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ABSTRACT

ON_AN INFRARED-FINITE NORMAL PRODUCT FORMALISM

An infrared-finite normal product formalism is
set up by subtracting Feynman integrands at some spacelike
point p = ¢ ,nz =—u2 . We show how the usual machinery, like
equations of motion, Zimmermann identities, Callan-Symanzik

and renormalization group equations, work. As an application

we discuss the Ward identity for a charged scalar boson.




ON AN INFRARED-FINITE NORMAL PRODUCT FORMALISM

I. INTRODUCTION

In the usual BPHZ renormalization scheme(‘) formal
Feynman integrals are made finite by subtracting a suitable
number of terms at zero external momenta. Since at these
momenta the massless theory has infrared divergencies, in
order to study this limit one has to perform a finite
renormalization on the Green functions and composite fields,
imposing normalization conditions at some spacelike point
Dz = uz (2). It seems convenient to have at one's disposal
a formalism, which avoids infrared divergent intermediate
steps, especially if one is interested in soft quantization
of theories with spontaneously broken symmetry, Gauge theories

etc.

We will set up such a scheme by subtracting our
Feynman integrands at some point pu=nu , With nz = -uz
The details will be spelled out in Section II in the context
of the Au theory. In Section IIl we address ourselves at
questions of infrared finiteness of Green functions and normal
products. The Ward identity for a charged scalar field will

be discussed in Section IV.

IT. GREEN FUNCTIONS AND COMPOSITE FIELDS

Y
Considering A theory as an example, we may

define Green functions by(3)



6™ (xyh..., Xy) = <OITIA(X) .. A(Xy) 10> =

finite part of (Oeo|T(af0)(x,)... A (k) exp i (11.1)

Ling (AC)) (y):d"y 05 (0)

-

where A(O) is the free field given by

1 2.2
Lo= 1 ps¥a- =mA (11.2)
u
2 2
and
_ 1 2 4
Lint = — aA -2 ] (I1.3)
2 4!
Expression (II.1) is a sum of Feynmann integrals
of the type

fdky ..o dkg To(k,PLm,e ,n)

where G indicates the corresponding Feynmann diagram. The

finite part prescription consists of replacing IG by Rr

a

Re = 2:_']_T_(-55(Y)) I . (IT.4)

UsFG vyel




where F is the set of all forests of G and sS(v) is a
generalized Taylor operator acting on a set of linearly
independent ingoing momenta of the graph y. Different sets
will produce different integrands, but the same integrals.
For simplicity we write down §° only when acting an one

variable, the generalization to more variables being obvious:

s OE(R) = F (n (8,1)) + (P-ny(s,0))° 2E
ap?

+
P=ny(s,1)

2
+ L (P-nyi(6,2))% (P-ny(s,2))F 2F
2 ap%;p8

(11.5)

P=n2(6,2) +o..

$
: beoe 4 = (Pony(88))%1... (P-ny(6,5))% 2F
8! P, aP%

P='0'12(<S ’6)

where n¥(6,j) are constant four-vectors. &(y) is the
i

superficial degree of divergence given in our model by
§(vy) = 4 - NY, where NY is the number of external legs of the

subgraph y. The finite part of equ. (II.1) is defined by

Tim 5 dk, ... dkSRG(k,P,m,e,n) R

€0

which is a well defined tempered distribution (Zimmermann's

theorem follows with trivial modification).

Y - In order to eliminate an eventual directional dependence

on s which would violate Lorentz invariance, we impose the

&




restriction, that p.n=0, whenever a momentum P occuring
in a generalized Taylor operator is contracted with n¥

produced by the action of a derivate evaluated at n .

7}

3P,

This amounts to a finite renormalization of Green functions
and normal products.

We will not need equ. (II.5) in all its complexity,
but each model will posses a particularly well suited
subtraction scheme. In general one will have to make a
compromise between the simplicity of the equations of motion
and the simplicity of normalization conditions and the rule
for pulling a derivative inside a normal product.For the purpose
of our illustrative A“ model, we will choose the following

subtraction operator 16:

Ir(p) = Fin)
ey = F(n) + (p-n)® 2E
ap®  |P=q
(11.6)
. 2
fER) = Fo)epen)® 2 | e L (pon) (pe)® 2 F
2P®  |pen 2 o aP% [P =n
§
(OEp) = Fln)e(pemy® 2E bt = (pen) ¥ (pon) s —2F
apa P=n 6! aPal...aPGG P=n

A11 independent ingoing momenta are treated on equal footing.

2
Only in r( )F(P)the first subtraction is made at P=0 in order

to have an a-type counterterm vanishing when m+0. At the price




of a more complex subtraction scheme, one could have eliminated
this counterterm altogether. The possibility of such a

subtraction at p=0 has to be verified in each theory.

We remark that the last subtraction in the two-
point function will not be infrared finite, but this fact
will not jeopardise the purpose of this paper, which is to
produce infrared finite Green functions and normal products.
We do get, for example, an infrared finite b-type counterterm,
in case we want to enforce the usual normalization condition
on the two-point function by adding a term of the type
L auA(x)au A(x) to the Lagrangian.
2 _

We now state the normalization conditions

following from equs. (II.6), which will be needed later on.
Every logarithmically divergent Feynman integral vanishes
after subtraction, when the independent momenta P; are set

equal to n. For example the four-point function

y
P (PP, Py =P -P,-Pg) satisfies :

L
r )(n,n,n,-3n) = trivial contribution (I1.7)

For quadratically divergent expressions of say

two independent momenta F(P,,P,) we get after subtraction:

DyF(P,,P,) = F(0,0) =0

PIPZ u v 2
Dy  F(Py,Pp) = (g"¥ - 2 ) —2F =0 (II.8)




Notice that only in the process of manufacturing
finite integrals, when applying the operations (I1.6) do we
put n.p=0, that is the n.p=0 rule is part of our “"finite

part" prescription.

Y
Our A theory is thus normalized as

2
r ( )(p’_p) |P2=m2 =

ar (*) (p,-p)

2
3P

= R (11.9)

P2amy
r‘(“) (n,n,n."3n) = ig

Up to Z"d order our two-point function for small m2 is:

2

F(2)(p,-pyai(p? -m® 42 - o ] g’P*[ Tog(- =) - 1]} (11.10)
4 2
12 (4n) "
2 2 m2 |
a = —-—ﬂ——;- m [ Tog( =) - 1]
12 (4n) y

Had we wanted to implement the usual normalization
2 2 2 2
r( )(n,-n)=-i(m +u )condition by adding an ip b term the result

for a and b would be:



2 ) 2
a = ——3————: m log —
12(4w) u (I1.11)
2 2 2
b = - -—9-—-“- {0 - "'2 log "'2 Yo (m+0)
12(4x) u M

We see that a+0 as m+0 and b stays finite in this limit.

The infrared finiteness of these Green functions
will be demonstrated in the following section.

Normal products are introduced as usuallf Fis aformal
product of the basic field and its derivativies of canonical
dimension d, then the normal product of degree 6=d+a(a=0,1,...)

is defined by
<0|T NG[O'](X) A(Xp)... A(X )] 0> = (‘11.12)
=finite part of (°)<0|T:C%°):(X)A(°)(X1)...A(°)(Xn)expif:

f Line(AC)sty)ay 0y (0)

where the number of subtractions to be made for proper

diagrams is given by
6-Ny, if the vertex associated with @ belongs to Y
6(Y)={

(IT.13)
4-Ny, otherwise

These subtractions are made by applying the Taylor

operators around p=n




°F

t(5)p(p) =F(n)+(P-n)* aF +...+—l—(P-n)u}..(P-n)a5
a 8! *1 ¢
aP P-_-n BP o ap P=n

(I1.14)

i.e., only t(z) differs from 1(2) as given by equ.(II.6). In
order to do this, a set of linearly independent ingoing momenta
has to be chosen and different choices now define different
normal products. We will in the sequel only use normal products
obtained via (II.10) by choosing as n independent momenta

the ones associated with the fields A(X;)... A(Xn), since

these lead to equations of motion inside bilinear normal

products without the N“(auAa“A)-term.

The prescription contained in equs. (IT.12)-(11.14)
produces a set of infrared finite normal products as will be

shown in the next section.

One can in the usual way derive equations of
motion and Zimmerman identities for these normal products.
We may on the other hand, for 6 ¢ 4 say, introduce a set of
normal products, called ﬁs, replacing the operators of
equ.(II.14) by the ones used in the definition for Green

functions, namely equ. (II.6).

The equations of motion are then




(ai+m2)<O|TA(X)A(X1)...A(Xn)|0> = <0|T{aA(X)- gl (A) (X) 1> -

. 3.
N

- 12:_5(x-xk)<o|TA(xl)...R(xk)...A(xN)|0>

k=1
(11.15)

- 2 -~
<0|TN, [A5 A](X)X> = <0|TNQ{-—1- gA“(X)+(a-m2)A2(X)}X|0> -
3!

- iz_a(x-xk)<o| TX|0>
k

where R(xk) means, that the field A(X, ) has been deleted and
N
)

X = A(X).

i=]

Power counting shows that the minimally subtracted

- - 2
Ny's are at most logarithmically divergent, whereas Ny (A )

. satisfies the Zimmermann idendity.

- 2 - 2 - u - 2 A 4
Nz (A" )=Ny (uh™)+ri, (3 A3MA)+s, (A2™A)+tN, (A') (11.16)

where the coefficients are given by

MV _ 2 ~ ~
re- l(g"’- 0 ) 2 " <0|TN,[A J(0)A(P)A(Q )[0>PTOP) 5 o
8 n aP¥ 30V
\Y) - -~ ~
s=-L(g - ) 22 o)ri, VT (0)A(P)A(P) |05PTOP [P
8 n ap¥ 3PV
=L <o|TR,[A*1(0) (A(n)) " Jo>PTOP ' (I1.17)

4.

u= — <o|Tﬁ2[A2](O)K(p);(P)|o>Pr°P
2!

P=0




.10.

This last coefficient is logarithmically divergent,

. since, although}we will in the next section show that
NZ[AZ] is actually finite at non-exceptional momenta, p=0 does

not belong to this class. Thus all the normal products
occuring in equ. (II1.16) are at most logarithmically divergent.

In the next section we show via differential equations that

-~ 2 - - L
in reality all N,(A3 A), Nu(auAa“A) and N, (A ) are finite,

- 2

only N,(A ) being logarithmically divergent. The multiplication
- 2

by u produces the finite object N,(uA ), which is not any more

subtracted at P=0.

ITI. PROOF OF INFRARED FINITENESS

The Callan-Symanzik (CS) and Renormalization
Group (RG) equations(4) can be used to prove the existence,
for non-exceptional momenta, of the zero mass limit of the
theory described in the previous section. As in ref.(s), the
derivation is made easier by the use of Differential Vertex

Operations (DVO) introduced by

Aa,oﬁ(N)(Xl,...xn) = Finite part of rdx(°) o r.@{e)s (X)A° (X .. A% (Xy)

(111.1)
cexp(irdy :L(°):(yy)s(0)
1

where the formal X integration means that the graphs to be

subtracted by the scheme of equation (I1.14) with degree



A1,

function &(y) given by equation (I1.13) have zero momentum
entering at the special vertex (note that with this definition
a DVO differs from an integrated normal product because of

the subtraction terms). The DVOs we will need are the

following:

{2
L corresponding to @ = Ly and §=2
2
. i .2
Ay corresponding to = - A and =4
2
(I11.2)
A, corresponding to & = 1 2, A2"A and 5=4
2

; Y
43 corresponding to = 4 A and 6§=4

Counting identities and differentiation formulas with respect
to any of the parameters of the theory can be worked out in

3 standard way by manipulation of the DVOs above. Hereby one
should pay attention to the fact that a DVO depends on n through

ap(N)

the subtractions. Thus in calculating using

du

E Alf_qy 3 A1 A3
F(N) = i__.(._g_)__ Al Az rO(N) (111_3)
Al,A3=0 Al- A3-

3a

one gets, in addition to the usual term A, also

du




12,

contributions coming from the differentiation of subtractions

for proper graphs with two and four legs, i.e.

BF(N) 94

2
au du

AIF(N) + aznzr(N) + a3A3P(N) (II1.4)

where the coefficients a, and a3 can be obtained directly
from the forest formula or, most easily, from the normalization

conditions for DVOs. We obtain

. n,n v (2)
MV M
ap= - + (9uy - ———;——) 3 2 —33;——- (P,-P)
6 n P P 3u P
3 (IT1.5)
o oar(*) p
ag= = i > (P1aPa,P3 s - i)
ou
Analogously, one derives a Zimmermann identity -
AOF(N) = r A1F(N) + rzAzP(N) + rsAar(N) (IT1.6)
: : (2)
with r; = -j AT (0,0);
. nn : (2
r, = - 1 (g - _._lL...‘L) au av‘A\.iI‘( )(P9'P)
uv 2 P . Pva.O;
6 n ,
P=z=n
4
rs = -i AOF( )(n.n.n;-3n)

The other formulas have the usual form:




I]3.

- riN 3: = 1) a,rN) (111.7)
du am
2 p(NM) o 22, p(N) ayr V) (I11.8)
39 3g

Ne M) 2 2a-m”) ar M) 4 20,0 (N L ggs,r (V) (111.9)

Following the usual argument we establish now the CS and RG

equations

2 2 2
m2 — e oy [ rM s r M (11100
am du 9g

. [ TS SR ] r(M) .o (I11.11)

Where the coefficients a,B8,y, o and t can be determined using
equations (IIl.4), (III.6), (III.7) to (III1.9) into (I11.10)
and (III.11) and equating to zero the coefficient of each

DVO. Subtracting (III.11) from (III.10) we obtain

2 2
m _3; A N E T Y L0 B Aor(N) (111.12)
am 3g
2 u_v P P 2 .
with A, = an” (" - DLy o ot ,-p) (111.13)
. 12 n P=n

ZA T(“kn,n,n.'3n)

A1 = 4gx, + iam o




.14,

obtained by application of the normalization conditions at n.
With some modifications, similar equations can be derived
for proper functions containing one normal product vertex.

Thus, for example r(N)2 » which indicates the proper vertex
JPE
9

2
functions containing one N2A normal product vertex, satisfies

equations (III.7) and (III1.8) and also

| (N) (N) (N) (N)
] X
_"—2-" Z’Az = AIPZ’AZ + a2A2r2’A2 + a3A3F2,A2 +
du ou
(N)
+ ayT, 52 (I111.14)
2
-] . )2 P
oy == == Ty (=2n3n,n)
2 du
(), ™), (), ™, m
AOFZ,A = "'1A1P2’A + rzAzr'z’A + Y‘3A3T2’A + Y‘QPZ’A
1 (N) |
ry =< 8. Tz a2 (~2n3n,n) (111.15)
2
(N) 2 (N) (N) (N)
(N"Z) PZ’AZ = 2(a-m ) AIPZ,AZ + 2A2I‘2’A2 - 4gA3]'2,A2 (III.]G)

(N)
The therm ayr, a2 in (I11.14) comes from differentiation of

subtractions for subgraphs containing the special vertex. The
- (N) .
presence of the term'h,r2 2 in (III.15), on the other hand,
A

]
is due to subtractions for graphs containing both the A,

2 .
and the N,A vertices. In the same way as before we can write




.15,

now
2 3 2 3 2 (N) 2 (N)
mo— o+ o=t B —— -(N-2)y rz'AZ = am AOI‘Z’Az +
om du ag -
(N) 2 2
+ ur, AZ 3 U= —amry, +p oo, (I11.17)
2 3 3 (N) (N)
—_— - (N-2 2 = 2
u > o ( )t FZ,A v r‘z’A
du 3ag
2
V= u oo, (IIT.18)
2 (N 2 2 (N)
(m —3; + 2 =2 . (N-2)2,)r, Az = am Aor(N)-am aurz,Az
am 3g
(I11.19)

If now we accept the vality of power counting arguments(s)

for determining the leading power of the zero mass limit
(N)

2,A

1

N
then, as m+0 ,F(N), ré 22, AOF(N) and Ao T ", are at worst

Togarithmically divergent so that from

2.y 2
A, A2 yay v 0 (m1gTm )

(I11.20)
x 2
a v 0 (1g™m )
and from (II1.12) and (II1.19) results
2 2 (N)
Tim w2 r(N) 20 and 1imm =-r, 2 =0 (1121
‘ m-0 am m-+0 am



.16.

") and v, stay finite.

2 A

giving that as ms0 both r!

The discussion of the infrared behaviour of vertex functions
containing one normal product of degree higher than two is
simpler if all normalization conditions satisfied by these
functions are at non zero momenta. If this is the case the
proof of infrared finiteness is as follows. First we note
that minimally subtracted normal products can, by power
counting, be only logarithmically divergent. Suppose now
that we have proved the infrared finiteness of vertex functions
of normal products up to those of degqree 5. Then Zimmermann
identities relating N, [ €& ] with Ny o] tell us that the
vertex functions of N6+1[ ® ].with §+1> canonical dimension
of &, can be only logarithmically divergent also. Following

similar steps to these that produced (ITI.19) we derive the

equation
2 2
m 32 + 2\ —i— - NXZ I’(N) = am AOF(N) +
o 3g 5+]’¢ﬁ 5+1’cﬁ
sxom (M) (111.22)
i M 6+1,€G

where, because of the normalization conditions, in the zero

mass limit
2.y 2
Mion O(m Tg™m )

1J

From this and from (II11.22) follows then



7.

2 3 (N)
— T =
6+1,C§
om :

1im m

m-0

giving the desired result that as m+0 F(N) stay finite
s+1,0;
1

As a concrete example of the construction above we well

consider now the case of normal product vertex functions,

-(N)

I'y » of degree four, subtracted according to the scheme
L]
specified by (II.6). In this case power counting arqguments

give that as m»0 ?(N) 2 ?(N) and ?SN&“ are for non-
“,A3 A “,auAa“A ’

exceptional momenta logarithmically divergent at worst. Then,
as argued previously, FEN)z is also logarithmically divergent
A
H]
at worst because of Zimmermann's identity (II.16). The differential

equations to be used in this case are of the form

N)
2 3 3 _ . -(N) _ 2 ..(
m + Ay — (N-2t) x, Pu o am Aol‘.,’ﬁ,ri
am 3g 9
M ;Y 111,23
+ I i r“,c[ ( .23)
J
where
2 u 2
t =1 forcn = A3 A, auAa A, A and
Y
t =2 for‘Gﬁ = A




.18.

The coefficients Mij are easily obtained from the normalization

conditions. Thus as m goes to zero we get from (III.23)

2 2 2 Yy
m2 —3—2— ‘f‘fN) = 0(m 1g%m ) i’or@'i = A3 A, auAa“A, A
am *Mi
(I11.24)
and
2 2 - 2 2
o 2N awa 7™M, 00,0050, + o(mP1g%n?)
; 2 b A ° Y A u A
m
(IT1.25)

7(N) 2 A, A i
so that r“ (@; = Ad A, auAa A, A') are actually infrared
o,
™4

finite and ?sn)z Qalthough Togarithmically divergent can be
sA

made finite by multiplication by the factor u as Zimmermann's

idendity (II.16) now shows.

IV. WARD IDENTITY

As an application we derive the Ward identity
for a charged scalar field. The main problem is the unavailability
of the simple rule, obeyed by normal products Subtracted
at D=0=3uN5[C7(X) ]s N6+][_aucr(x)]. Instead the subtraction
scheme of equ. (I1.14) leads to the rule



.19.

(Py=n) <O[TN, JO(-2P,) A(P,) ... AY(p )10 =
(IV.1)

= <O[TNgy [ (Py-n), O(-2P)] A(Py) ...A%(P ) 0>

where Pi is one of the independent momenta.
In this section we are interested in an object
of the type Nj [ A+§:A J(X), whose two-point function is the

only one needing subtractions.Thus,in order to get rid of the

n-dependent terms in <0|TN3[A+§:A 1(0) A(P,) A(P2)]0> ,
we subtract in such a way, that the momentum Q= -P, - P,

flowing into the graph at the special vertex is zero at the

subtraction point. Since Q = - P, - Pa==(P; -n) - (P,+n),

we subtract at Py=n,P,=-n. The n-dependent terms in equ.

(IV.1) now add up to zero.

We are thus motivated to introduce the current

operator

3,00 = N3 [ A5 A 1(x) (1v.2)

defined by imposing the following subtraction scheme with

degree function §(y) given by equ. (I1.13):

Whenever the special verfex belongs to a proper

divergent graph with two legs, we subtract at the two




.20.

independent ingoing momenta P, and P, at Py=n and P,=-n,
applying the Taylor operator of equ. (I1.14); otherwise .e

subtract at all Pi=”’ using the scheme of equ. (II.6)(7).

In every theory this prescription has to be checked for its
infrared finiteness, since in the subtractions no momentum

is flowing into the special vertex.

The Ward identity for the current (IV.2) can be
established directly by graphical analysis or using the equation

of motion R -

N .S

< ’ 1 + 2
<0 |T N, [}*a A ](X)Y|O> = <O|TNy{~ — g(A(X)AT(X)) +

3. (IV.3)

+ (a-m) A*(X)A(X)) Y|0> -i Z_[a(x-zj) - §(X-W;)]<0[TY]0>
J

m
where Y = 1 A(Zj)A+(Wj) and the N,'s occuring in the above

equation are defined in the same way as the current. Although
these normal products are not infrared finite, this divergence

+ 2
cancels in Nq[A a A](X) producing the infrared finite equation

a¥<0|TN;[A a ATO)Y0> = <0|TN, [AT3 ] (X)Y> = (IV.4)
X

= 2_ [s(x-zi) - d(X—wj)]<O|TY|0>
J

‘The current ju(X) is obviously infrared finite.

It is the author pleasure to thank Prof. B

Schroer for helpful and stimulating discussions.
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