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ABSTRACT

We study the statistical evolution of a charged particle moving in phase space un-
der the action of the vacuum fluctuations of the zero-point electromagnetic field. Our
starting point is the Liouville equation, from which we derive a classical stochastic
Schrodinger like equation for the probability amplitude in configuration space. The
standard Schrédinger equation used in Quantum Mechanics is obtained as a particular
case of the classical stochastic Schrédinger like equation. An inconsistency appearing
in the standard Schriodinger equation, when we take into account the vacuum elec-
tromagnetic fluctuations and the radiation reaction, is clearly identified by means of
two -examples using different sources of electromagnetic noise. The classical stochas-
tic Schrodinger like equé,tion, however, is consistently interpfeted within the realm
of Stochastic Electrodynamics. A simple application with a prediction that can be

confirmed experimentally is presented.
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1 Introduction

The classical electromagnetic theory has been largely extended by the program of

the Stochastic Electrodynamics (SED) [1, 2], due to the inclusion of the effects of

- the real electromagnetic zero-point radiation. According to the SED picture, there

1s a clear correspondence between the nonrelativistic Heisenberg equations of motion,
for a spinless charged particle interacting with the quantized electromagnetic field
of Quantum Electrodynamics (QED), and the classical (Langevin type) Abraham-
Lorentz equation with real vacuum fluctuation forces. Therefore, the role of the random
radiation field reservoir, and the radiation reaction force, are naturally incorporated

into the SED approach.

A mathematical tool widely used in SED is the Fokker-Planck equation, which is
derived from the stochastic Liouville equation for describing the Brownian motion of the
microscopic charged particles [3]. Unfortunately, however, this method has a restricted
use due to the mathematical difficulties for solving the Fokker-Planck equation, mainly

in the cases associated with the motion under nonlinear forces.

Our purpose here is to show that the stochastic Liouville equation can be put in

a mathematical form that is easier to manipulate even in the case of nonlinear forces.

-We shall derive a classical Schrédinger like equation from the Liouville equation, using

a procedure similar to that introduced by Wigner [4], in order to describe Quantum
Mechanics in phase space. Our approach introduces a free parameter A’ in the Wigner
type transform [5]. We shall show that this procedure enables us to make to make a
clear distinction between the free parameter A and the Planck’s constant #. Ounly
the vacuum electromagnetic fluctuations will depend on the numerical value of the
Planck’s constant A. We shall see that this distinction will be of great help in order
to clarify the physical meaning of the Schrodinger like equation and its interpretation

within the realm of a purely classical theory.
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2 Connecting the stochastic Liouville equation to a
Schrodinger like classical stochastic equation

The description of classical phenomena by classical statistical mechanics is based on
the concept of phase space. The mean value of any dynamical variable A(x,p,t) is

calculated according to the relation

(4) = [ AGx,p, ) W(x,p, ) d*xd’p ¢

and the probability density distribution in phase space, W(x,p,t), evolves in time

according to the Liocuville equation
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where x and p are obtained from the classical Hamilton’s equations of motion.

Consider an ensemble of systems which consist of a nonrelativistic spinless charged
particle interacting only with the electromagnetic field. The Hamiltonian which de-

scribes the time evolution of the whole system (particle plus field) is

ﬁ:—}—(p—SA)2+e¢+Hﬂ , (3)

2m

where e and m are the charge and mass of the particle, repectively, ¢(x, t) is the scalar

potential, and

A(X, t) = AEXt + AVF "i— ARR . (4:)




is the vector potential. The term A, is an external deterministic disturbance. The
term Ay is the vector potential associated with the real vacuum fluctuations, and can

be written as

2 Irhe? )
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where V' is the volume containing the particle and the radiation field, k is the wave
vector, wy = clk|, A is the polarization index, and é(k, A) are the polarization vectors.
The amplitudes ax, are taken to be random variables. The random character of the
field is contained in these variables which are such that (ax,) = 0 and (Jarn|?) = 1/2
({ ) denotes the ensemble average). The term Agy is the vector potential that describes
the radiation reaction [1, 2] and Hy is the Hamiltonian of the background radiation
field (contains only variables of the field). In the case of zero temperature, Hy can be

written as [2]

1
= [d (B2, +B) (©)
where
Bope -t 2A By =VxA (7)
VE T _C 3t VE 3 VF — VE 1
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The extension to a non-zero temperature 7' is obtained by introducing the factor

coth(fwy /2ET).




Each particle of the ensemble evolves in time according to the Hamilton’s equations
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Substituting the equations (9), (10) into (2) we get the Liouvillian form of the equation
‘governing the time evolution of the ensemble of particles for each realization of the
stochastic field Ay, namely

_QW_+_:{_( _EA).G_W+3W._6_[8 (
o mT ™ ax T op ox

p——e—A)-A—eqb} -0 . (1)
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It is important to stress that, after obtaining the solution of (11), it is necessary to
calculate the ensemble average over all possible realizations of the field Ay in order to
obtain the average distribution (W(x,p,t)). This is done by considering the average
over the random Gaussian amplitudes ay, in (5). Notice that in (11) A = A(x,t) and

¢ = ¢(x,1) are explicit functions of the variables x and .

Consider the Fourier transform defined by

2' .
Wi(x,y,1) Edep W(x,p,t) exp (— ZI;, y) , (12)

where y is a point in the configuration space and &' is a free parameter having dimension
of action. The meaning of the free parameter A’ will be discussed further below. Notice
that (12) corresponds to the well known Wigner transform [4] if i’ = k. Using the
definition (12) the Liouville equation (11) assumes the following form

%p-y\ [ . OW B> PW  ien oW
o (253) (ST et o
./ YOEPA ™R {Zh ot  2mdx-Oy ch(X’t) ax

- 2y - 8—8}—{- [i (p - -;EA(X, t)) -A(x,t) — eqb} ﬁ?} = 0 . (13)

3




In what follows we will concentrate our attention in the particular case of very small
R (W' < k). In this case W(x,y,t) is different from zero only if iy| is small, as can be
seen from equation (12). Therefore, the functions A(x,t) and ¢(x,#) in the last term

of equation (13) can be replaced by the expressions

y: a—i—eﬁ(x, )~ d(x+y, 1) — d(x,1) (14)
and
| Y PA(xt) = Alx+y,) - Al t) (15)

Consequently, one can take

d € pngd 2ip -y
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== _ 16
(27:) ay =P ( 7 ) (i6)
. Therefore, after integration by parts, eq.(13) can be written as
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In what follows, we shall study the case in which the Fourier transform W(x, v, t)

can be written in the form [4]




W(x,y,t) =9 (x +y,t)(x —y,t) = ¢*(x,)u(s,t) . (18)

Substituting (18) in (17) we obtain the following Schridinger type equation for the

functions ¥(r,t)

o 1 d e

2
ih— = — (-—Zh’& - EA(I’,t)) 'QZJ + eqb(r,t)w 3 (19)

and the corresponding equation for 1*(r, ), with the vector potential A as given in (4)

and (5).

Therefore, the Schrédinger type equation depends on the Planck’s constant only due
- to its presence in Ay defined in (5). In other words, equation (19) has terms which
are proportional to v/A and k. Moreover, the solutions of (19) must be interpreted

~ by considering that the limit %’ -+ 0 must be taken in the end of the calculations.

3 Incompatibility of the standard Schrodinger equa-
tion with the zero-point field

The above derivation shows a clear correspondence between the quantum Schrédinger
equation for spinless particles, and the classical stochastic Schrédinger like equation
given by (19). The case of neutral spinning particle has been already discussed by

Dechoum, Franca and Malta [6].

The limit &’ — 0 of the solution of the classical stochastic Schridinger like equation
corresponds, physically, to classical (non-Heisenberg) states of motion as shown by

Dechoum and Franca [5]. Nevertheless, we shall observe several effects, arising from




the vacuum fluctuations, which depend non-trivially on the Planck’s constant %. This
is better understood by means of very simple examples. One interesting example,
discussed in reference [6], is the derivation of the Pauli-Schrédinger equation in the
spinorial form, starting from the Liouville equation. The experimental results of the
Stern-Gerlach experiment, and also the Rabi type molecular beam experiments, were
appropriately described and interpreted classically, in the limit A" — 0, that is, in
the classical limit where the particles have well-defined trajectory, and also continuous

orientation of the spin vector.

The best exarmple, however, is the one-dimensional harmonic oscillator discussed in
many details in previous works [5, 7]. In order to apply equation (19) to the charged
harmonic oscillator, we shall assume that the scalar potential ¢ is the simple static func-
tion satisfying e¢ = (1/2)mwiz?, wq being the natural frequency of the osccillator. We
have shown_. in ref. [5] that by introducing the function ¥(z,t) = exp [i%—a,:Am (t)] 1 (z,t)

we obtain for (19) the equivalent equation

., 00 (R 8%  mwia®
R =5 5+~ — & (Ban + Bye) | Uz,t) (20)

where Eyp and Egy depend only on ¢ (dipole approximation). In this equation —mwiz

. . d
is the harmonic force, eEgy = _£2
P c ot

[+

—EEE(AVF)Q, is the random force. The exact solution of (20), in the form of a coherent

state ¥, can be easily constructed [5, 7]. It is possible to show that

(Apg ). is the radiation reaction force, and eEyp =

4 MWy

\Ius(x,t)z(——)_%exp{hi}[mpc(t)—g(t)—7(%:@(@)2} e

g

where p.(t) = ma.(t) , 2mg(t) = p2(t) — m?wiz2(t) + mh'wy , and
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mi.(t) = —mwiz.(t) + e [Banlt) + Bve(t)] (22)

so that z,(t) is the classical stochastic trajectory obtained from the equation of motion

(22). At equilibrium (or stationary state) we have (z,(¢}) =0, and

h
4= 23
(@) = 5o (23)
as is well known [1, 2]. However, using the exact solution (21) of the Schrédinger type

equation (20), we obtain

@) = ([ doliro o) = s oty = D

- 2mw0

2wy (24)

"This gives the correct value at zero temperature, namely () = A/2mwy, in the
limit A" — 0. Only in this limit the solutions of equations (19) and (20) are physically
acceptable. This is an important result that is very easy to understand within the realm
of SED, if we recall the derivation (see egs. (13) to (18)) of the classical Schrdinger like
stochastic equation (19). The inevitable conclusion is that the standard Schrédinger
equation, namely equation (19) with A = A, does not give consistent results if the

zero-point electromagnetic field Ayp is fully considered.

In order to further illustrate the advantages of the stochastic Schrodinger like equa-
tion we shall consider the system consisting of a harmonic oscillator (electric dipole)
interacting with an anisotropic source of noise as for instance the solenoid of a simple
RLC circuit without battery [7]. The fluctuating current in the solenoid generates a

random electric field (E,,) that affects the charge oscillating in the z direction as is




illustrated in the Fig.1. If the radius of the solenoid is large enough an anomalous con-
tribution to the Nyquist noise becomes very important as first suggsted by Franca and
Santos [8]. It is generated by the flux of By(t) through the solenoid coils. Therefore,
it is possible to show that the total spectral distribution of the random voltage at zero

temperature is given by {8]

(Ew)E(W) = Fuw [R—E— 2w N? (aw

-2 = ?)4] Sw+) (25)

where It is the resistance of the circuit, V is the number of coils, and ¢ is the radius of
the solenoid. The second term in equation (25), namely the anomolous Nyquist noise,
is due to Byg(t), and it contributes significantly only if a is large enough. This term
was neglected in ref. [7] because the radius of the solenoid considered therein was very
small (@ =~ 7 x 107* cm). Here we shall assume that a? and N? are large enough so

that the second term in (25) becomes significant.

Following the steps of the calculation presented by Dechoum et al.[7], it is possible to
obtain the average oscillator energy using (20), (21) and (22). Notice that in equation
(22) Eyp should be replaced by Eyp + (E,.).- The result is

e = muwi{el(t)) = (26)
 hrw? fm dw w? (1 + Bw, y) [1 + 2—’% (%)4])
o om Jo (w? — wd)? + 7208 [1 + B(w, y)]° ’

where 7 = 2¢?/3mc®. The function B(w, y) is given by (see [7])

3 p (2mNa?\?
2 £y

Blw,y) = TAZWE
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where Z(w) is the impedance of the RLC circuit, £ is the length of the solenoid and y
is the distance from the dipole to the solenoid axis (see Fig.1 ). In the case 7wy < 1 it
is possible to show that the integral in (27) gives
’71'2 2 Qi 4
oy (14 Bluo, ) |1+ 3222 (sm)']
2 1+ /B(wﬂa y) 1

€

(28)

which differs from the result obtained in [7] due to the contribution of the anomolous
Nyquist noise (factor within square brackets). The result for ¥ < a is obtained by

replacing a*/y by y in expression (27).

Notice that € — Aiwy/2 if the solenoid and the oscillator are far apart (y — oo). The
result can be extended to finite temperature T' by introducing the factor coth(fiwy/2kT)
in (28). The factor multiplying fiwg/2 in (28) depends on various parameters character-
1zing the interaction of the electric dipole with the RLC circuit. We shall estimate this
factor in the case of small S(wg, y = a) with BN?(awy/c)*/cR > 1. For simplicity, we
shall assume that the circuit is in resonance with the dipole oscillator (\/I—/LE > wy)
so that 8 o 0. = 3(2nNa/{f)?/2cR. Moreover, in deriving (28), it has been assumed
that ¢ >> wol > woa (see ref. [7]), so we shall take (a/f) ~ 107}, and (awy/c) ~ 1072

in equation (28) obtaining

2¢ 1 ~ 4ri N (@)4 (2)2 U dx 10194
Fwg — (eRZ \ ¢ 14 (cR)?
3
~ CRE (29)

if we take N = 300. Notice that ¢R ~ 0.03 for R ~ 1 ohm.

From this numerical result one can conclude that the effect is large enough to be

measured. We suggest to surround (or to fill) the solenoid with a solid material of
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cristaline structure. The anomalous electromagnetic noise generated by the solenoid
will affect significantly the specific heat of the cristaline substance as indicated by the
estimate (29). The calculation of the specific heat can be done using the procedure

explained in the work by Blanco et al. [9].

4 Discussion

Dalibard et al [10] and Franca, Franco and Malta [11] provided an identification of
the contribution of the radiation reaction and the vacuum fluctuation forces to the
processes of radiation emission and atomic stability. Using the Heisenberg picture and

perturbative QED calculations Dalibard et al [10] have shown that
4e? . .

PLﬂrmor(a) == -3_3 Z {a |r| b> . (b |I‘| a) . (30)

Ty {ep<ta)

bCa
This equation is the quantum generalization of the Larmor formula (2¢%%)/(3¢%) for
the rate of radiation emission, including the zero-point field effects, of an electron in
the quantum state |a) (Dirac notation) with energy ¢,. We see that the inclusion of the
zero-point electromagnetic field simply doubles the rate of the radiation emission, being
thus very important for obtaining agreement with experiment. Dechoum and Franca, [5]
extended this result to the SED picture using the harmonic oscillator and the classical
stochastic Schrédinger like equation. Further insight on the general connection between

SED and QED, for the free electromagnetic fields and for dipole oscillator system, is
provided by T.H.Boyer [12].

Sudrez Barnes et al [13] have studied the one-dimensional motion of the electron in

the Coulomb field using the simple equation

0 K2 92 e? '
zh55¢(m,t)—(~%@—~m) Yot (31)
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The Coulomb potential V(z) was approximated by
2

Vo) =— o V@) - Vi@ + e @

where ¢; is the classical trajectory. A coherent state solution was obtained from (31)

and (32).

Equations (31) and (32) allowed Sudrez Barnes et al to obtain a remarkable re-
production of the hydrogen spectrum, using classical reference trajectories that have a
continuous energy range. No quantization conditions were imposed on these classical
reference trajectories. For the reader’s convenience the spectrum calculated in [13] is
reproduced in the Fig.2. As far as we know, this constitutes the first accurate classical
calculation of the atomic spectrum since the advent of Quantum Mechanics. This cal-
culation can be interpreted classically due to the approximation (32). For potentials
of this form, the Schrédinger equation is equivalent to the Liouville equation as was

pointed out by many authors [1, 4, 14, 15].

Finally we would like to stress that in our picture, based on the classical stochastic
Schrédinger like equation, the wave-particle duality hypothesis plays no role. Therefore,
it is desirable to extend our calculations so as to make possible its application for

describing the diffraction pattern observed in many experiments with electron beams.
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Figures Caption and Figures

Figure 1: Schematic picture of the electric dipole at a distance y from the solenoid axis.
The relevant electromagnetic fields generated by the solenoid (E.,;) and the oscillating

dipole (Ba,) are indicated.

Figure 2: Spectrum generated by the classical motion in the Coulomb potential, ac-
cording to the parametric oscillator approximation. The continuous energy is denoted
by ¢, and the circles correspond to the exact quantum results. The units are such that

e=m=~H=1.
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