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ABSTRACT

Let A be a real Bose or Fermi one-particle
operator with ||A|| £ I. Using Kaplansky's density theo-
rem, a simple proof is given of the fact that I'(a), the

operator in Fock space induced by A, is positivity preserv-

ing in the relevant L?-space.




INTRODUCTION

A powerful tool in the methods of constructive

i

quantum field theory has been the use of positivity properties}
of certain operators (- usually, the semigroups generated by

the free and spatially cutoff P((I))2 - Hamiltonians (3,4,5,6,

9,14,15,17,18) and also the semigroups and resolvents generated

by some fermion Hamiltonians (2’4)).

For the free case, most proofs tend to be complicated
(4,17) (10)y | e

by the approximations used (see, however,

present an alternative proof which follows essentially from
Kaplansky's density theorem (7’8). Moreover, we are able to
treat both the Bose and Fermi cases almost simultaneously. Our

result seems to be new in the Fermi case with one-particle operator

not self-adjoint. (The self-adjoint case was proved by Gross (5)).

§ 1. Notation
Let H' be a real Hilbert space, and let H be its
complexification. Let K = Aéb Kn be the Hilbert space tensor
algebra over H, and let M&,SA and Ks and Ka be the symmetrization
and antisymmetrization projections in K, and their respective
=C, and K

ranges. Then K, N Ka = KOGB Ky, where K = H, the

0
tensors of rank zero and one, respectively.

1

For z € H, the creation operator C(z):Kn -+ Kn+l is
defined by k» C(z)k = vn+l z @k, k € K - By linearity, C(z)
defines an operator on the algebraic tensor algebra over H.

Let h € H'. The boson field, ¢(h), is the densely

defined symmetric operator in Ks given by

o(h) = Acmh)f + (Ac(h) L)+




and the fermion field, ¥(h), is the densely defined symmetric

operator on Ka given by
¥(h) = Ac(h)A + (Ac(h)S)*

It is well-known that ¢(h) is essentially self-adjoint,

and that, for h h2 € H', we have

ll

exp i ¢(h1) exp i ¢(hy) =exp i Q(h1+h2)

on K (the bar denotes the operator closure). VY(h) defines a

bounded operator on Ka’ and, for hl' h2 € H', we have
- (1)
¥(h;) ¥(h2) + ¥(hy) ¥(hy) =2 (hy,hy)L on K, .

Denote exp i ®(h) I K, by U(h), and ¥(h) ) K, by

y(h), h ¢ H', and let Q denote the element 1 ¢ € = Ko considered
as an element of K N K, . Let (10 and «eo be the self-adjoint
algebras generated by polynomials in {U(h) l heH} and

£ ¥(h) | heH'}, respectively, and let (| and & be their
strong closures in B (Ks) and 'B(Ka) , respectively. Since OL
is commutative, it is algebraically isomorphic, as a C*-algebra,
to the uniform algebra, C(Q), of continuous complex-valued functions
on its spectrum, Q. The positive linear functional A » (AQ,Q),
A ek, thus defines a regular probability measpre,};, on Q. Since
Q is cyclic for O, the map D : OL » K., given by A+ AQ, extends

to a unitary operator D : LZ(Q,p) + K_.. Furthermore, since Q

s
is cyclic, X is maximal abelian and so OL==Lw(Q,P) (16).

For the fermion case, we note that the map D : -6 + K_,

a




- given by A v AQ, extends to a unitary operator D : L2?(§) - Ka’

where L2 (4) is the completion of.@ with respect to the norm

: - la) = (a*aQ, @) 1/2 5413) ' 1£ n(.) denotes the functional

(¢92,0) on &, then (Ka,@,m) is a regular probability gage

space (5’11’12). L?(§) can therefore be considered as a set

of possibly unbounded operators on K- The notion of positivity
is thus well-defined in L) : A € L2(§), A 2 0 if and only

if A is a non-negative self-adjoint operator.

§ 2. Positivity preservation

Let (Lz,Lw) denote either (LZ(Q,P), Lw(Q,P)) or
(L&) &) .

2
Definition A linear operator T, on L is said to be

positivity preserving if T maps non-negative elements into
non-negative elements, and if 6 € Lz, 8 2 0 and TH = 0 implies

that ©

0.

° Let A : H > H, be a linear operator and suppose

flall

(n factors), T(A)Q = Q. T (A) defines a bounded operator on

1A

1. Then I'(A) : K >~ K is given on K, by A® ... ® A

K ( in fact it is a contraction ), and Kg and Ka are invariant
under T (A).

Theorem Let A : H > H, JA|l £ 1. Suppose A : H'> H'.
Then D_1F(A)D is positivity preserving on LZ2.

Proof Let 6 ¢ L2, 6 2 0. Then (D 'r(a)Do, 1), =

(T (A)D6,Q)

(D6,T (A*) Q) = (D6,Q)

‘ - (erl)LZ

Hence D LT (A)D8 = 0 = (08,1);2 =0

5o =0 (11,12)



Let 6 € L?, 6 2 0. We have now only to show that plra)pe > 0.
But in any regular gage space, X € L? is non-negative if and only
if (X’P)L2 2 0 for all projectione P in the ring of the gage space.
Therefore we need only show thét (D_lF(A)De,P)Lz 2 0 for all pro-
jections P ¢ Lm, i.e. that

(I‘(A)DG,DP)K = (T (A)DB,PQ) ; 0, for all P = P* = P2 ¢ I,

f

Now, if %R denotes elther Olo qr -@ , then we _have that

2 ﬁs strongly dense in L”. Therefore, by Kaplansky s density

/(
(7.8) | there is a unlformly bouﬁ&ed net {sy} in R

%
converging strongly to P. But then svsv conve;ges strongly to

theorem

P*P = P, and, in particular, Svst converges to PQ strongly in

K. So we see, by continuity, that the proof is complete if we

can show that (T (A)D68,5*SQ), 20 for any S e ®. It is here that
' .

we are forced to consider the bose and fermi cases separately.

(i) Boson case: Let S € Oly . Then S has the form
a. U(h.
(J)
for some N < o, aj e C, hj e H', 1 £ jJ £ N. We have
(P(A)DG,S*SQ)K = (D8, P(A*)S*SQ)K.

But one can show (e.g. 17) that

N _ ) _
[ (A*)S*SQ = j,]}i:l ajay U(A*hk—A*hj)exp [( (hk-hj) , (4-AA*) (hk—hj))H._IQ

and so D-lr(A*)S*SQ

N

j,l§=1 a a, U(A*hk—A*hj‘) exp [ ( (hy-h3) , @-AR*) (hy ~h,) )] .



Now, for almost all q € Q, and for h in any fixed finite dimen-

" sional subspace of H', the map h¥ U(A*h) (q) is positive semi-

définite, as is the map h & exp[}h,(l-AA*)h)H.j} It follows
that their product is also positive semi-definite; i.e.

D™Ir (a*)s*sq@ 2 0 almost everywhere. Hence

(T (A)DB,S*SQ) = (e,D-lr(A*)S*SQ)LZZ 0 as required.

(ii) Fermion case: Let S EJ%O. Then S has the form

S = ENW(hl),...,W(hn)) where 9(x1,...,xn) is some complex

polynomial in n-variables, and hl"""h € H'. Let {Em}> be a

n
sequence of finite dimensional projections on H', such that Em
increases to ﬂ,,rand Emhi = hi,Vrn, 1 <3 <N. E, defines a
finite dimensional projection in H, and EmAEm converges strongly

to A in H, as m + «» and therefore P(EmAEm) converges strongly to

r'(aA) in K,so we need only consider P(EmAEm). We must show that
- -1 -1 >
(I‘(EmAEm)De,S*SQ)K = (D P(EmAEm)DD F(Em)De, S*S)Lz 20

(we have used T (AB) = T'(A) T(B) in order to write P(EmAEm) =

1

T (E,AE_)T(E )). But D I'(E,)D6 is the conditional expectation

of © with respect to.&(EmH'), the algebra generated by

(5,11,12,20)

fvim) | ne EH' } . Hence, D_lF(Em)De £ ché(EmH')),

and © 2 0 implies that D 'T(E_)D6 2 0. Also, S*S e &(E H'), and

D—l F(EmAEm)D : ché(EmH')) -+ ché(EmH')), and’ so we have reduced
the problem to a finite dimensional one.
) N
Let HA and Hm denote EmH and E H, respectively, and let

B = E AE;. Then B is an operator in H . Let B = U|B| be its polar



decomposition, and let N be the projection onto the null space

of U. Then U is unitary from (NHm)‘L onto UHm,'and so dim(NHm)"L =
= dim UH_. Since dim H < =, it follows that dim NH_ = dim(UH )",
and so there exists a unitary V : NH -~ (UHm)L. By setting

v P (NHm)i' = 0, we see that (U+V) is unitary from H onto H_.
Since U : H! + H!, we can choose V so that V : H' ~ H', and
therefore U+V : Hﬁ -> Hﬁ. Furthermore, U = (U+V)Nl’, and so

B = (U+V)NJ'IB

. Now, P(AlAz)‘= F(@I)P(AZ), and it is known (5)
that T(A) is positivity preserving if A is self-adjoint, so we
neea only consider the case B = W, unitary, with W : Hﬁ - Hﬁ.

But in this case, it is not difficult to see that
TMPW B, ¥ B ))*P(¥(h)), ..., ¥(h))Q =
= ?(\P(Whl) oo ¥ (W )* (¥ (Why), ..., ¥ (Wh))Q
(This can be proved, for example, by using Wick's theorem (19)).

Thus D~ lr (W*)Ds*s = T*T > 0

where T = (¥ (W*h1),...,¥(W*h )), and so (D 'T(W)De',5*S) Z 0 if

' 2 0 and the proof is complete.




REFERENCES

J.M.Cook, The mathematics of second quéhtization, Trans.

Amer. Math. Soc. 74 (1953), 222 - 245.

W.Faris, Invariant cones and uniqueness of the ground state

for fermion systems, J.Math.Phys. 13 (1972), 1285 - 1290.

J.Glimm and A.Jaffe, The A(cb")2 guantum field theory without
cutoffs II. The field operators and the approximate vacuum,

Ann. of Math. 91 (1970), 362 - 401.

J.Glimm and A.Jaffe, Boson quantum field models, in "Mathe-

matics of contemporary physics, ed. by R.F.Streater, Academic

Press, New York 1972.

L.Gross, Existence and uniqueness of physical ground states,

J.Functional Analysis 10 (1972), 52 - 109.

L.Gross, Analytic vectors for representations of the canonical
commutation relations and non-degeneracy of ground states,

preprint 1972, Cornell University.

I.Kaplansky, A theorem on rings of operators, Pacific J. Math.

1 (1951), 227 - 232.

O0.E.Lanford, Selected topics in functional analysis, in
"Statistical mechanics and quantum field theory", ed. by C.

DeWitt and R.Stora.» Gordon and Breach 1972.



lo.

11.

12.

13.

14.

15.

16.

17.

"E.Nelson, A quarti¢ interaction in two dimensions, in

"Mathematical theory of elementary particles" ed. by R.

Goodman and I.E.Segal, Caﬁbridge MIT Press 1966.

E.Nelson, Lectures at the International School on Mathematical

Physics, Erice 1973.

I.Segal, A non-commutative extension of abstract integration,

Ann. of Math. 57 (1953), 401 - 457.

I.Segal, A correction to "A non-commutative extension of abs-

tract integration, Ann. of Math. 58 (1953), 595 - 596.

I.Segal, Tensor Algebras over Hilbert spaces, II, Ann. of

Math. 63 (1956), 160 - 175.

I.Segal, Construction of nonlinear local gquantum processes I,

Ann. of Math. 92 (1970), 462 - 48l.

I.Segal, Construction of nonlinear local quantum processes II,

Inventiones Math. 14 (1971), 211 - 241.

I.Segal and R.Kunze, Integrals and operators, McGraw Hill,

New York, 1968.

B.Simon, R.Hgegh-Krohn, Hypercontractive semigroups and two

dimensional self-coupled Bose fields, J.Functional Analysis 9,

121 - 180 (1970).




18. A.Sloan, A non-perturbative approach to non-degeneracy of
ground states in quantum field theory: Polaron models. Pre-
print 1973, Georgia Institute of Technology. ,

19. G.C.Wick, The evaluation of the collision matrix, Phys. Rev,

80 (1950), 268 - 272.

20. I.F.Wilde, The free fermion field as a Markov field, J.Functional

Analysis 14 (1973), 11ll.- i20.



