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ABSTRACT AN

We give a detailed analysis of the dynamical effects of the ra.diaﬁén reaction forces,
acting in the magnetic deflection of an atomic beam characteristic of the Stern-Gerlach
type experiments. We show that the incident atomic beam is splitted in two beams by
the action of the radiation reaction torque. This phenomenon is, however, dynamically
different from the standard Stern-Gerlach effect because the space variation, and the
total magnitude of the magnetic field, are equally important. The strong dependence of
the beam splitting on the total magnitude of the field, is characteristic of the processes
of emission of radiation because the Larmor formula is proportional to the fourth power

of the Larmor frequency. We suggest experiments to test our theoretical predictions.
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1. INTRODUCTION

In a recent publication a successful classical analysis of the Stern-Gerlach phe-
nomenon was discussed in detail [1]. According to Dechoum, Franga and Malta, the
Pauli-Schrédinger equation is closely related to the Liouville equation, and this fact
allowed then to give an adequate classical description of the Stern-Gerlach type exper-
iments, by treating satisfactorily the non-linear magnetic forces acting on the atoms,
and considering continuous orientation angles of the magnetic dipole.

In this paper we shall give further attention to the classical aspects of the Stern-
e Gerlach phenomenon, by studying the dynamical role of the radiation reaction forces
acting on the magnetic particles of the beam. OQur starting point is similar to that
discussed by A.F. Rafiada and M.F. Raiiada [2], in the interesting paper entitled “The
Stern-Gerlach quantum-like behaviour of a classical charged particle”. There are, how-
ever, some important differences which are clarified in our Section 2.

In order to identify clearly the role of the radiation reaction forces, the conventional
Stern-Gerlach effect (quantum or classical) is neglected in our theoretical calculations.
This will be very useful because we shall see that the effects of the radiation reaction
torque are very similar to the conventional Stern-Gerlach phenomenon. We will show
that this procedure enable us to identify the signature of the radiation reaction forces
. zcting on the magnetic particles.

Our paper is organized as follows. We first give a summary of the derivation

. of the radiation reaction torque acting on the electron, emphasizing the application

to the magnetic deflection of neutral atoms in the Stern-Gerlach type devices. The
splitting of the Maxwell-Boltzmann velocity distribution is discussed in the Section 3.
Within Section 4 we calculate the distribution of particles on a distant screen. We

show that the incident beam is splitted in two beams whose separation presents a
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characteristic dependence on the total magnitude of the applied magnetic field. Finally,

our conclusions are summarized in Section 5.

-

2. RADIATIVE CORRECTIONS TO THE LARMOR PRECESSION

The large magnetic moment of a neutral atom is generated by the electron and it

is given by
_ —eg8S

; 1)

2me

where —e is the electron charge, m is the electron mass, ¢ is the velocity of light,
S is thg electron spin vector and g is the intrinsic gyromagnetic factor (g ~ 2 for
electrons [3]). Let us first consider the case of a single (isolated) electron.

Under the action of a constant ma,gnétic field B, the magnetic electron precesses
with the Larmor frequency w = e|B|/mc as indicated in the Fig. 1. The electric
and magnetic fields generated by the precessing electron, located at the origin of the
coordinate system, are such that [4]

-—eﬁ-+ EXft 71Xt
r2 cr? c2r

E, | ~ , (2)

3R(A-p)—p 3RMA-A)—p B x (R x )
‘ + 4
r3 cr? c2r

B, ~

; (3)

where f = r/r and the vector s is a function of the retarded time # — rfec.
These fields generates in space surrounding the electron, an electromagnetic angular

momentum (or spin) which is given by [4]
A

= — . 4

S, de4WCX(EEXBe) (4)

This quantity is divergent for a point-like electron. However, from the old classical elec-

tron model of Abraham and Lorentz [5,6], and also from the modern QED picture [7}, it
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has been proposed that the electron is an extended charge, with a radius R estimated
to vary from e?/me? (classical electron radius) to fifme (Compton radius) approxi-
mately. In this regard, it is interesting to calculate S, using the first terms in (2) and
(3), assuming R = e?/mc? and by considering the experimental value |u| = efi/2mec.
The calculation is straightforward and leads to [Se| = /3 [8]. This simple calculation

illustrates that a large amount of the electron spin has an electromagnetic nature, and

- exists in the space surrounding the charge distribution. We shall use this idea as a

guide to the calculation of the radiative corrections to the Larmor precession. We shall
consider a point electron and restrict our calculations to the finite contributions to S,.

Let us return to the case of a neutral atom with a single unpaired electron. The
last terms in (2) and (3) are responsible for the electromagnetic energy irradiated by
precessing the electron. The precessing ﬁlagnetic nucleus also emits radiation. How-
ever, the power emitted by the nucleus is many orders of magnitude smaller (10718,
and will be neglected.

In a Stern-Gerlach device, the atoms spend a short time interval (10~ sec) crossing
the magnetic field region. During this movement the precessing electron generates a
time varying angular momentum density, which fills the space surrounding the electron,
and generates an additional time dependent angular momentum of electromagnetic

nature. It is possible to show that the main contribution to the electromagnetic angular

-momentum AS., which is created in the small volawe AV surrounding the electron;

comes from the combination of the first term in (2), with the last term in (3). Therefore,

from the standard expression of the angular momentum density we get

AS, ~ d3r~4-1-.— X {“62"’ X [Ej—(;—l—fﬁ]} ; (5)
AV Tc r - 2r

where the volume AV = 47(cA¢)3/3 and Af — 0. The integration in (5) gives

AS, = —2% e . (6)

3 e
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The total instantaneous variation of the angular momentum, which we denote S, will

be given by
. AS, 2 e
= —= — - — . 7
S =puxB-+ A = MxB i (7)

Taking into account the equation (1) the above expression can be written as

eB
o~ 22 Y . 8
B~ = XptTi, (8)

where T = 2e2/3mc® ~ 6.3 x 1024 gec.,

The terms depending on fi in the equations (2) and (3) also contribute to the
equation (8). One can show, however, that its contribution is given by 4 x ftfmc?
being thus much smaller than Tit (see ref. [2]). Another observation, which one can
infer from the above derivation (see equations (5), (6) and (7)), is that equation (8) is
applicable to the neutral atoms crossing the Stern-Gerlach devices, because the local
conservation of the angular momentum (used in our derivation) governs the microscopic
- radiation torque, and the time variation of the vector n(t).

The last term in equation (8) will modify the Larmor precession by introducing
a variation in the angle 4. In order to calculate this variation we shajl neglect the

unphysical runaway solutions [6]. According to our Fig. 1 we shall denote
1= p(siné cos ¢, sinf sing, cosd) | (9)

~where 4 = |g| is constant.
The Larmor frequency w > 10! gee-! for |B| > 10* gauss. Therefore, we shall
assume that |07 < w , 18l € w and bl < w. According to (8) the first component
of the vector p obeys the equation AL = —wus + T .

From this equation we get ¢~ w and

0 ~ —Twitgl | (10)




This simple equation can be integrated giving

cos f = cos f, \/1 +tg2 6 (1 — e~witt) | (11)

where 6y is the initial angle. For long times the solutjon (11) has the remarkable
property that cosf — +1 (if p < 7/2) and cosf — —1 (if 6o > 7/2). As far as
we know this interesting consequence of the radiative corrections was first noticed by
A.F. Rafiada and M.F. Rafiada [2]. We shall see below that, although the variation of
the angle @ is small, for the fast particles crossing a Stern-Gerlach device, the incident
beam is divided in two outgoing beams by the action of the radiation reaction torque.

Notice that Tw? > 1 for magnetic fields greater than 6 x 10* gauss.

3. SPLITTING OF THE MAXWELL-BOLTZMANN VELOCITY
DISTRIBUTION

We shall discuss the details of the motion inside the pole pieces of a Stern-Gerlach

magnet by assuming that the magnetic field is given by
B=(—fz,0, Bo+ ) , (12)

where 8 =2 x 10° gauss/cm [9]. The constant B, will take several values within the
range 2 X 10* gauss < By < 6 x 10° gauss. The beam is narrow as indicated in the
Fig. 2. The width Az = 0.03mm were used in the first experiments [9,10].

The magnetic particles (silver atoms, for instance) move in the direction y with
velocity v, = v, distributed according to the Maxwell-Boltzmann law (temperature

T = 1000° K)

2?)3 d’U -—v2/02

Ww)dv =

; . (13)

at
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where o = 2kT/M so that v, = V/3kT /M is the most probable velocity, and M is

the mass of the atom.

The length of the magnetic field region is { and the detecting screen is located
at a distance D > £ as is illustrated in the Fig. 3. We shall consider £ = 10cm
and D = 50cm. The above numerical values are typical values considered in the
experiments [9-12].

In what follows we shall assume that the particles spend a short time ¢ = £/v, ~
4.83 X 10~* sec [9] in the magnetic field region, so that the quantity 2w? ¢ appearing

in (11) is small. Therefore, one can approximate cos# by (see Fig. 2 and eq. (11))
cosf = cosfg [1+ (w?rt)tg® 8] . (14)

This expression will be used in order to integrate Newton’s equations of motion in the
nterval 0 <t < £/fv.

~The accelerations in the z and z directions are given by

- 1B Bzo

Vg B cosf , (15)
and
. pB By
= 1
U, T R g, (16)

where B = m . For simplicity we have assumed that the particle enters the
magnet in the point z = z¢ and z = 0. Notice that cos® is a function of time (see
(14)).

We shall also consider that these accelerations are small, so that the heavy silver
atom has a negligible transversal displacement inside the magnet. Therefore, the com-

ponents v, and v, of the transversal velocity, at the end of the magnetic field region,

are given by




pB By [ £ wir £2 sin?4,
. - —_—— —] 17
v MB ('a cos 0o + 2 v? cosby (17)
and
B.xo
Tz — z 1 18
B, (18)

provided the particle enters the magnet with velocity v, = v and initial orientation

fo (see eq. (14) and Fig. 2).

4. DISTRIBUTION OF PARTICLES ON A DISTANT SCREEN

The screen is located at a distance D after the exit of the magnetic field region

(see Fig. 3). Therefore, according to the equations (14), (17) and (18) we have

z = UZ% o %%COS&U [1+§tg290]. , (19)
and
T =z (1-1}-%%) , (20)
where
2 2

In (21) we have replaced v by \/m which is the most probable velocity.
These approximations are sufficiently accurate and enables us to calculate more eastly
the distribution of particles on the scfeen. Notice that the incident beam is unpolarized
(random distribution of the orientation angle f;) and the distribution of velocities
vy = v is given by the Maxwell-Boltzmann law (eq. (13)). For the sake of simplicity

we shall calculate the distribution for z = zo = 0. This distribution is defined by

2 o M2

T . o] 3
G(z) = / sin 8, dHO/ 2v 4dv g—vilats [z _ uBeD cos 0 (1 +§tg2 90)} , (22)
0 0




because the incident beam is unpolarized. Notice that

]00 dz2G(z) =1 . (23)
00

The above expression (22) for G(z) is an idealization. It corresponds to assume that
collimating slits (see Fig. 2) are arbitrarily narrow. In practice the slits are VETY narrow,
the width Az being of the order 0.03 mm (9,10]. The extension of our calculations to
the case Az # 0 is straightforward.

Using eq. (22) one can show that

2 /2 ] 29
6 = p; f sin o dfo (cos® G + 2€ sin® 6) x exp [‘% (“°s"°+fsm 0)}
0

B EIE cos by
(24)

where

n = (25)

A convenient form for G(z) is

nG(z) = fo "™ g - 2) +2€] exp (— [u(l —+ i’ﬁ]) . (%)

u 22
It is also useful the expression for the particular case £ = 0, namely, the case in

which the radiation reaction effects are neglected. We obtain

0 Go(z) = /0 " i — 2 exp (m %) (2 + "l?zﬁl + f—j) . @D

5. DISCUSSION

According to the first experimental result obtained by Stern and Gerlach in 1921
(see [9]), the separation on the screen was very small (~ 0.1 mm) because they have con-
sidered D = 0. More recent experiments consider D > ¢. We shall take

£=10cm and D = 50cm as typical values [12]. The temperature is T = 1000° K
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and the atomic beam is made of silver atoms for which M ~ 1.8 x 107#2g and
B =9.27 %10~ erg/gauss. According to references [9-11], B =2 x 10° gauss/cm and
By = 2x10* gauss. We shall take 2% 10* gauss < By < 6x10° gauss. This is an impor-
tant information because our parameter ¢ (see (20)) depends on the Larmor frequency
w = e By/me. Taking into account these numerical values we get 5 ~ 3.3 cm from
the expression (25). In the figures below the parameter 7 is fixed. We shall consider,
however, several values of ¢, obtained by varying By in the range indicated above.
Therefore, we shall consider some values of ¢ within the interval 33 x 1g~5 <€<03.

In the Fig. 4 we show Go(z), that is, the distribution obtained by neglecting the
radiation reaction forces acfing upon the magnetic particles crossing the Stern-Gerlach
apparatus. This is the well-known result, namely, the image of the central part of the
slit shows only the widening generated by the magnetic forces (see (16) and (17)). The
beam is not splitted. According to the usual Stern-Gerlach phenomenon it is expected

a separation of beam given by the amount [12]

Asg = 2p (1 + é%—) ~ 6.6cm , (28)
where 7 is given by (25). As we said in the introduction, we have neglected the Stern-
Gerlach phenomenon in our calculation, in order to clearly identify the signature of the
radiation reaction forces.

In our Fig. 5 we show the function G(z) .obtajned by considering ¢ = 33 x 10-5
which corresponds to take By = 2x10* gauss which is the value used by Stern-Gerlach
in the first experiments [9]. The separation generated by the radiation reaction is
Apr~0.8cm being smaller than Asc but measurable. In the figures 6 and 7 we show
G(z) for By =105 gauss and Bj = 6 x 105 gauss. For By = 10° gauss App ~ 1.2¢em
and App ~2.8cm for B, = 6 x 10° gauss. In our Fig. 8 we compare Go(z) with G(z)

for By = 6x 105 gauss. From the Fig. 8 we see that, besides the splitting of the original
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beam, the radiation reaction torque generates a large widening of the final separated
beams (each beam has a width larger than 10 cm). Based on these results, one can
conclude that the experimental verification of the effects of the radiation reaction in the
Stern-Gerlach devices, is possible using the present day technology. Finally, we would
like to suggest, that the radiation reaction effects discussed here, might be relevant to

the experimental verification of the Stern-Gerlach effect for electron beams [13].
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FIGURE CAPTIONS

FIG. 1 >

The orientation angles of the vector #(t) which precesses around the magnetic field

B.

FIG. 2

Schematic picture of the precession in a non-uniform magnetic field B. The initial
orientation angle is 8. The particles in the beam (shaded area) move with velocity v

in the y direction.

FIG. 3

Schematic picture of the Stern-Gerlach type apparatus. The length of the magnetic

field region is ¢ and the detectmg screen is loca.ted at a dlsta.nce D after the magnet.

FIG. 4

Distribution function Gp(z) calculated by neglecting the radiation reaction {eq. (27)).
The parameter n = 3.3cm and width of the distribution is 2.4 cm approximately. In

all figures 100 = 1 cm.

FIG. 5

DlStI‘lbllthIl fanction G(z) (see eq. (25)) obtained by using 3 = 2 x 10° gauss/cm
and By = 2 x 10* gauss as in the first Stern-Gerlach experiment [9 |. The separation
generated by the radiation reaction is Arr ~ 0.8cm. The value of the parameter

n=33cm is the same in all figures. The parameter { = 3.3 x 104,
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FIG. 6

The function G(z) obtained by considering £ = 0.08 (Bo = 10° gauss). The

separation Apg ~ 1.2cm. -

FIG. 7

The function G(z) obtained for By = 6 x 105 gauss which corresponds to £ ~ 0.3.

The separation Agrg ~ 2.8cm.

FIG. 8

Comi;)arison between G(z), for By = 6 x 10° gauss, and Go(z). The effect of the
radiation reaction is very big. We see that, besides the separation of Agp ~ 2.8 cm,

each beam presents a clear widening, larger than 10 cm.
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