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1. INTRODUCTION

The aﬁalysis of experimental data from two nucleon transfer
reactions 1-4 suggested that the T=1 pairing force plays an ‘
important role in the description of strongly populated O+ states
in medium weight nuclei. These 0% states can be understood
in terms of pairing vibrations 1,2 and pairing rotations 3.
Recently a more sophisticated collective treatment of the T=1
pairing Hamiltonian has been developed by Bes and others 4, 1In
this macroscopic model, the pairing deformation is considered
to be taking place in a four-dimensional isospin and gauge
space 4.
On the other hand, as was shown in our previous work 5, the
calculation of the above-mentioned 0" states is an exactly ’
solvable many-body problem and can be reduced to the solution of
a set of dispersion type energy equations which depend parame-
trically upon the symmetry constants that characterize the sym-
metry of the state under exchange among the J=0 pairs. It has
been demonstrated that the collective spectrum can be deriv-
ed from this set of energy equations and that a rotation-vibra-
tion model in the T=1 pairing deformed system was thus obtained.
This paper is intended as a review of the existing theories
which have been put forward to study the effects of T=1 pairing
correlation on O+ states in medium weight nuclei. The charge
independent pairing Hamiltonian is used as a schematic model
Hamiltonian. The interaction in this Hamiltonian‘is effective .
between any two nucleons that are coupled to J=0 and therefore

to isospin T=1l. We will start with the exact treatment with

which the author is most familiar and show how this exact theory

is related to the BCS approximation and the other approximate




theories of pairing collective motion.

In what follows, section 2 consists of a description of the
general properties of the pairing correlation in nuclei. 1In
section 3 we introduce an exact treatment of T=1 pairing Ha-
miltonian and obtain a set of dispersion type energy equations.'
In section 4 we will show how the BCS approximation can be deriv-
ed from this set .of equations. The validity and the limitations
of this approximation are also explored. In section 5, we
have a brief discussion on the properties of pairing vibrations.
In section 6, the quasi-particle approximation treatment of
neutron-proton pairing is reviewed. ~Finally section 6 consists
of a microscopic description_Of pairing collective motion of

the isospin degree of freedom. The collective spectrum is shown

to be obtained from the above mentioned exact equations.




2. PAIRING CORRELATION IN NUCLEI

In 1955, Bardeen 6 observed that the phenomenon of super-
conductivity can be explained in terms of an energy gap in the
single-particle energy spectrum of the.conduction electrons in
the metal. Cooper 7 showed that the formation of bound elec-
tron ﬁairs leads to such an energy gap, because only when a
pair is broken up can a single electron be excited. This dis-
covery of the pairing in superconducting metals led to great
advances in the general many-body problem. However, historical-
ly speaking, pairing correlation was first recognized in the
nuclear context. It can be traced back to the invention of the
seniority scheme by Racah 8 in 1942 in the studies of atomic
spectroscopy. This scheme resulted from diagonalizing a pair-
ing operator and constructing the associated states. The se-
niority quantum number was then introduced as a purely mathema-
tical tool, and all the properties connected with the seniority .
were also obtained in a purely mathematical way. Only when nu-
clear spectroscopy was later developed, did it appear that
seniority had a direct physical meaning in nuclei. Jahn ? first
noted that for short-range forces,like the nuclear force, the
Hamiltonian is nearly diagonal in Racah's seniority scheme and,
in the limitiné case of contact forces, seniﬁfity is a good |
quantum number. This obServation was also confirmed later by the
calculations of energy levels of the nucleons in unfilled shells

10 and Edmonds and Flowers 11. Moreover, the celebrat-

by Flowers
ed Mayer-Jensen pairing rule 12 is based on the assumption that
nucleons in each j must be paired off in J=0 pairs, and the spin

of an odd nucleus is then predicted to be that of the last un- o

paired nucleon. The success of this last prediction, coupled with
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the Mayer-Jensen level order was one of the triumphant arguments
in favor of the adoption of the shell model.

In 1959} Bohr, Mottelson and Pines 13 suggested that the
energy gap in the spectra of nuclei is a result of pairing ef-
fects similar to those present in the superconducting state of
metals. According to the data taken from Ref. 14 nearly all
even—-even nuclei have either one or no excited state less than

0.5 MeV. in energy while the odd nuclei usually have a number
of excited states in this energy range. If one eliminates the
obviously collective states, then an energy gap is clearly observed
in the remaining single-particle spectrum. The lowest single-
particle excitation is at least 0.9 MeV. in the éven nuclei and
is often between 0.1 and 0.3 MeV. in odd nuclei.

The pairing correlation is not only confirmed by the existence
of the energy gap in the low-lying nuclear spectra but also Ly
other phenomend such as y and B transitions and the reduced
widths for nucleons or nucleon pairs, etc. For example, the

18

transitions like Snl1l7(d,p)sni'® are forbidden in the light of

the simple shell model. However, it has been pointed out by

Yoshida 15

that this is no longer the case if the pairing inter-
action is taken into account. The experimental evidence for this
effect in (d,p) and (d,t) reactions has been observed by Cohen
et ai 16.

Pairihg also plays an important role in the interpretation
of empirical moments of inertia. It has proved to be responsible

for the observed fact that rotational noments of inertia are
ki e

appreciably smaller than the values corresponding to rigid rotation17

The nuclear phenomenon mentioned above do show an important
departure from independent particle motion in nuclei, a departure

arising from the residual forces between nucleons. The pairing
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correlation is then considered to be the contribution due to
the short range part of residual interaction. Imagine a pair
of classical particles moving in a central potential and inter-
acting by a short-range attractive force. It is easy to see
that for most pairs of orbits the interaction has no effect, as
the particles are rarely within its range. The particles interact
most strongly if they move in orbit b in opposite directions
for they will collide after half a revolution. After each col-
lision they will scatter, but both go into another orbit b'
again moving in opposite directions because angular momentum is
conserved and initially the total angular momentum is zero.

In order to gain deeper insight into the sources of the pair-
ing force, we consider the effect of verv short range two-body
forces upon n nucleons moving in degenerate particle states out-
side the closed shell. We allow the n nucleons to be composad
of both neutrons and protons. Assuming charge independence
of the nuclear force, we treat protons and neutrons as different
states of the same particle, and describe this new degree of
freedom by the isospin. In occupation number representation, we
d¢note a;mT (ajmr) as a creation (annihilation) operator of a
nucleon in an orbit with space-spin quantum number jm, isospin
projection t. An operator creating a pair of particles coupled
to JﬁTMT will be denoted as
AT TH) = %2— ;f%r- L0 3 Tr) o vl M2 W, (200)

[/
In terms of these operators a charge independert Hamiltonian

within the j orbit can then generally be written as




'jm [4

2_ Qe @
T - ' (2.2)
+_Z:<fjrlv|faqj>Z_A(“JMTMJ A jamT )
JT MM,
where ej is the single particle energy.

To diagohalize this Hamiltonian, we require a well-defined
complete set of many particle wave functions. It is expected
that this complete set should reflect some qualitative physical
features of the Hamiltonian and that the individual wave functions
in the set should be as far as is possible good approximations
to the exact eigenfunctions. 1In expressing the correlation set
up by a 'short range force, a coupling scheme can be provided by
defining a pairing ogerator 6 = I q_k for n particles, where

i<k i

VT 2! ’M"xr> =

< JMIirL g ]M T M »
(2j+1) ‘SJJ' STT' Spiptt On, JERNTE

then the eigenstates of the pairing operator a will form a phy-

sically reasonable complete set of many particle functions. A

little Racah algebra gives rise to the formula

4, =-5-(24¢) - 22 (2ke) () . ,1((*2, ) (2.4)

k (oddd)

where u( ) is a spherical tensor operator of degree k under

rotation whose components are defined. by

‘ j"'“‘:. e
pe = /‘““r Z,(MJ%UM ) e Gy (209)
kit wm

and satisfies the following commutation relation



[l g ] = Dl Lot o] (kg kg lekrs)
V (K ) rj) ps (2.¢)
w(kkjj rj) P 6

with k =0, 1, ..., 2j.
One may see from the last relation that the ug are the (2j+1)

infinitesimal operators which generate the unitary group U

» 2j+1°
The irreducible representations of the group are provided by the
space spanned by a;m (m=j,3~-1,...,-3j). If k and k' are odd

then only odd r will appear in (2.6). Hence the set of ug with
odd k generates a subgroup of U2j+1' Since
-v 1

< )-w ¢ ‘ k 2 by Vo
0 W e g ]2 2 ATk ) =
[ E J / Fe Y2kt

if k is odd, this subgroup can be identified with the symplectic
group Sp2j+l which leaves either the 3:0 stateoftwparticle or the
J=0 pair operator invariant. This transformation property of the
group Sp2j+l is very i@port;nt in connection with the concept .
of seniority v and reduced isospin t of a state. A function
which contains pairs coupled to'J=O will transform exactly like
the function obtained by remo;ing the pairs.v The quantum numbers
v and t may then be interpretgd as the number and total isospin
of that part of the wave function remaining after all J=0 pairs
have been removed. These two numbers specify the irreducible
representation of Sp2j+l to thch the state belongs.

In the jn configuration the transformation induced by Sp2j+1
are direct products of the transformation in 2j+1 dimensional

+
space spanned by aj . The infinitesimal operators in this
m

space are thus the sums of the individual infinitesimal operators.

n

Thus Ug = I ug(i) with odd k are the infinitesimal operators .

i=1

i
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of the representation of Sp2j+l in the space of tensors of the

jn configuration. It is interesting to note that

the infinitesimal operators v are

d

analogous to JX, J., JZ, the infinitesimal generators of Rj3,

y
while the relations analogous to the commutation relations

[JX Jy] = iJ, are (2.6). We now construct the Casimir

operator of the group considered. It is analogous to the ope-
2 2 2 2

rator q = Jx + Jy + Jz:
/\(r) ()
/\ R \
G P: 22(2”*1)([_} ‘U ) (2"’)
5 ¥(odd)
Like J2 commuting with Jx,Jy,Jz,GSp commutes with all U and

is diagonal in the seniority-reduced isospin scheme. 1Its

eigenvalues are given by

(ot Copluty = v (4] +8-v) = 2 (F L) (2.3)

With a little algebra we now can express the pairing operator

in terms of G_._:

Sp
" - s A
a} - H(H»_f) _ 2Z (l_L ‘i'k)+ M()*') .+ CTSP (Z(l)

4 ‘<k

Now it is obvious from the last expression that since the

Casimir operator of Sp2j+l’ G , if diagonalized in the seniority-

Sp
reduced isospin scheme so is the pairing operator 6.

States which are characterized by v and t have the very interest-
ing property of being nearly diagonal for short-range Wigner
forces. Consequently, if forces of not too long a range are used,

v and t can serve as approximately good quantum numbers. If the

ratio of the range of forces to the nuclear radius is much smaller
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than one, the proposed classification is very useful. Of course,
the nuclear symmetries represented by these two quantum numbers
are approximate ones, but due to the complexity of the nuclear
many-body problem, the study of approximate symmetries becomes
a useful approach in gaining deeper insight into qualitative
physical features and serves as a stepping-stone to more
realistic calculations.

In general, one can find the spectrum for jn configuration
generated by some given type of central force by setting up the
Hamiltonian matrix in the v-~t scheme and diagonalizing it.
However, it is not easy to study systematics of nuclear spectra
in this way. Fortunately, a useful closed formula for the
energies of eigenstates of Wigner forces EZ‘ V.. for jn confi-

i<j
guration has been given by the use of group theoretical methods

10
The diagonal energy matrix element of a central interaction for
states in v,t,J,T may be put into the form
‘ ST L Y ™ et JM, TM
EG vty IT) = Qg vt In, TR Ll ()% vt T, T
)%

e (w)E, + e (vt T)E Zze"(ﬂ Ei (2.1¢)
(=

where the Ei are certain linear combinations of the Slater

k

integrals F~, defined by

Fk(ﬂn,@mz&)=//v,:(v;,f’;)]lz‘,.¢'(v,) Ro )| drdy (7.11)

where R(r)/r is the radial wave function appropriate to the shell

and the vk(rl,rz) are defined by the expansion

V(r,) = 2 velnn) I (i) (2010
k
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By the group theoretical analysis, the coeffficients ey show

the following interesting properties:
The coefficient eq is a function of n only and gives the main

interacting energy of the configuration; The coefficiente ey

involves in addition to n the quantum numbers T,v,t, but not J
or any additional quantum number. The expressions of the remain-

ing e; are very complicated functigps;pf J. Fortunately, the
b
b RR )
shorter the range of the forces the smaller-the E
: pid SE

s o

2
become in comparison to Eo and EI. This last statement makes it

.. 'Ej“’é’ will

possible to eétimate the level'orderiné roughly from (v,t) alone

without making calculations.

N

For the jn configuration in the short range limit we have

FK = (2k+1)F° and E; = 2B_ = (3+F°/(j+1). 1In the same linit,

E and El are much largey than the other EZ"E

>
fo) > lOOEO) ’

j-3 1
so that the main ordering in the spectrum is determined by v,t

. (B, E
3 0’

and T, with J-splitting as fine structure. Thé‘hon—diagonal
matrix elements of a Wigner force %n the present states do not
contain E0 and El but only E2"‘Ej+-é . These e}ements then are
small and the interaction matrix is approximately diagonal in
these states. We therefore conclude that v and t are approximately
good quantum numbers as long as the raﬁge of the force is not
too long. For the lowest T values of anm even number of neutrons
and protons, there occur states of v=0, while for odd n there
occur states of v=1. This result ties in very well with the
Mayer and Jensen pairing rulelz.

Since the §-force is almost as difficult to diagonalize as a
completely general two-body interaction in a many-particle system,

we shall now define an idealization of the §-force which is call-

ed a pairing force. This idealized potential is chosen to
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simplify the shell model calculations and to typify the short
range components of the force. Recalling that for sufficiently

short-range forces, the integrals Eil..E.

J+% become small

in comparison with E0 and El, we further take a fictitious limit
such that all Ei in (2.10) vanish except E0 and El' Spelling
out the expression for e, and e;, we then have

E( , rt; IT) = 5 (w-t) Fo v f'z‘[‘x"o(m,T) SSHCR RS 2N BN CREY

where

QO(M’T—) = —.‘Z—M(?'—M-rl) - T(Tf1) (14)

are the eigenvalues of the isospin operator I (l - t,.t

i<k 4 1%
This operator counts the number of T=0 pairs: Ql(n,T;v,t) are
the eigenvalues of the pairing operator Q = (25+1) .Z_ § .0
which are related to the effective number of the J=3fJT=llgairs |
in the corresponding eigenstates. Ql are not simply given by

(2j+1)'§(n-v) but rather by

L) T2k S0 ] - T L) (o)

This can also be written as

Qﬂ(%77'ﬂf) :'é(ﬂ—v)(er1) - ﬁk(M“”)(é(““U) -1) (2.0¢)

where

- (2.17)
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can be understood as the measure of the effect of the Pauli
principle. Here we see that the Pauli principle reduces the

number of J=0, T=1 pairs by the amount

'k n-v (B=v
25+1 2 2

- 1).

Since both the operators z (— - .t ) and I q., are diagonal
i<k k i<k ik
in the senlorlty-reduced 1sospin scheme we can now define a

generalized pairing force which includes both T=0 and T=1 palring

Vi Gy (e dd) v
Ak ‘. )
_g»{_~_2(£ f) 22_ (2’(1’ ([vt(t -.IU()-)) (4,13)
2 : .

k(odd

where GO’GJO’G are force strengths and can be determined by fit-
ting the two nucleon spectra. Defining the barycentric energy

of a group of 1evels of glven (v,t) as
‘: /L"{') Z:(’)‘Jf1)E(JD£J )/Z_(7J+I) (2‘c1)

we then have

G- - E(J% 20 |
%0:E(fﬂﬂ)"5(ﬁ/zw (220
G - [5(221)~E( 0.0) |

2J+

The eigenvalues of this simple potential are given by

2 TJo

E e e G- b G [HE 0 - T ()]

LG [————(2) e 4 - f*‘”") T(THD) 4 t(ErD)]
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We notice some interesting features of this idealized éo—p
tential. First, since we are dealing with an cversimplified
§-force, this potential contains essentia1 features of the |
short range part of the nuclear force and reproduces thé energy
gap of the spectrum of even-even nuclei. This effect cén be:'
easily seen from the spectrum of low-lying states for the con-
figuration (7/2)% which is obtained according to (2.21) and is
plotted in Fig. 1. For a system of identical nucleons, such as

Ca44, the J=0 state is indee&d well separated from the rest.

With neutrons and protons, such as Ti44

, the pairing force ap-
proximation is not as good as that in the system of identical

nucleons. This is due to the presence of the isopairing fofce.,'
However, we always have the freedom within the seniority-réduéed

isospin scheme to shift the T=0 states relative to those with

T=1. Moreover, it can be seen from (2.21) that the effect of
Jo
as well as to the number of T=0 pairs. This number is maximum

the isopairing force is proportional to the force strength G

when the total isospin is equal to zero. We thefefore expect
the isospin pairing force to make an important contribution in
1ight‘nuclei. On the other hand, the number of T=0 pairs
decreases with the increase of T, and consequently the T=1 pair-
ing force becomes more prominent in the higher T levels. Since‘
the ground states of nuclei with larger neutron excess are iden-
tified with higher T levels in the Tz=0 nuclei of the same‘mass
number, we would then expect that the pairing force would play
an important role in the medium weight nuclei. This observation

is well confirmed by recent model calculations in the sd-shell

18

-and also by calculations with realistic forces .
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" So far we have only considered thejn configuration. We
now wish to specify the extent to which we will allow the pair-
ing force to scatter particles out of a single shell. Let us
note that the definition of the generalized pairing force given
'by'(2;1$) is equivalent to the oné which is defined as follows

by its matrix elements:

ET=0 11 Vg |2 Je0 TA1D = = Ge = 7 (2]01) gy

<J~2_ j:Q'L’CL\ T—.—ll v|2 l‘}'l J: gvenm - t> E (T (? 2z -I‘)

o

CIEJ-odd 701V, | j2 J-odd T-0p = -G, - €5, &0y

These last expressions suggest that one may arrive at our

definition of the pairing force spanning several single particle

levels, if one requires that

. & e 8-
GFa-0,T-1 v, |3 50T 1> =Cdy [ Cyeo (2 €50

<jZJ:Q,.V€L\/T:I ’\/‘le,lj: vt T:‘> - = G; gJ)/

jrgoedd Tl v, |t T edd To00 = — G - Gy Sy

The shematic pairing force thus chosen does fulfill the require-
ments of simplicity in calculation. As the latter part of this
paper will show, the calculation of exact states of this pair-

ing Hamiltonian can be reduced to the solutions of a system of
coupled equations. Thus the short range part of the nuclear

force can be well typified in a sufficiently simple way that
complex configuration mixing for many particles may be introduced
without heavy computations. By using this method, one learns
something of qualitative feature and acquires much insight

into real many-body problems. The simplicity of these calculations

also makes it possible to study,systematically and in detail,the
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variation from nucleus to nucleus of various nuclear properties,
such as excitation energies, electromagnetic moments, transition
rates, and reaction rates. Furthermore, these schematic cal-

culations lead to advances in technique which could be used with

more realistic potentials. They also provide a convenient. basis .

of functions with which more realistic calculations may be done,
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3. EXACT TREATMENT OF T=1 PAIRING CORRELATION .

For Ehe 2N-particle seniority-zero states of the charge-
independent pairing Hamiltonian, all N pairs of nucleons are
coupled to J=0 and therefore Tfl, MT=t. Placing these pairs
into a set of M single-particle j-levels, #ne (S able to classify

the states according to the unitary group U(M) x U(3). The

: S
group chain for this ‘ scheme was proposed as follows:
J- space : T-space
U (M) X U(3)
U(l) x U(1) x ... x U(l) x R(3) (3.1)

(M factors)

The general rule for the allowable values of the total isospin
T which occur for the given symmetry [\] of U(3) is obtained in
the same manner as described in Ref. |9. In our case, we perform
the reduction of the representation [)\] when the group is res-

tricted to the rotational group R3 in isospin space and we obtain

T=K, K+1, K+ 2, ..., K+ max (01,02) K #0

max(cﬁ,oz), max(ol,oz) -2,..., 1o0r o0 K=0
with the integer K taking on the values
K = min(ol,oz), min(ol,oz) - 2,..., 1l or o (3.2)

where 0y = Al—xz_and 02 = AZ—A3.

These states }ook like a series of rotational bands cut off

at some maximum vélue of T and indicate a relation between the
{

%

!
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present scheme and the pairing rotational model3. The parameter
K in (3.2) would correspond to the projection of the isospin on
the symmetry axis of the T=1 pairing deformed system.

In the spin-~orbital space, the representations of the product
group U(1l) x U(1l) x ... x U(l) are labeled by [NIJ[NZJ ceen [NM]
where Nm are the occupation of the péirs in the jm level at zero
pairing strength. The decomposition of representation of U (M)
into representations of U(l) x U(l) x ... x U(l) is obtained by
determining all the possible values of Nl’ N2,..., Nm that are

permitted by the following representation relation:

(sl = ) e 9,]E ... @Il (3.3)

where (}) stands for outer product.
According to the ' said classification scheme the energy and

wave function of the state are thus labeled as

E=©E(N]: (Ao ) Ivg ] Iv,) .. vy ] sk
(3.4)

Yy = W(|N|;[A1A2A3]Y}“[Nl] LN;j...[NM];KTMr)

We consider a proton-neutron system where all nucleons in-
teract only through a charge independent pairing interaction which
spans several single particle states. The Hamiltonian of the

system is given by

—— o
H = z ¢ O\A:, Bye = § Z Z\{Raﬂd’ bye-b e (3.5)

ymt teo e 30

where afmT and a, . are creation and annihilation operators for .

nucleons in the state with space-spin quantum number jm, isospin

£
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projection T and the energy ej, and»b;t and bjt are creation
and annihilation operators for a pair of nucleons in the spatial
state j with J = 0,T = 1 and MT = t. The interaction strength
is g. Qj are pair degeneracies of sinqle particle j-levels.

Instead of using any approximation, the Schrgdinger equation
for The nuclear system can be solved exactly using group theory
and algebraic analysiss. The eigenvalues E of the pairing Hamil-
tonian‘are then given by the sum of the roots of the following

coupled equations in N variables Ei:

™
1 : Kig ™M O
—+ 1 = 1 (3.6)
g i Ei - E2 m=1 2£m - EQ
2‘ = l, 2, ® & @ ’ N

The symmetry constants kiz that characterize the charge symmetry
[Al of the state can be expressed in terms of the total number

bf'nucleons and the total isospin and are given analytically in

Ref. 5 for the states with shapes [Nl and DN—l 1]. In (3.6) the

prime on the summation index excludes the values i=%.

For illustration, we list in table 1 the symmetry constants
for the seniority-zero states of a system of eight nucleons

E;en for given symmetry and isospin quantum numbers, there
exist many solutions to egs. (3.6). These solutions correspond
to the many states of the nucleons that have these quantum numbers.
The different solutions may be distinguished in a practical sense
and identified with the states of the noninteracting  ;system by

considering the pair-energies to be functions of the interaction

strength g and requiring that they take on values for g = 0 that
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characterize the state of the noninteracting system. These va-
lues are determined by the occupations of the single particle
levels in this limit. Thus if these occupations are given by
the number Nj' then Nj of the pair energies must take on the
values 2€j in this limit. This provides a unique labeling of
the solutions.

Some numerical methods for solving the above-mentioned
coupled equations have been discussed and developed in Ref. 20. The
auovﬁkm msed was such that the calculation of the exact states
of the pairing Hamiltonian is made as practical as that of BCS
approximation. It is therefore very convenient to carry out
the calculations for a series of nuclei.

As the gap equations are to the BCS approximation, so are +ae
equ&hmw 13.b) to the present exact treatment. All the relevant
physics is contained in (3.6) as it is in the gap equations of
BCS theory.

By way of an introduction to the structure of the equations,\&é), .
we will now briefly show how two theories known as the Tamm-Dancoff

approximation (TDA) (ref. }i

) and the modified Tamm-Dancoff
approximation (MTDA) (ref .1‘) can be obtained from +he exact
equations. We obtain the TDA by simply ignoring the term involv-
ing the pair energies on the left-hand side of the equations.

This is tantamount to ignoring the Pauli principle and pairs of
nucleons are treated as true bosons. In the MTDA, the Pauli
principle is treated in an approximate fashion. In (3.8) ,
this approximation is obtained by replacing the pair energy Ej on
the left-hand side of the equations by its value at ‘zero inter-
action strength, Zej. Note that the isospin and symmetry de-

pendence of the energy are contained in the symmetry constants b

kij' Thus we see that these two approximate theories are readily

obtainable from the exact equations.
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In the following sections, we shall further extract from
the above equations the usual BCS theory as well as the pair-

ing collective motion.
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4. BCS APPROXIMATION

Richardsoh'z22 has beautifully shown that very Simple ap-

proximation applied to " (3.b) yields the results of BCS
theory.

Following Richardson, we assume that g=G/N with G of order  *
one and we assume that the degeneracies of the single-particle |
levels @, are extensive quantities and therefore of order N.
We write the pair enérgies as Ei =_2ei and then for charge sym-

metric states egs. (3.6) becomes

)
2N . Z L -i_[_____ﬂ° =0 (4.1)
¥ e \ C.~-¢€ X 1 CL-@2

3 .
J L=1,N

It is very interesting to note that the solution of (4.1)
represents a problem in two—dimensional electrostatics, i.e.,
the equilibrium dlstrlbutlon of a collection of parallel lines .
of charge. For we can think of‘fhe complex numbers e, as being
the locations of N free lines”ofscharge of unit strengh in the
complex plane. These free 1ine$ 6£ cﬁarge are in the presence of
é uniform external field of streﬁgth -2N/kG ahd the field'of a
number of fixed lines of charge of strength *Qv/k located at the
points e, on the real axis. Egs. (4.1) then describe the equi-
libriﬁm of such a system of charges. In order to make use of
this analogy, we shall calculate the electrostatic field produced
by the charges rather than the charge distribution itself. This

field at position £ in the complex plane is given by

N " -

' i 4 VAR Qa N
_ L4 S . (4.2)
¥\\() - Z: § - e k Zi—‘ t- € *xG L ‘




22.

Now let us make an educated guess as to what the limiting form

of h is in the limit N + »., We then show that this limiting

form implies all the results of the BCS theory. . For the ground state
Charde dishribution; we defermine h. by assuming that, as the number of free .-

lines of charge increases, the lines coalesce to form a sheet. of

charge. This assumption is suggested by numerical studies which

1ndicate this behavior. The result is that ‘the poles of h arising

from the first term of (4.2) merge and form a branch cut. Wevv

assume”thet‘tﬁis brench cut extends froﬁ4thelpoiut a to the point

a* since complex roots of eqgs. (4 l) occur in complex conjugate

pairs. After some complex variable analy81s, Richardson suggests

e TR Al
\\o(ﬁ) g " Y (- 6) (4.3)

where the value of a = A + iA is yet to be determined and

Vb_.; *J(.G:) —all(éo -a*),‘ - ﬂ(_o AL AZ; .. (4.4)

Now since

Lom bl) - - -

we finally arrive at

__5__1_9_.__ = 2N (4.6)
— N G

\J
which is the gap equation of the BCS theory. By further analysis,

one is able to obtain the second BCS equation
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and the usual BCS approximation for the ground energy

2 ) o5 | e-sN . wa2l
€. = = z:; Ao 63,(&- ﬁﬁ_,lL\ - Jﬂll.} (4.8)
ok S Mo -G
if we put k=2 as is in the case of the system of identical

nucleons.
In view of the preceding results, we are able to make the

following identification between the parameters of the BCS theory

and the location of the branch points in the limiting field h,:

chemical potential

r = Re (&)

- 4.9
A= 1w {a} “-9)

]
]

energy gap

Historically, most of the calculations with the Hamiltonian
of a pairing force which spans a nuymber of nondegenerate single-
particle levels have been'done,with‘the apprOximations”of Bardeen-

Cooper~Schrieffer (BCS) theory 23 of superconductivity and the
equivalent Bogoliubov-Valatin transformation 24.' The applications
of these methods to nuclei was pioneered by A. Bohr} B.R.Mot~

telson 13 and S.Belyaev 25,

For a system of identical nucleons, one would guess with 5

Bayman 26 that the N-particle state (N even) is of'the form

—_— S \/\) A 'ii‘ . . ‘
\]/N_,_ — aj ax \©> : (4.10)

VA
J
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where a: and as are creation operators for ;... ticles in conjugate
(t;me reversed) orbits of energy €, . This expression could be
used as a trial wave function in a variational calculation. The
parameters V&t§r9 determined by minimizing the energy. Unfor-
;unqte;y there‘afe_considerable practical difficulties in working
with thish35Ve’éupction., However, if we give up the number
conservation and;ﬁixvthe seniority states of different numbers

of particles, we are able to construct a trial wave function

which is much easier to work with:

Such a wave function represents an ensemble of seniority-zero
states of many nuclei with variable number of particles. Such
. description of many particle system are common such as the use
of grand cannonical ensemble in statistical mechanics.

The non-conservation of the number of particles can be remedi-
ed by requiring that the average number of particles is the desir-
éd number. This is done by introducing a Lagrange multiplier.
Fortunately, with this procedure the spread of numbers of particles
in BCS proves to be small, as will be shown below. The Hamiltonian
that one minimizes is not the true one H, but rather

H'=H - An (4.12)
where n is the number operator

n = Zata (4.13)
v AY)
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The chemical potential X is determined by requiring that
the expectation value of n be the correct number of particlevN.
This procedure has the unfortunate consequences that the BCS.
approximations really represent a mixture of neighboring even-

even nuclei. This means that‘energies and transition probabilities
calculated f:om such wave functions can at best represent R
averages taken over several neighboring nuclei. Only if thevpro—
perties we are trying to calculate vary sufficiently smoothly

in going from nucleus to nucleus will such an average be useful.

In addition, the fact that states are not eigenstates of the
number operator gives rise to the occurrvent¢ of spurious states
which do not correspond to any state of a single nucleus. This
last consequence will be discussed in some detail in the latter
part of this section.

In spite of the shortcomings mentioned above, ECS approximation
gains compensation from the fact that it replaces the original
interacting particles by weakly-interacting "quasi-particles" and
thus replaces a complicated many-body problém into a simple one-
body problem. This is easily seen by noting that BCS state is the
vacuum of a set of quasi—particle operators d: énd as which are

related to the physical particle by the Bogolyubov-Valatin trans-

formation

a: = Uva: - va~

af = U\)ag + Vo ' (4.14)
with US + vs =1

(4.15)

+ ' . : '
H=E, +Zn, oo f Hyg + Hyy + Hyy + Hyy + Hyg + Hyo + Hy,
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with

€ D A 2 u

o = L (2¢,) \/J - A7 %Z -\]0 (4.16)
750 % dso i

where H,, is the Hamiltonian containing two a*'s and two a's

and so on. V's are chosen such that the quasi-particle move

independently of each other with the energy

N s

where parameter A is half the energy gap and is defined by

A

(i

9<Bcs| T,alay| BCS>
<% Z;,Tv% \é

the Lagrange multiplier A and the gap parameter A are obtained

: (4.18)
O

from the equations

(4.19)

7oy, N | 4.2
L \L . S (4.20)

V50
where the occupation probability of the pair state v,Vs is given
by

2E, (4.21)

2 Cy 2N
\L - L {L _ A& -2 §

For a degenerate level, one obtains an approximate expression

for the energy of a state with v quasi-particle:
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Ev= -—'A—g lv (N-v)(28-N-V) - VR Q_ .__2_;_1) %z

b2y (L - %%) -‘vl(i - g%)l l

This expression is seen to agree with exact expression to
within terms of order of 1/Q as long as v<N. 1In other words,
the energies are good to order g/A, since A= g in this case.
For a system of non-degenerate levels there is an effective pair-

ing degeneracy

t
jl. p = —QL— = A;- ‘ e (4.23
ek % 7 Z;; v (Q}jga )z L )

which is a measure of the accuracy of the approximation.

As mentioned before, the BCS wave function represents an
ensemble of nuclei with particle numbers slightly different
from the average and desired values. The spread in numbers of

particles in BCS state is given by

M AT (4.20)

r _ 2 .9 A?
(AN)E = <Bes | (n-n) |BCs Y aZ) _(Q

In strong coupling limit, this is %‘-N(l-%N/Q) which is <N/2 so
that
T
AN |t
N 2—N (4.24)

During the past few years, there have been numerous efforts

to improve the basic approximation of this simple theory which

treats the properties of a given nucleus as the average of the
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properties of an ensemble of nuclei. Furthermore, there exist
exact numerical results, both for spherical 27 and for deformed
nuclei 28 against which the accuracy of the BCS theory and its
proposed - extensions can be measured. As is well known, exact
solutions of the pairing problem, both in j-j and L-S coupling,
can be given explictly if only one shell is assumed 29. If two
shells are taken into account, the numerical difficulties in
finding the sharp seniority solutions are not too great, and
various results. for this case are known_30. In the case of more
than two shells, however, the numerical complications increases
and investigations with a large configuration space have been
performed by diagonalization of the Hamiltonian by numerical
methods. These hawve been done only for a few, simple cases
where. a small number of different single-particle energies €y
are involved. -These models thus are far from realistic, par-
ticularly when considering deformed nuclei.

" 'An improvement in this situation was made by Richardson 31,32
who. found that the calculation of the exact eigenstates of the
pairing Hamiltonian can be reduced to the solution of equations
(3.6) with k=2. The calculation of the solutions of these
equations is so straight forward that Richardson was able to
obtain exact solutions for configuration spaces of very high
dimensions (up ta 107ﬂRq3d.Furthermore, the exact calculation is
no more difficult than the calculation of approximate solutions
‘using any improvement of the BCS theory that gives up the assump-
tion of independent quasi-particles. Therefore, for the simple-
pairing force Hamiltonian one is left to choése between doing a
BCS calculation and doing an exact calculation. As a result,

large errors were discovered in the energies and occupation pro-

babilities calculated by the simple BCS scheme. For example, the
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accuracy of BCS solutions of the eigenstates of the pairing-
force Hamiltonian in the theory of deformed nuclei has been
restrictedvza/to comparisons of the BCS states with the'exact
states of this Hamiltonian for systems that are much smaller
(8 or fewer interacting particles) than typical nuclear systeﬁé;
This restriction is usually justified by an appeal to the
asymptotic exactness of the BCS ground state in the limit of
a large number of particles. It was pointed out by Richardéon 31
that the accuracy of the BCS ground state energy does not
improve as the number of particles increase from 8 to 32. Fur-
thermore , in this range of particle numbers the accuracy of the
BCS excitation energies gets worse with increasing particle
number instead of better. This can be easily understood by not-
ing that the hope that the BCS calculation would become more
accurate as the size of the system increased is based upon the
strong coupling estimate of the errors. This estimate indicates
that the percentage errors in the BCS ground-state energy and
excitation energies should be proportional to 1/N. However, the
exact calculations shows that this is only true for interaction
strengths that are much larger than those appropriate for nuclear
calculations. Richardson's solutions also provide a valid test-
ing ground for the various approximation techniques in use. Iﬁ |

33, Richardson's method was

the recent work of Bang and Krumlinde
used to'compare BCS and BCS + RPA + Projection approximations with
the exact results. In addition, this model is free from anomalous
behavior in the cases where the BCS type of approximation collapses.
Therefore it is suitable to.study some of the interesting regions

of the periedic table where ot levels are seen to have prominent

properties and where the standard approximation fail.
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In concluding this section, let us note that the BCS ap-
proximation also introduces a characteristic uncertainty which
arises directly from the fact that the wave functions are not
eigenfunctions of the number of nuclearparticles. This is the
introduction of spurious states, and in particular of one
spurious spin zero two quasi-particle state. In the degenerate
case, the BCS treatment gives Q distinct two quasi-particle
states, whereés the exact solution allows only (Q-1) seniority
two states. It is easy to see that the spin zero two quasi-
particle state,

y ()= z of af|BCS>

is a state which, although it has two quasi-particles, present,

is actually a linear combination of states which are all ground
states. In the non-degenerate case, a spurious spin zero two
quasi-~particle state also exists. The independent quasi-particle
'picturé yields M of ot ekcited states, which is one more than the
right wvalue, where ﬁ is the number of single-particle levels.
Since the éCS ground stateRSnd:aneigenstafe of the number operator
ﬁ, the state ﬁIBCS> is different from |BCS> and its components

on two-quasi-particle states are spurious; only states orthogonal
to it have equivalents in a physical nucleus. But the two-quasi-
particle states resulting from an approximate diagonalization

of the Hamiltonian are usually not orthogonal to the spurious
state, with the result that the spurious states are mixed with
various percentage among all the states that one calculates.
Sometimes, such spurious components occur neérly all in one state
with large total strength, in which case that state must be omitt-
ed as spurious. For example, in the quasi-particle spectrum of

Pb206, the lowest excited state with spin zero proves =~ to be
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entirely spurious. It is interesting to note that inclusion of
the particular part of Hyo» Hyp and H04 in (4.15), namely

H = %-LC,(Q(\;O(’S’“O(?{O(O)} ;

leads to a lowering of the spurious spin zero two-quasi-particle
state-if systematically treated with the random phase approxi-
mation (RPA method;raé all the way down to the ground étate. If
we further include that part of H22 P H40 and H04 which is res-
ponsible for the pairihg vibration 36 in the RPA treatment, then
the pairing vibration states can be identified with those non-
spurioué ot excited states. We will return to the more detailed
discussions on these states in the next section.
We should emphasize that the error in BCS theory arises solely

from the neglect of Hr ; Oor equivalently from the choice of trial

es
wave function. No error is introduced by the Bogolyubov-Valatin i
transformation. Consequently, if Hres,were diagonalized on the

complete quasi-particle, exact eigenstates, with no particle

fluctuation, must result.
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5. PAIRING VIBRATION

It is clear that the basic BCS equations (4.19) and (4.2¢)

always have the trivial solution

which is the normal state, corresponding to a sharp Fermi
" surface. But generally there is a non-trivial superconducting
solution of lower energy for which A # 0. To study the exis-

tence of this solution one may draw the curve

y = f(x) = ¢ 1
v>0 Z/Qev - A) 2+ x?

4 =f (x)
y-.,. y

RN y= L
N g
A b4
Fig. 2

The value of f(x) at the origion is ¢ —1 which,
v>0 2]e -A]
except A equal to one of €y is finite. Thus the

superconducting solution may not exist jif g is below a certain
critical value which can be interpreted as indicating a transition
from a "superconducting" to a "normal" ground state. In general
for closed shell nuclei all Iev—xl are large so that f(0) is

small and g is not large enough for the superconducting solution
to exist. Alternatively, for a partly filled’'shell some of the
|£v~x| are very small so that a superconducting solution is
practically always possible. The nonexistence of a superconduct-

ing solution does not mean that the pairing interaction has no
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effect. It simply means that no improvement over first order
perturbation theory for the energy has been achieved in the
quasi-particle approximation. In such a case, one must either
treat the parts in pairing Hamiltonian that are hdn—diagonal
with respect to the BCS wave function by some linearization
method as, e.g., the random phase approximations or solve the
whole pairing Hamiltonian exactly. Thus the treatment of the
pairing residual interaction not only recaptures the number
invariance but also shows the effect of the pairing force in
the case where BCS approximation collapses. The diagonalization
of Hres has been approximated with perturbation theory or with
some linearization method as e.g., the random phase approxima-
tion, by several author%q36. It is interesting to note that
a newly discovered collective mode of vibration appears when
the nuclei is sufficiently close to the transition point
between the single-particle and a superconducting system.

The pairing vibration state may be considered as genereted
by the pairing force elements non-diagonal in +he. g8¢CS
scheme. If we select a particular part of H22 and H40 in

H g namely

re
H' = - g p? (5.1)
4
with

= 2 _y72 + +
P g (Uv Vv)(a o o

vV vav) (5.2)

and treat the interaction qu + H' with the usual random phase

approximation 36, we obtain a dispersion type enerdy equation.

This reduces to a very simple form if we assume symmetry petween

)guek absve and below the Fermi surface: ‘

L4
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Uz ~v2) 20
£(w) = % v -1 (5.3
v 4ﬁ2 - 2 g e )
v
with the lowest root being the possible collective root
w = 2A (5.4)

Of other roots, there occur one between Zﬂl and 27,, one
between 21}, and 2I);, etc. where ﬂl and T, etc. are the small-
est and next smallest quasi-particle energies, etc. The ge-
neral character of the energy spectrum of (5.3) is easily seen
from Fig. 3} in which the f(w) is sketched as a function of .
All the solutions of (5.3) are trapped between the energies
Z“v' The solution that is not trapped falls a long way below
the rest and becomes collective provided a) all?]v>>A; b) many
Nv contribute. A collective state implies the existence of en-
hancements in the matrix elements corresponding to physical
observables. The enhanced operator in this case is the pair
transfer operator Za+a+ or its Hermitian conjugate. The

VT
operator P in (5.2) can be rewritten as a sum of transfer oper-

ators

_ +_+
P = 5 (avav + avav) (5.5)
and is found to be the "specific" operator which is related to
the pairing vibrations in the same way as the mass quadrupole
operator is connected with quadrupole vibrations. The matrix

element of this operator between the ground and the collective

state w is given by an expression valid in the symmetric case 36
<w|P|0> = / //Z 1 (5.6)
v (ev—k)

Here we see that the matrix element vanishes as one of the

single particle levels approaches the Fermi surface. In.the

e g
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opposite case, in which all the levels are pushed away from the
Fermi-enerqgy, both increases in ev—x and decreases in A tend to
enhance the matrix element. ‘

From EPe equations above it is clear that a favourable case
for this particular collective degree of freedom on the whole
to be observed—and distinguished from the B-vibrational one -
occurs first when all single-particle levels are far away from
the Fermi surface.

The above mentioned B-vibrations are the quadrupole vibra-
tions which conserve axial symmetry of deformed nuclei. They
are caused by the superposition of a large number of two-quasi-
particle states and residual quadrupole-quadrupole interactions.

),

As the force strength X increases from zero and passes /. at

crit
which the one phonon state (2%) becomes a rotational excitation,
the two-phonon quadrupole vibration goes over into a beta vi-
bration of the deformed nucleus. As a general rule, the beta-~
vibration states are low-lying. Their energies are in the
0.8-1.7 MeV range while the pairing vibration states must lie
higher than 1.4 Mev. (Cf. Ref. 37).

.For those nuclei in which no superconducting solution exists,
it is convenient to use the particle—pérticle and the hole-hole

coupling in constructing the bosons. The dispersion relations

are obtained as follows:

(5.7)




where the quantities ep

separation of the single-particle and hole levels from a zero
of energy chosen to lie between the particle and hole states.

The structure of Equations (5.7) is shown in Fig.4{ by the solid

and e, are the magnitudes of the energy

lines together with their reflection (not shown) through the

i
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vertical axis.
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as collective excitations of the nucleus Z,N. The quanta of
excitation of these "pairing vibration" modes are célled the
pairing phonons and may be labelled by the quantum number, o,
£he nucleon transfer number. Thus, a¥+2 for the pair addifion
mode and a=-2 for the pair removal mode. The conservation of
the number of particles implies the use of two pairing phonons
(one phonon with a=+2 plus one phonon with a=-2) to obtain an
excited state of a nonsuperconducting nucleus. This is not the ca-
se with superconducting nuclei where the collective oscillations
correspond to only one phonon because the lack of particle
conservation. N
The excited energy of the lowestJO+ state in a closed-shell
h)

to the smallest sum of wP+wh. For example, in considering sz

the lowest 0% excited state is predicted to be lowered from the

nucleus is lowered from the smalleét'of the distances 2(ep+e
08

[4

shell model prediction (2(e9/2+e /2) = 6.82 MeV) by an amount
given by the sum of the pairing binding energies in Pb206 and
Pb2l0 (1.84 MeV) which gives 4.98 MeV. Experimentally, the

Lowest excited 0+ level is found at 4.87 MeV 38.

For a closed-shell nucleus, the pair transfer operator
strongly connects (Z,N) to the one phonon states which are the
ground states of (Z*2,N) and (2Z,Nt2). If there are real pair-
ing vibrations there will also be two-phonon states strongly
connected to the one phonon states by the pair transfer operator.
These will include excited 0 states of (z,N). Thus pairing
vibrations are characterized by strong transitions of pair
transfer operator from (Z,N-2) to both the ground state and an
excited 0+ state of (Z2,N). For example, two transitions to the

state with 4.87MeV and the ground state have comparable inten-
206 208 ™(4.87)

: = 0.5-
0 (4.5)

sities in the reaction Pb (t,p)Pb
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6) TREATMENT OF NEUTRON-PROTON PAIRING WITH QUASI-PARTICLE

APPROXIMATION

As viewed in Section 4, considerable progress has been made
in understandingpthe effect of pairing correlations upon nuclear
spectra by means of the BCS approximation. But an important
limitation in the appliéation of the BCS theory to nuclei is-
that it can be strictly applied to a system of neutrons or
protons alone. In practice one hopes that this situation may be
realized in single closed shell nuclei such as the Tin isotopes.
However, the nucleonfnucle;n interaction is generally assumed
to be charge independent; Ehatgis, the neutron-proton interac-
tion would be just.as §t:qu as’'the interaction between a pair

-

of like nucleons. This équesté'that the neutron-proton pairing
correlation shouldfbe treated on the same footing as the
correlation between like particles. The pairing correlations
are usually thought to be confined to the nucleons near the
Fermi-surface; thus the neutron-proton pairing would not be
expected to play an important role in heavy nuclei where the
néutrons and protons are placed in different major shells. Due
to the small overlaps between neutron and protons orbitals,

the short range part of the neutron-proton force would not be so
effective in producing correlations. 1In this case, one would
treat the two kinds of particles separately by the BCS theory
and there would be two;independent BCS fluids. However, for

the medium-weight nucléi in the region 28 2 Z < 50; 28 < N £ 50
where neutrons and protons both fill the same major shell, there
would be no valid grounds for neglecting the pairing correlations

between them. This observation has been confirmed by the cal-

culations of Kisslinger and Sorenseé9who neglect n-p pairing and
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do not get good agreement with experimental data on the low-
energy properties for nuclei in this region.

A method based on an obvious generalization of the Bogolyubov-
40

Valatin transformation was proposed by Pal and Goswami
It is a straightforward application of Baranger's 41 adaption
to nuclear physics of the Bogolyubov generalized transformation 42.
In this approach, the linear quasi-particle transformation is

given by

(6.1)

where o is a label that distinguishes between the two kinds of
quasi-particle which are differenciated by their energies and
are obtained by mixing the neutron, the proton, the neutron-hole

and Pl,brﬁ-‘ hole g\;{(’eg ﬁ\vwé"f\. ﬁ\e )\Qu“h"ln -~ frﬁon ?ch'n?, {u-\&"
%

The coefficients U., and V,, in (6.1) are real and are de-

termined by solving the Hartree-Bogolyubov equations 41
u.ple,“'L, s ; - 1
Y S [ ZQI’P Ling, Ugy
il s G0 L ;
f w rn-“nf )’VL AK /‘s ,1}) Z'\"M JI:‘\\ U'."V\
= (6.2)
. e \ U ':ﬂJ' \ -
Opp Hap Fore S0 "7 e Vi Ve
[‘\ " 'r o } ’ " \4 in
— L

self-consistently. Here §n~ are quasi-particle energies. The

self energies | and the gap parameters Att' are given by .

tt!
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The symbols A and Ap

n

represent the chemical potentials (Fermi

energies) for the neutron and proton respectively and are to be

determined from the "number" equation:

The

quasi-particle vaccum state energy EO

(6.5)

(6.6)

and its corres-

ponding‘normaiized wave function |6> are given by

Eo:Z [( P () [

) tﬂ
and
‘b>, l { [CV '"(u,.<(j -wp ’ij'rlf“(:{
\,m>0
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where

j o_ _ 2
Co = (Up1Vp1%055Vp0) (U gV 14075V 5) = (U1 V, 40, ,0,5)

Cd = (U,.V..+U..V..)V

np. U21Y21%922V22) V1 Vy0t (U11V79%01,V3150V,1V0,
T (U11V21%015V22) (V15V51+V11V2))
cl = (U,,V,.,+U,,V,,)V 2+(U V,,+U,,V, )V 2
pp- (U21V21%022V52) V1 +(U11V17%01,Y5,) V)
=2(0y1V51%092Y22) V11V
C) = (U, Vo ULV VL2 4 (ULLV. 4T, V. )V 2
an~ (U21Y21%055V220 V5 12V12%011V110 V)

-2(U,,V_,+U0..V__)

12V221911V217 V125V

c] = (V)19 5V5p) 2
It is clear from the complicated expressions for the quasi-
particle energies and energy gaps, etc., shown above that the
simplicity of the BCS theory is lost. For a system of nucleons
moving in many j shells, one must solve a very complicated set
of coupled equations. Numerical solutions are obtained only by
long computational work. Furthermore, when mixing neutron and
proton operators as well as creation and annihilation operators,
not only are the particle numbers not conserved, but the toﬁal
isospin, T, and its z-component, Tz, are also no longer good
quantum numbers. It is therefore necessary to introduce more
Lagrangian multipliers in order to adjust the average valueé of
these quantities to their desired values. This procedure, no
doubt, makes the generalized quasi-particle transformation even

more unreliable than the original Bogolyubov-Valatin transfor-

mation.
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the results in (6.11) and (6.12). Herelaga; we see the serious
limitation of the treatment of n-p pairing v... a linear quaSi-
particle transformation and the necessity for an improved treat-
ment of n-p correlations. As will be shown, this Timitation
also applies tq a system of nucleons interacting through a
charge?independent pairing force in many j shells.
Let us introduce with Girocchio and Wenesser a new set of

fermion operators, b, which are rotated in isospace:

It follows the matrix

i r ] e . | 17 ot
A e T R
U Man ¢ Coo ¢} v t
Jrmam X Jovin
B . - 0 D J-
(’1) b} - 1) m ¢ —r (/‘ (——i) (;(/ - Al ,’)
9““1 v : 1 : | J
(-1 % <o 0 ¢ amg  Q T e

elements of the generalized Bogoliubov

transformation in the above two representation are then related

by
. B - - S
T DL g U
! ]
!
|
UU’M Mon ¢ Lu? l_/) v L= |
} . v AN
/ , !
\‘/17‘{’ ‘ 0 V' wod Laing \/f«}.
‘- I . .
VA D4 »
oA j I () U ,)1/1«“1 »b)\ \I/TV\ ,

(6.13)

then the transformed Hartree-Bogoliubov matrix takes the form
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Y

I", A'
A' ~T |
with . N
. ? L] 1 [ ]
' = I'pp I'np A' = APP AnP ,
(6.15)
At A ‘
Pﬁp Pén , np nn' _
where
! e o2 _
l;"p = ({APP #-CJP )1,) oo ¢ + (/u“" + C_,ﬂ ,An) .}<’V\2¢
- /u«/) H vt ;-)’-"
! : v .2 R . : 2
lyw = <IuFf’ f'ejf’*AP) din '@+ /Mfm +€/""-’)“)c""¢‘
+ f’(.u}) Mo 2¢'
( e.16 )

lhp = fop co24 - 5'.</“M et - Gp mAar),) a2

APP = AP') CU)Z¢ + A““ 4{M2¢ _ AMP L3t 205
)

A"“ = L’\f»}) Mt 2¢ + AﬂM (}0-’2’¢) + ‘AM'}'—’ dt 2¢)

A'w’? s L’\Mr C‘U’2¢ - ,’L‘ ([Xu»v( 'llr)g) M 2¢)

One can always make such a transformation which diagonaliéeé :
I'', keeping A' unchanged, which amounts to a renormalization of
the single-particle energies for pairing type forces. After such
a transformation, the vaccum state energy Eo which is given by

(6.7) becomes
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E. = z 20 ¢) [V..lu) “ Vi) + V) *\[:1\1')] - Neimlat o (6.17)
, 3
It is important to note that this energy is invariant under
the transformation (6.13), i.e., under‘rotations in the isospin
space.
One can always choose a representation in which A$p=0, ac-

cording to (6.16), by setting

2A
tan 2¢ = —2R (6.18)

Ap-An
The ground state expectation values of fz and iz' are simply

related

T, = <T> = <TZ'> cos 2¢ ' (6.19)

2 : _
can be expressed as

Further, the expectation value of T
<Tz'>2 plus a term of an order smaller than <Tz'>2 and is the-
refore‘approximated by

22y ~

<T*> = <Tz'>2 (6.20)

These last two expressions, (6.19) and (6.20), provide the
physical interpretation of <Tz'> as the isospin quantum number T.
The value of Tz can be found by choosing T and ¢, (6.19),--T§TZST.
The statement that Eo is independent of ¢ for fixed T is the
statement of isospin invariance within BCS approximation. It is,
of course, not an exact invariance, since |5> is not an exact

eigenfunction of 52.
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If we pick ¢ = 0, we have the solution for Tz=T’ then

A' = A
P P
At = A
n n
= b2
bop = 00 Cop =0

The wave function |6> is then reduced to a BCS product form
for the neutrons and protons separately. In the present appro-
Ximation there is nothing gained from the neutron—protdn part of
the pairing interaction. However, for the same T but T>}Tz], the
neutron-proton pairing does show its effect within the quasi-
particle approximation. This is exactly the conclusion draws by
Ginocchio and Weneser 43.

We have observed that the general Bogoliubov transformation,
which minimizes the ground state energy (note that T=Tz for the
ground state), reduces to the product of two ordinary Bogoliubov
transformation. This behavior is partly due to the number and
isospin fiuctuation in the vaccum state wave function. As in the
degenerate case, the error in the ground state energy caused
ffom these fluctuations is of the same relative order as the omtt-
ed n-p part of the energy to the total energy. The situation can
be improved by an isospin projection. The procedure is similar to
the construction of rotational wave function by an angular momentum
projection from a simple intrinsic function. If we are only in-
terested in energies, the projection may be treated formally

without any explicit calculations. We start with fthe fuasi-Paviccle vAicum

S%ate wave {»und‘\‘f:-‘ (6.8) which new an be puilen as

15 = T} (Uwr+v, () udf\? R;,.? ) (6.21)

[

S GV TTERRVATUI SO SR I ED
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and expand the n-p part of the pairing Hamiltonian in normal

order in terma of |0>

- % Z:; <a/f'-w-1) aj‘WP><atl'“"‘ Qpevam > '
2 . (6.22)

4

Iw); -""l')

g; Z<G‘JWP }W'P>ajwu }-wﬂ+<5\ N )mn>(?.

H’lk‘d (MP)

It was observed by Elliot and Lea 44 that the Hamiltonian

.leff) t
""u]) - ,,L_ (&) ) (A}m}, (AJWIM ({/-vmila}ﬂmu -
. , A

2 CA (6.23)

gives exactly the same expansion as an apart from differences
in Hres which can be neglected in the spirit of BCS method.
Thus if the component of definite isospin (T,To) and particle

number N+Z,|6> is projected from the wave function |5>,
N+Z,TTo
i.e.

we would then have

H|0>N+Z,TTO = HPpP,, PN+zl0>

13}

- 1 2
[EO + % {T (T+1) - Z(N-Z)

(6.24)

% (N+2) 1] |0

>
N+2,TT_

where Eo is the ground state energy obtained from the quasi-

particle appfoximation. For T=Tz=0, the energy is shown to be
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lowered by the amount of -Zg/2;, which is the same size as
error made in quasi-particle approximation, !rom the quasi-
particle vaccum state energy. Thus it shows the effect of
neutron-proton pairing which the simple quasi-particle appro-
Ximation failed to explain.

Before concluding this section, let us point out that for
the medium weight nuclei, the exact treatment as describied in
sec. 3 has some advantages over the treatments with quasi-par-
ticle approximation. Since the former tréals the nucleon number
and isospin as good quantum numbers whereas the latter includes
‘number and isospin fluctuations thus making it some what unreliable
because of the smallness of the nucleon number. Furthermore, as
has been mentioned, for T=!TZ§ the quasi-particle approximaticn
fails to predict any n~-p pairing correlation effects in a system
of nucleons interacting through chérge~independent pairing force.

One should also bear in mind that the wave functions of those
charge intermadiate symmetric sta'l<y and the interplay between
iscspin and syﬁmetry cannot be treat. .| within the framework of

a BCS theory or its extension.
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7. PAIRING-ROTATION-VIBRATION MODEL WITH ISOSPIN

As mentioned before the analysis of experimental data fromv

-4 suggested that T=1 pair?

- the two nucleon transfer reactions
. . ing force plays an 1mportant role in the description of strongly
' populated ot states in medium we1ght nuclei. These O states
\

can be understood in terms of palrlng v1brat10ns 1,2 - and pair-

ing rotations 3 . Recently a more sophisticated collective

treatment of T=1 pairing Hamiltonian has beeﬁ.developed by Bes
and others4 . ‘In'this macroscopic model, the pairing deformation
is considered to be taken place in a four-dimensional isospin
and gauge space 4“. |
In this section, we indicate the microscopic basis of the pairing s
rotation-vibration model and show how a microscopic description
. of pairing collective motion is obtained by making appro-
ximations to the set of dispersion type energy equation (3.6)
which one derive$ from the exact treatment of T=1 pairing Hamil-
tonian. |
MMultiplying‘the g-th equation in (3.6) by Eg» and then sum-

ming over %, we obtain

Q (2¢ ) -
E=LkN(N-lg-N fag+ 7 g (7.1)
2 , , 1 Zem - Ei
with ‘ , v v

N (N-1)

It is well known that if we set kil = 0 in 53.6), we then
have the boson approximation in which the T=1 pairs of fermions

are approximated by bosons. Eq. (7.1) then becomes

E =% N\)&b ' (7.3)
Vv
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where the boson energies &b are simply given by

(7.4)

If we take Ca40 as inert core then the lowest two roots

‘of (7.4), él and &2, are expected to be collective. This is

due to the fact that there is a large energy gap between the

first two j-levels. We may therefore view the o' states for

~the nuclei in the region 40<A<64 as collective excitations of

40

: :Ca . The gquanta of excitation are the pairing phonons each

of which carries the energy &1 or &2. With these quanta as
building blocks, we can construct the pairing vibrational
spectrum for the nuclei in the said region and label each

pairing vibrational state as

(Nl,Nz) ["]T'K (7.5)

The correspondence between the present labelling of the state
and the conventional one 2,3 is obvious as is illustrated in
Table 3.

In order to consider the anharmonic effects, we either
solve (3.6) and (7.1) exactly or make some approximations.

As long as there exist a large gap between the first and
the second j-level outside the inert core, as is the case for
the nuclei in the above-mentioned region, (7.1) can be appro-
ximated by the following desired Expressions for the charge

totally-symmetric states:

E' =E  + I b Nm-3) + v(r+1))* (7.6) .
2=2

o
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where |
= Q_ ‘ .
B, = 1 Nv&v 2§ ! [N (n- 3) + T(T+1)) (7.7)
with S,
2 .
h 1 1 o ) o -
—=—=—173 [ZN (N -1)g - ¢7——"o NN § ] (7.8)
24 N@N-1) V 2 VOV TV gytEym2 T2
“and
1 1 o &, o
[ 2noS, - g
e’ N (N~1) v 2 VY \Y &l+&2-2&b 1727y
i o ‘
I- L A LV Lk
i - N(N-1) N (q;+&-2%,) :
3
V io
The g in these last expressions are given by
g /// ( )
g =1 _(2¢
v [-(;—- I — (7.10)
(Zem—tpv) g

A similar yet more complicated expression for E', which we will
not present here, can be obtained for the states of shape
@N—l 1]. One would immediately recognize that the expression
(7.6) is very similar to that of rotation-vibration model for
deformed nuclei 45. We are thus led to a description of our
nuclear system in terms of a rotation-vibration picture in which
9 in (7.7) can be interpreted as the moment of inertia of the
T=1 pairing axially symmetric deformed system and the bl as the
rotation~vibration interaction teérms. The expression N(N-3) +
+ T(T+1) in (7.7) can now be attributed to the fact that the
pairing deformation is taking place in isospin space as well

as in gauge space4.

So far we have only considered the states with charge sym-
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metries [N] and [N—l i) for the nuclei of interest. According

to the well known reduction of product representations of per-
mutation groups 46, these states are the only ones that can be
reached by pair transfer reactions and therefores are the phy-
sically most interesting ones.

As in quadrupole-deformed nuclei, we can group ot states into
the ground state, A -, and T -~ bands 3’4. The A-oscillations
are vibrations of the gap parameter (K=0) which preserve axial
symmetry while the T'-vibrations (K=1) cause deviations from axial
symmetry. In the present scheme, the allowed values of K for
the charge symmetry [X1A2A3] are given in (3.2). It follows that
K=0 for the charge totally-symmetric states and K=1 for the
states of shape ﬁ%ﬂ.lJ. This suggests that the first excited
band of states with the shapes [NJ and (N—l l] can be considered

as A - and I' - band respectively with band head ¢ Thus ‘

2 " €q-
the correspondence between the classification of states accord-
ing to the present scheme and that according to the two schemes
referred to in Ref. 3 is established.

In érder to test the validity of the present approximation
and to examine the effects due to vibration-rotation interaction,
we have calculated the appréximate energies Eo in (7.7), E' in
(7.6) and the exact energies E in (7.1) for the low-lying pair-
ing ot states of the nuclei in the region 40 < A < 64. As an
illustration, we present the calculated results in Table 3 for
the various states in the ground state, A and I' rotational band
of the A=56, A=60, A=52 anq A=48 systems. In general, the pre-
sent approximation (7.6) is fairly qgood for the nuclei of

interest as is compared with the exact solutions. Our results

show that, for nuclei with A < 56, the effect due tg,vibration~

rotation interaction is quite small as is illustraﬁeﬁxin Table 3.
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However, for those with A ” 56, the contribution from the vi-

bration-rotation coupling becomes significant.
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Table 3

56.
TABLE CAPTION

Energies calculated for the various ot states in the
ground state, A and T rotational band of the A=56,
A=60, A=52 and A=48 systems. The second, the third

and the fourth column list the labels of the state . .

according to (7.5)and the vibrational and the rotati-

onal schemes described in Ref. 3. The approximate
energies Eo’ E' and the exact energies of these states
are calculated according to (7.7),(7.6) and (7.1) respec-
tively for the following given pairing strengths and
single particle energies. g = 24/A MeV. The single
particle energies are given an A-dependence following
Ref. 1% with the values e7/2 = 0.0, e3/2 = 4,25,

= 5.03, el/2 = 5.36 MeV for Ao = 56 (See the ap-

€5/2
pendix 2 of Ref. 39 for details). These last values
for 2p3/2, lf5/2 and 2pl/2 level are taken from the
.57 _ . R _ . .
spectrum of Ni“’. The lf7/2 2p3/2 single-particle

splitting is chosen so that the observed first

strongly excited ot state of N156 is reproduced.




TABLE

Symmetry constant

1

57.

for
the seniority-zero states of eight nucleons
(4] (31 [22] [212]
0 2 4 2 2 1
1
3 2 2 0 0 0 0 0 0
12 6
1 S 7 3 3 1 5
'3 3 3 2 3 ry 7 7 Y 0
i s 2 z 3 3 1 s 1
14 3 6 8 4 2 2 L
1 5 7 3 3
23 ? '6— 2 ? L3 2 0 0 0
1 5 7 3 3 1 5
24 3 g 2 Il ry 2 3 Y 1
1 5 -1 1 s
. < - 2 > 2 2 > > 1




TABLE 2

Percentage errors in ground state energy of 7/2 shell nuclei

due to the neglect of n-p pairing

Isotope ’ 22Ti22 22Ti24 22Ti26 22Ti28
Errors 11.11% ! 9.09% 9.09% 11.11%
Isotope,i 24Cr24 | 24Cr26 l 24Cr28
" |
_ g o |
Errors 14.28% ‘ 14.28% l 16.67%

Isotope ’ 26Fe26 J 26Fe28 ’ 28Ni28
|

Errors l 20% l 23.07% l 33.33%
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TABLE 3
State E E' Exact
A °© Energy
(Nl’Nz) |A},TK (NrTr,NaTa)T (A,nA,nF,K,T) {(MeV) | (MeV) | (MeV)
(8,0)[810'0 (00,00) (56,0,0,0,0) {-7.12[-7.12|-7.13
o (7’1)[8]0,0 (11,11), - (56,1,0,0,0) ;-0.03(-0.33|-0.43
’ (7,1)[8]2 o (11,11), (56,1,0,0,2) | 1.19/ 0.79] 0.70
(7,1)(71]1 | (11,11), (56,0,1,1,1) | 0.211-0.15 -0.27
(8,2)[10]00 (00,20) (60,0,0,0,0) 8.86| 7.98| 8.17
(8,2)[101210 (00,22), (60,0,0,0,2) | 9.82| 8.79| 8.96
60 (7,3)[10]0'0 (11,31), (60,1,0,0,0) {15.34|14.31{15.22
(7,3)[10]2 o (11,31), (60,1,0,0,2) |16.08{14.87{15.85
(7,3)[91]1 \ (11,31), (60,0,1,1,1) [15.57 14.50 15.57
(6,0)[6)0 0 (20,00) (52,0,0,9,0) -9.201-9.20/-9.31
‘5'1)[ejo,o (31,11) (52,1,0,0,0) |-0.85(/-0.98(-1.05
52 (5,1)[6]2 0 (31,11), (52,1,0,0,2) | 0.34] 0.13| 0.05
(5'1’[51]1,1 (31,11) (52,0,1,1,1) |-0.621-0.78|-0.86
(5,1)(51]2 1 (31,11), (52,0,1,1,2) | 0.59] 0.39| 0.32
(4,0)[4]0 5 (40,00) (48,0,0,0,0) '-9.16{-9.16{-9.21
(3,1)(4]0 o (51,11) (48,1,0,0,0) | 0.62; 0.60| 0.58
48 (3,1)[4]2 0 (51,11), (48,1,0,0f2) 1.66, 1.57 1.53
(3,1) E3ﬂ 11 (51,11), (48,0,1,1,1) | 0.83; 0.80; 0.77
(3'1)[5ﬂ 21 ~(§1,11)2 (48,0,1,1,2) | 2.19| 2.12; 2.08
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