@3996 O

wmﬁg;&LL o

IFUSP/P-17

ON THE SPECIFIC HEAT OF THE LIQUID HELIUM

g O

Mauro Cattani - Instituto de Fisica - Univer
sidade de Sao Paulo.

by

Marco de 1974



ABSTRACT

We make an attempt to explain the A - singularity
in the specific heat of the liquid He4 . We take into account

simultaneously the Bose - Einstein condensation, the atomic

interaction and an order-disorder transition.
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For low temperatures(l) ( T<0.6 K) it is expected
thét all the thermal energy is associated with the excitation of
longitudinal phonons. In this case, the de Broglie wavelength 2
is bigger than the mean intermolecular separation a .

As the temperature rises, local atomic motions become
relatively more important’ than the <collective excitations:
decreases so that & £ a . Let us call En the energy levels that.
an atom can assume in these local vibrations: E_ =0 for n = 0

n

and En = A+ € for n=1,2,... with g = 0 . In our approach,

A is an adjustable parameter and is the minimum value of energy

that a particle can assume in local motions: for this value of
energy % ~a . This A must not be confused with the energy gap
of the roton spectrum(z). We have found that a = F%_ = 2.6

A

where TA = 2.19 K 1is the temperature of the X - point and k is
the Boltzmann constant.

Due to the weak interaction between the Helium atoms,
we must expect that the energy spectrum €, is close to the free
particle spectrum.

Since we are not able, up to the present moment, to
incorporate in a consistent scheme both phonon excitations and
individual atomic motion, we take an additive superposition of the
two contributions. The phonon energy can be easily obtained and is
given, for instance, in London's book(l).

Let usnow calculate the contribution of the individual

atomic motion. If N is the total number of Helium atoms we have,

using the Bose-Einstein statistics and using the fact that the




spectrum €y is quasi-continuum ( €n+1 ~ € << kT )
e -
| ' ' 1 1 d(e/kT)
N=N +N = —=— + kT ; (1)
0 exc o _ 4 v(e,T) e* * e/kT _
0
where N0 = al is the number of particles in the ground state,
e -1
a' = o + A/KT ‘and 1/¢y(e,T) is the number of states in the

interval de of energy at a temperature T . Welassume that the
energy spectrum e changes with the temperature. The function
1/¢9(e,T) increases, since the energy spectrum €, tends to an
energy spectrum of free particles, when T increases.

If the particles were free, 1/y would be proportional
to el/z and if they were vibrating harmonically about a center
of equilibrium, 1/¢ would be equal to 1/hv , where v is the
fundamental frequency of vibration. Thus 1/¢ would be independent
of £ .

$

It seems reasonable to expect that 1/y =« € where §

is more close to 1/2 than to 0 . As we will see in what follows
8

this dependence of 1/¢ with e (0 < 8 < 1/2) is not important
2 el/z

for T < TA .  Thus we put simply 1/y(e,T) = — . In this
/T Y (T)

case, the number of excited particles Nexc given in equation (1)

becomes(l):
o
_ 2 «n)3/? /2 ax ¥ . A )
exc a' + X - 3/2( @+ —) (2)
Ym. Y(T) e -1 v(T) kT

o

As we will see, the choise of 6§ = 1/2 is important for T > T,

For T > TA , the condition Nexc = N must be satisfied.



The total energy U is given by:

U =

(e + A) E:1/2 de _ . [ 3 T FS/Z(a + A/kT) . 4 ]

2 1
/T (T) [ e * E/kT 2 By, v A/KT)
(0]

(3)

Our problem now is to obtain y(T). At low temperatures
it 1is observed(S) that, in average, the Hglium atoms are disposed
in some ordered structure. As the temperature increases, this
ordered structure tends to disappear and Frﬁhlich(4) proposed that
there occurs an order-disorder transition in liquid Helium.

As is well known from the order-disorder transition
formaligg),the order parameter X obeys the equation X = tanh(iﬁ X),
where TC = TA is the critical temperature. It may seem unrealistic
to treat a liquid by a lattice model. This objection is quite valid
in general but many properties of the liquids are calculated
approximately by using the lattice mode1(6).

For our purpose it is not necessary that the equation
X = tanh( i% X ) describes exactly the order-disorder transition or
that it is not perfectly consistent with the equations (1), (2) and
(3). We intend to use it only to show that probably there is some
relation between the X - singularity and an order-disorder
transition. We are not interested in the exact calculation of the
specific heat.

We must expect that the energy spectrum €, is the free
particle spectrum when the system is completely disordered ( X = 0

at T = TA ). So Y(T) must decrease when X decreases. Let us

assume that Y(T) = n.(1 + 5x9) where the parameter n is

determined using the condition N (Tk) =N and 6 and & are

exc




adjustable parameters.

Now substituting ¢(T) = n.(1 + EXe) in formulas (2)

and (3) and following the same development seen in ref.l we obtain

the specific heat per unit of mass C; , for T < TA ,  which is
given by:
T T T, 4
c, = £ (¥ L1 [—1-§+3a ) ]exp[a(l————)‘J
m T, (1+£X") 4 T
k . T .1/2 _ @&X [%“‘“IA] T
+ < () s exp[a(l-—)]
mo Ty (1+£X7) cosh’( —2x) - A
For T > TA the specific heat per unit of mass C$ is given by
C; = % X , which is the specific heat of an ideal gas.
m

We see in the figure the theoretical results compared
with the experimental results of Keesom and Clusius and Keesom and

Keesom which are seen in London's book (the phonons contributiogl)

9

which is very small compared with C; and C; , has been also taken
into account). The best agreement with the experimental results

was found putting 6 = 0.22 , o= 2.60 and £ = 8.0. Our result

-0.89

for C; diverges as (T, - T) at the A - point and

experimentally it seems to diverge as a Log|T - T A better

Al
agreement at TA could be obtained by allowing ¢(T) to be a more
appropriate function of X .

. - + . A

To obtain CV and CV,’ we have substituted FB/Z(GST)

and F (—é—) by exp(- —A—) since A/kT > 2.6 . The functions
1/2% KT

Fc(y) (o0 > 1/2) can be approximate by exp(-y) for y > 2.0 with

an error of only a few percent(l). For this reason, our result for




C; is only slightly modified if we put § =0 in the function

1/v(e,T) « 56 and the agreement with the experimental results is

the same as that obtained above with § = 1/2

. On the other hand for § =0 , C; = k/m which is
the specific heat of an isolated harmonic oscillator. In this

case, the agreement with the experimental results is not as good

as 3k/2m , which we obtained above with § =1/2 .
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FIGURE CAPTION

The specific heat CV as a function of T
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