.
We remind the reader that this model has two dimensionless
parameters: the anomalous dimension of the field 81} and
the "continuous spin” s . The appearance of this s is
related to the fact that in two dimensions the usual concept
of spin looses its meaning. There are two "relevant" fields
of dimension smaller than 2 (in certain range of coupling
constant‘A ), the symmetry (phase symmetry) conserving
NE §J and the symmetry breaking N@ yo§ [ + h.c.
where X;: (2‘ ;) . If we put s = 0 we‘also may introduce
the linear symmetry breaking term: § + (Pf . Because of
the lack of spontaneous symmetry breaking in two dimensions
thig last interaction can not lead to first order phase

transitions; however it nevertheless plays an important




role as perturbation of the scale invariant theory.
For

o4 ,_Jf.n‘ peNgd] +sMERT thal wh(E43') o

one obtains with the normalization conditions (F = Legendre

conjugate variable to h) :

~ P .éﬁr'(l)?/ oy s ,—v(‘/)/

ot }p=° s=6 5 pr  pe ) peo,ss0  (36)
eopd) oo £ =pt Fao gsp F=0

’

are equal to their zero order values, and with the help of

soft quantization the homogeneous equation
(V)
2 - Fo m}[‘ =0
Z’”’a‘if + 5, NEZ + SN = 2 (V+F2) s (37)

and three inhomogeneous equations which we will not write

down we obtain a Kadanoff scaling law for three "relevant"

variables.

) Lo = . .
The operator 3% j with i, N[§jﬂ§_] is marginal,

i.e. has dimension two. If we introduce it as an additional

perturbation on LTh , 1t remains marginal because of the
asymptotic conservation laws of iﬁ and i&f . Conservation

laws of this type, which maintain the scale-invariance of

the marginal perturbation ;% jA under its own action, are
in our view the necessary prerequisites for obtaining
critical indices resp. anomalous dimension which depends
continuously on a dimensionless coupling strength 29). From
this viewpoint one should expect a deep connection between

the continuous version of the lattice Baxter model 30) and

the Thirring model.
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