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Abstract

Synchrotron radiation of a charged particle in a constant uniform magnetic
field and in the presence of the Aharonov-Bohm solenoid field is studied in the
frame of the relativistic quantum theory. First, to this end exact solutions
of the Klein-Gordon and Dirac equations are found. Using such solutions,
all characteristics of one photon spontaneous irradiation, such as its intensity
and angular distribution and polarization were calculated and analyzed. It is
shown that usual spectrum of the synchrotron radiation is essentially affected
by the presence of the solenoid (the Aharonov-Bohm effect). We believe that
this deformation may be observed by spectroscopic methods of measurement.
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I. INTRODUCTION

Aharonov-Bohm (AB) effect attracts until present days a great attention due to its im-
portance for understanding of the role of electromagnetic potentials in the quantum theory.

In the work [1] by Aharonov and Bohm it was demonstrated a non-trivial scattering of a

charged particle off a potential of an infinitely long and infinitesimally thin magnetic solenoid

(further AB field)'. The effect may be related to the phase shift exp(ie § A dr/hc) in the
the wave function of the particle [3], which is moving along a closed path embracing the
solenoid. In spite of the fact that the wave function vanishes in the area, where the magnetic
field is non-zero, the phase shift is proportional to the magnetic flux created by the solenoid.
A number of theoretical works and convinced experiments was done to prove the existence

of this phenomenon. A detailed exposition of this activity may be met in some reviews and

- books [4-7]. In particular, it was shown [8-10] that AB scattering is accompanied by an

.. electromagnetic radiation, and its angular distribution and polarization were calculated. A

. bair creation by a single photon in the presence of the AB potential was calculated in [11].

An example of the AB effect for bond states is a splitting of Landau levels in a uniform
magnetic field and in the AB field [12]. The interaction between spin and AB field leads
to Dirac wave functions, which do not vanish on the magnetic solenoid. Thus, for spinning
particles the AB field does not create a very convinced situation to observe the effect in
its 1nitial form. The issue of spin changes slightly the interpretation of the AB effect. The
theoretical study of the AB scattering for spinning particles was presented in many papers,
see for example [13] and [14]. AB effect was also studied in connection with fractional spin
and statistics in [15] and with its contribution to cosmic strings in [16,17]. The AB effect in
an anyon scattering was considered in [18], and radiative corrections to the effect in 3+ 1
dimensions were calculated in [19]. The AB scattering within the Chern-Simons theory of

scalar particles was studied in [20]. There exist impressive applications of the AB effect in

!Essentially the same effect was discussed earlier by Ehrenberg and Siday [2]




solid state physics [21,22].

In the present article we are going to study the quantum behavior of a charged relativistic
particle in a combination of a constant uniform magnetic field with the AB field (further
magnetic-solenoid field). Such a field combination creates exactly a situation in which AB
effect for bond states may be observed. Namely, it allows one to demonstrate that the
particle, rotating in the magnetic field, feels the presence of the solenoid, in spite of the
fact that it moves out of the solenoid field (its wave function vanishes in the area where the
solenoid is present). That means that the particle feels potentials of the solenoid field, which
do not vanish in the area of the particle motion. First, exact solutions of the Schrodinger

equation in the magnetic-solenoid field (nonrelativistic case) were found in {12]. Then they

where analyzed in [23-25] from the AB effect point of view. For example, coherent states

were constructed in [24], they correspond most closely to a classical motion along a circle
embracing the solenoid. It was, in particular, demonstrated that classical relations between
the radius and energy of motion of the particle are affected by the solenoid presence.

It is well-known that a charged particle moving in a uniform magnetic field irradiates, as
any accelerated charged particle. In the latter magnetic such a radiation is called synchrotron
one (SR). In the present article we are going to investigate how the presence of the AB field
affects the SR. SR may be studied by spectroscopic methods of measurement, which are
extremely sensitive, thus, a real situation to observe the AB effect may be discovered.

The article is organized in the following way: In the first Sect. we analyze classical motion
of a charge in the magnetic-solenoid field. In Sections II and III we find exact solutions of
Klein-Gordon and Dirac equations and present an analysis of spectra and quantum motions
of spinless and spinning particles in such a field. In Section IV we consider spontaneous
radiation of a spinless relativistic particle in the magnetic-solenoid field in the frame of the
quantum theory. We analyze here an influence of the solenoid field on SR. We summarize
new results in the Conclusion. In the Appendix we derive some important for calculations

properties of Lagerr functions.




II. CLASSICAL CHARGED PARTICLE IN MAGNETIC-SOLENOID FIELD

Consider a constant uniform magnetic field of the strength H directed along the axis z.
Besides, along this axis is placed an infinitely long and infinitesimal thin solenoid, which
creates a finite magnetic flux ¢ along the axis (the AB field). It may be given by the

electromagnetic potentials of the form

d H o H 9 5 2
m:-— —_— N = —_— y z: ) = ,A "—'0 21
A y(zﬁT‘2+2) Ay w(27rr2+2) A =01 Ty 0 (2.1)

The potentials (2.1) define just the magnetic-solenoid field mentioned in the Introduction
H=(0,0,H,), H, = H + %5(z)é(y) . (2.2)

First of all, we are going to analyze the classical motion of the electron (a point-like
particle with a charge —e, (e > 0} ) in the field under consideration. It is defined by the

Lorentz equations

dP e mev v dr
—_— IS e — P e — = — = — = 2
dt c [v? H] b \/T——ﬁf ] ﬁ C 3 v dt 7 r (327 y? z) ? ( 3)

where g stands for the rest mass.

Taking into account a relation

E Edr
_E_Eadr 2.4
P 2T a2dq (2:4)
which follow from (2.3), and conservation of energy in the field under consideration,
E = ——— = const = 8° = const , (2.5)

V31— 32
we may rewrite the Lorentz equations for trajectories, which do not have intersections with

the axis z, in the following form

dP

w dP. dP dP ecH
— =—_Z[PH z = y 220, w= —
di 7 P H,

= —whP, — =wP, - = —
dt Wy, g m@he =0 w=—7%

(2.6)

Integrating these equations by use of (2.4), we arrive to the well-known formulas, which

describe the classical relativistic motion of the electron in the constant and uniform magnetic

field




i

z = 29 + Rcos{wt + o), ¥y = yo + Rsin(wt + o), z = 29 + Bt ,

E
Py = —hyRsin(wt 4 ¢p), Py = hyRcos(wt + @), P, = ?53 . (2.7)

Here x4, yo, 20, B, @0, 85 are integration constants, and

eH

_ 0 2.8
5 0 (2.8)

v

One ought to remark that the classical motion is not affected by the presence of the AB
field.

As a consequence of (2.7) we find the following relations
P2+ P} =1y’R?, B* = mic* + 2 H’R* + P} = mic* + Wy’ R* + 2P?
E(1— f2) = mc* + Chy°R?, SHPR? = m3c (B — BA)(1 - B0, (2.9)
and an expression for z-projection of the angular momentum L = [r, p],

_ 1 2 2 2 2 2 - e
_ - = - 2.1
L,=—-hp+ 2ﬁ'y(R Ry), Ry =a;+uyg, It o (2.10)

where the generalized momentum p is related to the kinetic one P by the usual relation
P = p+ £A (remember that e > 0). The constant @i is dimensionless. It follows from (2.10)
that L, is an integral of motion.

In turn, one can get from (2.9) an important relation
K =m?+~+*R* 4+ k2, (2.11)
where new notations are introduced
E = chK, m = moc/h, P, = hk; . (2.12)

The equations (2.9) imply that classical trajectories are spiral lines, with the radius R.

Their projections on the z = 0 plane have the form
(z —20)* + (y — vo)* = R . (2.13)

Let us present 7 in the following form



[&], B>0

i=1 , 0<u<l, = .
B=1lo+p, 0 p 0 {[,a—~1], i <0

Then, taking into account the definition of ji, we may write

Q= Do(lg + ), Po=2nch/e.

(2.14)

(2.15)

We are going to call 4 mantissa of the magnetic flux ®, whereas I gives an integer number

of quanta ®¢, which contains the total flux ®. We would like to stress that the mantissa,

being always positive, may not be equal to one.

The projection L, may be presented in the form
L,=h(l—1y), l=L,/h+1,
where [ is a dimensionless quantity. It follows from (2.10) that
l+u=Lz/h+ﬁ:%(R2-R§).
Thus, one can see that at
I>—p, (R>Ry),
a trajectory embraces the solenoid, whereas at
I <—p, (R<Ry),

it does not.

Introducing dimensionless complex quantities a; and a by relations,
hy/2vay = P, —iP,, hy/2vay =P, — P, + hy(z + iy) ,
we may express coordinates and momenta in their terms

2P, = hy/2v(ay + af), 2P, = ihy/2v(a; — a7) ,

V27T = af +az+i(a; — af), /2vy =i(af —ay) —ay —af .

Then we get a representation of the classical motion in terms of a; and a,

6

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)



a{ra1 + (1.1(1&}~ = ’)/Rz = (PmQ ~}- P:)/hz’}’ ,

afar + araf ~ afay —asaf = 2(L,/h+3) =2(1+p) . (2.22)

III. SOLUTIONS OF KLEIN-GORDON EQUATION IN MAGNETIC-SOLENQID

FIELD

Here we are going to study solutions of the Klein-Gordon equation

R . . 0 e
(P?—m2c®) ¥(x) =0, B, = iho— + —Au(z) (3.1)

in the magnetic-solenoid field. Here three mutual commutative operators ﬁo, 153, and I:z,
are integrals of motion. The latter operator L, corresponds to the classical quantity (2.16).

We look for solutions of (3.1}, which are eigenvectors for these operators,
Byl = hKT, B,U = hkgW, L0 = h(l —1))T . ' (3.2)

Since [y are integer the quantum numbers [ have to be integer as well to provide uniqueness
of the wave function. Depending of the value of this quantum number there are two type of

solutions:

llffllzyka(a:) = Niexp (—ickyt - ikyz) z[),(:l)(r, ), 1 >0, (3.3)
T2 (2) = Naexp (—icKyt + iksz) & (r, ), 1 <0, (3.4)

where ¢ is a polar angle. Thus, we meet here a partial breaking of degeneracy of the
energy with respect to the quantum number ! (compare with solutions in pure magnetic
field {26,27]).

The first type of solutions (3.3), where [ > 0, corresponds to the validity of the inequality
(2.18) on the classical level, since I are integer only. We may interpret these states as ones,

which correspond to classical trajectories embracing the solenoid. In this case




/llb?('.\,];l) (Ta ‘P) = €Xp [1(‘! - lO)‘P] In+u,n—l(p)

=M TEr T Ty I—l)p—= L 0<I< 3.5
(M D cofo-oe- 2ot osisn, 69

where p = yr?/2. Via I ,(p) we have denoted Lagerr functions. Their exact definition
and some important for us properties can be found in the Appendix. L%(z) are Lagerr
polynomials, see [31] (Egs. 8.970, 8.972.1). Energy levels in this case are defined by the
relation

1
K%=m2+k§+27(n+,u+§):m*2+k§—:—27(n—i—#), m?=m?+7. (3.6)

They depend on the quantum number n, which will be called principle guantum number.
Each energy level is n+1 times degenerated in accordance with possible number of admitted
[ at a given n. We will call m* effective mass of a spinless particle.

The second type of solutions (3.4), where I < 0, corresponds to the validity of the inequal-
ity (2.19) on the classical level. We may interpret these states as ones, which correspond to

classical trajectories, which do not embrace the solenoid. In this case

B2 (r, 0) = exp [il — 10)¢] In-t- ulp)

B I'(1+mn)
_\F(l—l-n—l—,u

jexp -t = ] HE LI M), 1= L2 @)
Energy levels are defined here by the relation
. .
K3 =m?* 4+ k2 +2y(n+ —2—) =m*? + k2 + 2. (3.8)

Bach level is infinitely degenerated with respect to the quantum number I.

The energy levels (3.6) and (3.8) differ if 0 < p < 1 and coincide at 4 = 0. In the
latter case the wave functions (3.5) and (3.7) may be written in the same form due to the
property (A19), and coincide with the wave functions [26,27] of the particle in the magnetic
field only. All the differences in the energy levels and wave functions due to the presence of

the magnetic flux are defined only by the mantissa of the flux.



One can introduce a more compact form of the wave functions, which will be convenient
in concrete calculations of the electron radiation, see Sect.V. To this end let us introduce an

effective angular quantum number [, and an effective principle quantum number 7,

T e - n + :U’7 .] = 17
=1 = 2—4)= . 3.9
Then the equations (3.6) and (3.8), which define the energy levels, take the form
K2 =m* + kK + 2vn, (3.10)
and the wave functions may be written as
Yt (r,0) = eapli(l — )¢l a1(p) (3.11)
Y () = explill ~ b)e)n_1(p) - (3.12)

We may see that the difference in the states (3.11) and (3.12) is connected with a non-
symmetry of the Lagerr functions in their lower indices. At p = 0 they become symmetric
(see Egs. (A19)) and solutions do not feel the magnetic flux.

One ought to remark that the wave functions vanish on the z-axis at any u,
Yai(r=0,p) =0, j=12.

That means that the probability to find the particle in the area of the magnetic flux is zero.
Nevertheless, this flux affects the behavior of the particle (the AB effect) in all the space (it
modifies the form of the wave functions).

If the normalization factors in (3.3), and (3.4) have the form
Nj = (8wLKC;/v) ™2, (3.13)
then the wave functions obey the following orthonormality relations
(Wt ks Wt ks) = Ot Ot 1Oy e, (3.14)

with respect to the common Klein-Gordon scalar product (we use a cut-off in z-direction,

~L<z<L, L— )



(T, ¥') = -71_; / [T Py + (Py )" W] dr . (3.15)

Considering quantities P,, P, in the relations (2.20) as operators defined in (3.1), we
may construct corresponding operators to the classical quantities a;, az. Let us denote such

operators by the same letters without hats. Then these operators have the form

ay = —iy/pe ¥ [(lo + p+p —i0,)/2p+ 8, ,
af =iy/pe" [(lo +p+p—1i0,)/2p - 0,] ,
az = —/pe” [(lo +p— p—i0,)/2p — 8] ,

aj = —/pe ™ [(lo +p— p—i0,)/2p + 8] . (3.16)

Besides, the relations (2.20), an analog of the relations (2.22) takes place

A - A h
P} + P2 = yh*(aiaf +afay), L, = —2-(a1a‘f +afa; —azal —afas) —hp. (3.17)

Using the commutation relations for the momentum operators

O B
PP, — PP, = —iZ"H, (3.18)
C

and definition of the magnetic field (2.2), we arrive to the following commutation relations

for the operators a;, as
[a1,af] =1+ f, [ag,ad]=1—f, [a1,a2] =4if, la1,a3]=0, (3.19)
where dimensionless singular function f has the form

f=(®/H)d()é(y) - (3.20)

If D is an arbitrary connected area on z = 0 plane, which includes the origin, then one can
easily see that [ f dedy = ®/H = [ frdrdy = % [ f dpdy , where the variable p was defined
D D D

above, see (3.5). Thus, we get

®i(r) _ 1% P

g = = op) = 25-0(p) - (3.21)

f = (®/H)¥(@)(y) = -

10



It is clear that the operators ag, aff, & = 1,2, may be considered as ones of creation and
annihilation only at ® = f = 0. However, they act as operators of creation and annihilation
on functions, which are continuous in the point p = 0 and vanish in this point together with
their first derivative with respect to p.

Using formulas (A8)-(A11) from the Appendix, one can find the action of the operators

ax, @y, k= 1,2 on the wave functions (3.5), (3.7),

Y] = (~1ivapl?, Ly, atel) = (—1) v+ 1l
ayl) = (~1Pa - Wb, afol) = (—1Pya-T+ 190, j=12. (3.22)

These formulas show that the functions @bfllz) may be created by an action of the operators af

on 1,00 o , and the functions w,(fl) may be created by an action of the operators af on %?11

Namely,

@ = L1+ p) L=ty aan (1)
nt_(_) JF(1+#+H)P(1+TL—Z)(G2) (%)%,m

(2} _ i 2 —p) n n—{-1 ,(2)
'vant ¢ \J F(l + n)F(l — +n— l) (af) (a’-{) 0,-1 - (323)

It is natural to interpret ¢,§f3 as a vacuum state for the set of states w,(al,) , and 1/)0 7488 a

vacuum state for the set of states ft,b(2) Thus, we have two vacuum states in the problem at
0<u<l.

At p = 0 the situations changes. Due to (A19)
Yt = (D' n= (3.29)
and @!)((,}3 is connected to 1,b3,2l1 for any I < n,
aves = dily, ey =¥l (3.25)
Thus, we have only one vacuum in the problem, one series of energy (3.8), and all the wave

functions are created from the vacuum wé}o)

11



The definitions (3.5) and (3.7) for the functions ¢§1} and 9%, and relations (3.22) remain

1l

 valid even if the values of { differ from that which are pointed out in (3.5) and (3.7). For

example, we may get from (3.22) the following relations

) =~/ 1 = —i(1 + ”)»\ P(g—(i:;:—))exp[ iop — —]P sL.1(p)
(1 1-u
ey = —ivmF Py = —i(n+ u)\ F(T&:j_—)n)emp[mi(l +lo)p — g]p"" = L (p)
I'(1 Ik
Yy = v+ g, = —(1+n) ﬁ)—aew[mi(l +lo)p — g]p“ Liiile)
I'(1+mn) . Py e
i)y = /1 —p+nyl) = +n) mew(—?lo@ —5)p 2 LM(e), (3.26)

selecting corresponding values for . The functions 1,bs 71 ¢§?3 are still defined by the formulas
(3.5) and (3.7), however they do not present physical solutions of the problem. Thus, in the
general case (0 < g < 1) the action of the operators af, a) on the wave functions may lead
them out of the class of physical solutions. That does not happen at u = 0 due to (3.24) and
(3.25). The right sides of (3.25) take infinite values in the point r = 0 (only at 0 < p < 1),

but the corresponding functions remain quadratically integrable.

IV. SOLUTIONS OF DIRAC EQUATION IN THE MAGNETIC-SOLENOID

FIELD

Similar to the Klein-Gordon equation the Dirac equation
(1B, — moc)¥(z) = 0 (41)

in the field (2.1) admits as integrals of motion the erergy, the momentum projection on the

axis z
P¥ = BT, P,U = hk, T | (4.2)

as well as the angular momentum projection on the same axis,

12




=t

~ 1 N ~
J¥ =l -l =)0, J, =L, + 5%, (4.3)

2
Here X3 = diag(os, 03), where o3 is a corresponding Pauli matrix.

We are going to look for the solutions of the equations (4.1), (4.2), and (4.3) in the form
U(x) = Nei‘p(—icht + tksz)p(r, ©) . (4.4)

Then the bispinor ¥ = (,), a@ = 1,2, 3,4, has to obey the equations

[WC —m— ks — @(ﬂfl +iv*)ay — @(vl — z"yz)ai*] =0, (4.5)
[%(1 + B3) — 48, ~ I + zc.] Pp=0. (4.6)

We remember that
P, —iPy = fiy/2va1, P, + P, = hy/2va] .
As in the Klein-Gordon case we get here two type of solutions 9, j =12,

9 =l ) = (-1 ticwl)

n,i

o = 0, 99 = (C1picwl), j=1,2, 47

where the constant bispinor C, (o = 1,2, 3, 4) is subjected to the following algebraic system

of equations (we use standard representation for y-matrices)
AC =0, A=K —mp3 — ksp1 X3 — Q% , Q= \/Q’Y_ﬁ : (4.8)
The system (4.8) has a nontrivial solution if
detA =0 . (4.9)
Thus, we get the energy spectrum
K:=m?+ki+@Q°. (4.10)

As in the Klein-Gordon case, states with j = 1 correspond to classical trajectories embracing

the solenoid,

13




Ki=m?+ki+2y(n+pu), 0<I<n. (4.11)
In the case j = 2 they do not embrace it,
Ke=m?+k2+2yn, 1<0. (4.12)

If the condition {4.9) takes place, then the rank of the matrix A is always equal to 2.
Thus, nontrivial solutions of the equations (4.8) contain two arbitrary constants. General

solution for the constant bispinor C' may be written in a block form via an arbitrary two

K+ m]v
C= ([ ) , (4.13)

ksos + Qor]v

component spinor v,

where &,, o3 are Pauli matrices.

The spinor v describes spinning degrees of freedom of the electron. If one selects an
additional to (4.2), and (4.3) spinning integral of motion (which always exists {26,27]), then
the spinor may be specified.

For the set (4.7) with j = 2 the states with n = 0, [ < 0 are special. They differ from

0
’UZ( ),0311:—1:, (4.14}
1

1
v:( ),ng:v, (4.15)
0

they vanish. The total wave function (4.4) in this case (at j = 2) is an eigenvector of the

zero only if

and if

operator s,
5,00 = —w® (4.16)

with the eigenvalue —1 (the electron spin may only be directed against the magnetic field).

That fact is well-known in the absence of the magnetic flux [26,27].

14



For the set (4.7) with § = 1 the states with n = 0 (I = 0) are also special. In this case,

and at 0 < u < 1, there exist two nontrivial solutions for spinors v,
o3y = £ . (4.17)

However, such solutions contain, in particular, functions

wEl]?’_l — e:cp[—Z(l + lo)(p - p/2] p—l—;‘i , (418)

VT (w)

which grow infinitely at p = 0, i,b(_lg,_l("r = 0,¢) = oo. Nevertheless, even such solutions

have finite norms. One may see that the probability to find an electron on the axis z is not

-zero (moreover, it is infinite). That fact is known and it is related to superstrong interaction
between the electron and the solenoid, since the former is moving maximally close to the
solenoid, embracing the latter (n = 0). The radius of the orbit R in such a case is minimal
and related to u by the relation B2 = 2u/y. Such a behavior of the wave functions is
a characteristic of the spinor case only. Thus, for states of electron with n = 1 = 0 the
interpretation of the AB effect has to be slightly changed [13].

The wave functions (4.4) obey the orthonormality relations
(Wit pty Wt hs) = [ \Ifr-iz-’,l’,kgllfn,l,ksdr = GO0, O 1 (v ), (4.19)
if the factors N; are (as in (4.15) here —-L < z < L, L — ),

N; = [BTLK (K 4+ m) /A2 |

V. SYNCHROTRON RADIATION OF SPINLESS PARTICLES
A. Introduction

As was already stressed in the beginning of the article classical trajectories, which do not
intersect the axis z, do not feel the presence of the solenoid field. Thus, from the classical

point of view radiation of a charge in the magnetic-solenoid field, has to be the same as in

15



pure magnetic field. The corresponding classical theory is well developed, see for example
[26].

Here we consider the spontaneous radiation of a spinless relativistic particle in the
magnetic-solenoid field in the frame of the quantum theory. We will call radiation in such
a field synchrotron one as well. Ordinary SR in the frame of relativistic quantum theory
‘was investigated in detail in numerous works (see [26] and Refs. there). We have seen in
previous Sect. that the presence of the solenoid affects the quantum motion of the charge.
As a consequence of that characteristics of the corresponding radiation have to differ from
those of ordinary SR, calculated in the frame of a quantum theory.

Study of SR in magnetic-solenoid field will be done in the same manner as in [26].
However, concrete calculations are much more complicated and contain many new aspects
and technical tricks. Below we will often refer to general formulas from [26] in the form, which
was used in these works, and to results of calculations in pure magnetic field, sometimes

without additional citations.

B. Matrix elements of transitions and frequencies of radiation

Consider here spontaneous radiation of a spinless particle in the magnetic-solenoid field
and compare it with the SR in the pure magnetic field. Detailed analysis for the latter case
was done in the works [28-30]. All characteristics of SR are expressed via corresponding

matrix elements of the operator

~

exp [—i(kr)] P, (5.1)

where P is the operator of kinetic momentum (3.1), and & is the wave vector of a photon.

In the Cartesian reference frame this vector may be presented as follows
K =& (sinfcos¢’,sinfsin ¢, cos ) . (5.2)

The spherical angles 8, ¢’ define an angle distribution of the emitted photons, whereas x

defines energy E,, = chir of a photon.

16




The polarization of the SR will be defined similar to [26]. To this end one constructs o
and 7 components of the operator P, namely,

B =B sing + f"y cos ',

~

P = (Pycos¢’ + B,sing')cos§ — B,sin8 . (5.3)
These components may be written in terms of operators a;, a7, using Eqgs. (2.21),

Pa' = ih\/g [al exp(’i(p') — air eXP(”iW')] ’

B = ih\/g [a1 exp(iy’) + af exp(—z’go’)] cosf — P,sind . (5.4)

One can exactly calculate matrix elements of the operators (5.4) between the initial and
final states IIfff 3,,63 and WS’},,%. Let us remark on some details of such calculations.

Integration over the angle ¢ leads to Bessel functions similar to usual SI case. In the
latter case and in course of a subsequent integration over p one meets integrals of the type
(A33). Here one meets integrals of the type (A32) as well. That is related to the fact that in
the present case the condition (A19) is absent. The matrix elements of transition amplitude
.do not contain the quantity lp, they depend only on the mantissa u of the magnetic flux.

Similar to the usual SR case there appear two conservation lows: one for z-component

of the momentum,
ks — ki = kcos@ (5.5)
and another one for the energy,
Kij—K,=k. (5.6)

These relations together with (2.9) or (3.11) define the frequency of the radiation x as a
function of initial and final quantum numbers and the angle 8. Due to the axial symmetry
of the problem it does not depends on ¢'. At g = 0 the frequency « is a function of the

principle quantum number n, of the number of the harmonics irradiated v,

v=n-—n, (5.7)
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and on the angle . It does not depends on the orbital quantum numbers I, I'. At p >0
the degeneracy of the frequency s with respect to the quantum numbers {, I’ is partially
broken. The frequency depends on the type of the initial and final states, namely on the

!

quantum numbers j, j', in accordance with Eq. (5.6). Thus, « = k;7. Introducing an

effective number 7 = ;; of the irradiated harmonic,
V? j = j’ ?
P=R—f=v+uf =)= vty =17 =2, ; (5.8)
v [, .7:21 j’:17 17>0:

one can easily get for spinless particles

Kjp = SiIIfsz (1 — \/1 — 6325?-1_2_?:”{ gin? 9) , (5.9)
where
. m\’ moc?\”
ﬁjzl—(E) :1—(Ej) . (5.10)
Similar formula takes place for spinning particles,
Kjjy = sif;je (1 w1 — ﬁ;%silﬁ 9) : (5.11)

The expressions (5.9) and (5.11) are obtained for initial states with k3 = 0. Both expressions

may be written as

2y

- , (5.12)
7 K; + \/Kf — 2y sin? 4
Introducing a new dimensionless variable ¢ = ¢;;,
x?sin® @
2y
one may easily get the following expressions
Y- . 2 Va4
kK=—(U+gq), sinf =,/-K; ,
Kj( ) v 'o+gq
2 —2a_ V4
VE? — 2ypsin§ = K, S (5.14)
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Thus, at ¢ > 0 there appear two spectral series, one from the transitions without change
of the quantum number j, and another one with the change. In the former case 7 = v,
whereas in the latter case & = v 4 u, so that the effective number of the emitted harmonic
becomes non-integer. Fixing v > 0 and a principal quantum number of the initial state, one

gets an inequality
K1 < K11 < Kog < Kig , (515)

which becomes an equality at @ = 0. The difference between the frequencies x,; and x3; may
be easily estimated in the magnetic fields H < Hy, where Hy = m2c®/eh ~ 4,41 x 103gauss
is a critical field, which outnumbers any magnetic field produced at present in the laboratory.

It is proportional to y,

2 H 2y 2
Koy — K11 & Kgplph, 0 = i = T = (moc) - (5-16)

K} m’K} H\ B
At typical fields H = 10%*gauss, which are realized in accelerators, and at not very high

electron energies, we get § < 107, The frequency difference has in this case the form
w
K1z — Kop & 2k194/V = 22# ) (5.17)

where w is the classical synchrotron frequency (2.6). Thus, this difference becomes visible
for harmonics with small numbers.

Especially remarkable becomes a possibility at g > 0 to emit the harmonic v = 0 in course
of transitions from j =1 to j' = 2. In pure magnetic field such harmonic is forbidden. For

the fields H <« Hy the frequency of the radiation, which corresponds to such a harmonic is

ecH
= =—"qu. 5.18
Wiz = Wit B ( )
In course of transitions from j = 2 to j' = 1 (at ¥ = 1) the frequency
wy = w(l —p) (5.19)

is emitted. Both these frequencies are less than the one w in contrast to the fact that in
usual SR, where ¢ = 0, the least frequency is the one w. That is the most essential and in

principle controllable consequence of the AB effect in SR.
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C. Exact expression for intensity of radiation

As was already said we are able to calculate the matrix elements of the operator (5.1)
exactly. Thus, there is a possibility to get exact expressions for the probability and for
the intensity of the one photon emission. Using expressions (A8)-(A11), one may get the

following expression for the intensity of the radiation (taking into account its polarization):

W, = Wug] (Kz) Z%f de'~ f d sme( = ) Q| Fil? . (5.20)
Here
Wy = T8 (5.21)
is a constant, which has dimension of the intensity, and F}; has the form
Fyr = 2ly0/q14(q) + I3 cot B\JZfszjr (q),
Iy (@) = Inm (), loy(@) = Lnnlq) - (5.22)

The latter quantity does not depend on the orbital quantum number I, it is completely
defined by the effective principle quantum number 7 and by the polarization of the radiation.
The polarization is characterized by the quantities I, and I, see [26]. Atly =1, I3 =0 we get
so called o-component of linear polarization; I, = 0, I3 = 1 we get so called m-component of
linear polarization; at I = Iy = 1/v/2 we get right (left) circular polarization; and, finally,
at 13 =12 =1, ll3 = 0 we get total intensity of non-polarized radiation.

The quantity ¢;; depends on the initial orbital quantum number [, it is a sum over the

final quantum numbers I',

Quf—Zfzr D) Qoy =2 I3 a0 5la). (5.23)

The limits of the summation over I’ depend on j'. At j' = 1 they are 0 <!’ < n — v, and at
j' =2 they are —co < I’ < —1.
The integrand in (5.22) does not depend on ¢'. Thus, the integration over the latter

variable may be done, that will be taken into account in further expressions.
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Integrating over & we get zero for total circular polarization due to the fact that the
mainly circular polarizations in the upper (0 < # < x/2) and in the lower (1/2 < 8 < )
half-spaces, having opposite signs, compensate themselves exactly.
| If we are only interested in linear polarization, then one can always count formally that

12_l3 =0.

D. Summation over final orbital quantum numbers

If 4 = 0 then the quantity |F|* in Eq. (5.20) does not depend on the type of the final
state (the property (A19) is valid in this case). The effective quantum numbers coincide

in this case with ordinary ones, i = n, I = [. Thus, one can get from (5.23), taking into

account (A19) and (A38),

Q=2 L()=1s=n—1. (5.24)
¥ k=0

That is a well-known from SR theory result. In other words, the intensity of SR does not
depend on the initial orbital quantum numbers. At 0 < g < 1 the quantity (), depends on
I, n, v, and the degeneracy disappears completely. Physically that result may be interpreted
as follows: According to the Eq. (2.17) the quantity [ characterizes the distance between
the classical trajectory and the solenoid. It is natural that the intensity of the radiation
depends on this distance as well as on the type of the state. In the absence of the solenoid
the origin of the reference frame is not fixed and physics does not depend on .

Let return to the equations (5.23), which define @;;+. Using formulas (A34), (A35),

(A40), and (A41), one can get from them the following expression for the derivative of Q;;

diqczjj,(q) _ (—)H % (2 = ) srs (@) es (@)
+(-7 - 1)Is,k+1(Q)Is,k(q)] ’ k= ﬁ’ — bk, §= n— l_ (525)

Then, taking into account a behavior of Q;; at ¢ = 0 and ¢ = oo, one can integrate (5.25)

to obtain
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Qula) =7 — 1+ (—1)/ [(2 3 [ )y

+6-1) [ ) L] (536)

The result (5.24) follows from (5.26) at u = 0.

E. Week magnetic field approximation

Consider here the magnetic field which obeys the condition H < Hj, see a discussion

above. Besides, we believe that the inequality

e H (me?\?_
2yDK;* = QFU 7 ) 7 <1 (5.27)
j

takes place. We know that the number of a harmonic, which is effectively emitted in the

relativistic case, is 7 ~ (E;/mgc?)?. For such a harmonic the equation (5.27) results in

H E;
o B _ 5.28
Hy mpc? <1 (5.28)

As it is known [26] the condition (5.28) implies that quantum corrections are small in the
relativistic case. That is not true in the nonrelativistic approximaﬁion due to the fact that
here only a harmonic # ~ 1 is emitted effectively and the condition (5.27) takes place if
H < H,. Practically, the condition (5.28 always takes place for real laboratory magnetic
fields and energies of electrons.

In the above suppositions with respect to the magnetic field we find from (5.13)

1 H (m062 2
q

_9 . 2
=—— 8. 5.29
2, \ B ) v sin ( )
If the numbers of harmonics emitted are not very high, then
g1, (5.30)

We are going to suppose that namely this condition takes place, and at the same time will
call (5.30) the condition of the week magnetic field. In the ultra-relativistic case, when

v ~ (B;/moc®)?, we find
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H ¢ E; \*
~ ) 5.31
1 H(] (mocz) ( )

Thus, in this case ¢ may be not small. Such a situation will be considered in a next article.

At ¢ <1 we may present the intensity of the radiation in the following form

2¢"H?BI(1 — B7)

W; = WiW;, Wit= , (5.32)

3 m3c?
3 7 7 3 T 2 _2
Wi =2 Wi, Wir = i@ [ sinoass?, X7 Ry, (5.33)
311 = 822 = 312 = lz + lg 6089 = S, 821 = 52 — 1!3 cosl = 3 . (534)

We have selected here the quantity WJFI, which is the intensity of the first harmonic radiation
in semiclassical case (see [26]). The radiation polarization is characterized by the factor
Sjjr. In particular, it indicates that the transition 2 — 1 has an opposite sign of circular
polarization in comparison to all other transitions. That may serve as a way to identify the
part of radiation related to such transitions. The quantities R;; may be calculated in lowest
order with respect to ¢, using exact expressions (5.20),(5.22), and (5.28).

1. We find for the (1 —» 1) transitions

C{n+p+1)¢t
F(n+p+1—v)2(v)
_ {n—1+1)T(n+u+1)g¥ 1
T Tn—v+ DI (n—v+p+ 1020 ~ 1+ 1)T2)

Ry = , 1<v <,

Rll

I<v<n, (5.35)

These formulas mean that effectively only harmonics with ¥ = 1 are emitted, and at the
same time the intensity of radiation does not depend on [ if 1 < [ < n. We get easily for

the quantity Wn

2n+p) 5 s 3 1

2 §2=1p24 02 5.36
2(n+,u)—|—13’8 FERIVL (5.36)

Wi =
We see that the radiation is polarized similar to the usual SR in nonrelativistic case [26].
The quantity Wi, grows slowly with n, so that lim, ., Wi, = S2 .

The probability for transitions with { = 0 in initial states is of second order (in ¢) in

comparison with all other transitions. For the former transitions we find at v = 1
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- H (mo®\? 6n(n+p) /(5 1
Wiy = op —12) . 5.37

One can see that in the case under consideration the rate of linear polarization is greater

than for (5.36)

2. For transitions (2 — 2) we find

_ TIln+1)gt
Re = v i o) (5.38)

As before, we see that effectively only the first harmonic is emitted, and at the same time
the intensity of radiation does not depend on [ < 0 in leading order in ¢. For this harmonic

R22 =7, and

— 2n
22_2'1'L+1

52 (5.39)

The latter result is physically obvious and may be derived from (5.36) at u = 0.

3. For transitions (2 — 1) we find

Tn+li+1—@)l(n—v+ 1+ @)1+ v - p)p?(l — p)?gl—?

T(rn+1—)(n+ D[+ 2+ 1—p) ). (5.40)

R21 =

We have introduced here a function f(g),

flu) = (5.41)

with the following properties

F)=Ff0—p), fO =fD)=1 fax(p=1/2)=4/r>1, 1< f(p)<4/mx. (542)

Thus, the function vary very little from the unit at 0 < pu < 1.

In the transitions under consideration, we meet a situation which is completely different
from ones considered before. Here the emission takes effectively place only in course of
transitions from the state with [ = —1. That has natural physical explanation: At ! =
—1, 7 = 2 the classical trajectory is maximal close to the solenoid, which is out of the

'trajectory. Namely from such a state it is most easy to pass to the situation when the
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solenoid is inside the trajectory. Remarkable is the fact that there are not any restrictions

on the numbers of the harmonics emitted. At I = —1 we get
Tn+2—uwln—v+1+p)p(l-u)?
Ry = 5.43
A Tn+1)T(n—v+1)(r+1— pu)? Py, (5.43)
- and
_ 2 2 —- 2 _ 2M21 2 _
Wyt = L(n+2 - wp(l — p)°M¥ f*(p) &, |
(2n+ D'n+1)
2
M2 — ZMfla Mglzl"(nmv—l—l—ku) v— - (5.44)
= F'n—v+1) \v—pu-+1
For example, at n = 1 we get
- 2 (1 —p)* (&
=1)=—"—7—= 2, 5.45
Warln = 1) = 50— ()8 (5.45)

One can see that M2' does not vary rapidly when v does. That means that at least some
of the first harmonics have equal probabilities of emission. One can derive an estimation for

M. Tt follows from (5.44) that

—v+1+p) Tn+14p)
[V il G4 - . 5.46
DI P S (En k (5.46)
Then
7 A= w0 oa s
Woy=(n+1- M=S52,
21 (n ) 1+ p
_ - 2n T(n+ 14+ p)l(n+1—p)
M < M = : 5.47
- 2n+1 (n+1) (5.47)
It is easy to find
lim M21 1. (5.48)

n—ro0

At g = 0 the quantity W, vanishes. Thus, if the mantissa of the magnetic flux is not
zero there appears a possibility for transitions, which where forbidden in SR. These transi-
tions give approximately equal contributions (at least first of them) in the intensity of the

radiation.
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Especially interesting is the case when v = 1. As was already remarked in this case we
get an emitted frequency (5.19), which is less then the basic synchrotron one. From (5.45)
we find

Wa(v=1) = [‘“ @ —p'f (”)r S24%

2—p
2 _ 2n—pin+1—p) Tn+p)l(n - p)
S M) (5.49)

Since limy,_,oo AZ' = 1, the radiation intensity is approximately equal to the classical one

multiplied by the factor

A 2
[u(l ) f(#)] _ (5.50)
2—p
4. Consider finally the transitions (1 — 2). In this case we get
—y— 2,1
Rip = I'n—v—p+2)T{n+p+1)(v+p)ig (5.51)

Pin—Il4+1)T(n—v+ )20 ~v+2—p)T2p+1+p)
We see that the transitions take effectively place only from the state with { = 0. Since
this state corresponds to a classical trajectory which passes maximally close to the solenoid
(embracing it), a physical interpretation is similar to the one given in the previous case.

Thus, for the case [ =0 we get

2T(n + 14 p)p?(1 — u)* M2 f2(p)

Wiy = &
1 (2n+2p+ VI {n+1) ’
i Fn—v+2—p){ v+p \
M2 =53 M2 M?Z2= . 5.52
S, up=T0Zrti (HM_1 (552

As before we observe here a possibility for emission of ¥ = 0 harmonic, which is forbidden
in the usual SR. The frequency of the corresponding radiation is given by the expression

(5.18). For v = 0 one finds

Waa(v = 0) = p* () S2 A2

1 I'(n — :
;2:2(?1—1—;14- JP(n+p+1)I(n ‘”““”), lim A2 =1. (5.53)
2n + 24 + 1 I%(n+1) e

In particular,

26



2p,4f(,u) g'z

le(b’zﬂ-—_—-())-: 2'u+1

(5.54)

Thus, the intensity of the emission of that harmonic may be obtained multiplying the cor-
responding classical intensity by the factor u®f{u).

In the transitions under consideration (1 — 2) all harmonics with different numbers v
contribute quasy equally to the intensity, since M1? does not vary rapidly when v does. One

may find the following estimation for the M}*

I(in+3-—p)

M2 > . 5.55
2 G pint (553)
Thus, we get
- n+p—1 — 12 &
Wig = E—Qi&—‘u) (1 — ) f () M2 2,
M2 > 2 = 2(n+2— u)I‘(n—l—l—i—,u)I‘(n—l—l—M)_ (5.56)
2n+2p+1 I'?(n+1)
It is easy to find as before that
lim M2 = (5.57)

n—o0

At p = 0 these transitions are allowed only in the higher orders in q.

F. Semiclassical approximation and AB effect

It was shown in theory of usual SR [26] that semiclassical decomposition for radiation
intensity corresponds to a decomposition in small parameter v/n. Technically to this end
the formula (A28) was used. It is natural to believe that in the case under consideration we
may try to use similar parameter 7/n to get semiclassical decomposition in spite of the fact
that 7 is not integer. Acting in such a way, we get a classical part of the intensity

4H2 1 — ﬁ2

!
Wi =
j T micd

Z f sin 6 dT2QSL | FE? (5.58)

where the corresponding classical quantities have the form
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%

F = 1B J5:(2) + lscot 0,5 (2), z=Dg;siné,

Ju = Ja = Jia=Jp(z), Ja=Js(z), (5.59)
=+ O [T a1 - e () o)
+(j - 1)Jil|+fr(?J)J|u+v—1(y)] . _ (5.60)

Here J,(y) is a Bessel function.
At pu = 0 the quantity |F¥|* does not depend on j', and T j_; » @5 = 1. Thus, we arrive
to well-known [26] classical expression for spectral-angular distribution of SR.

For concrete 77’ the expressions for Qj;-, may be written in more convenient forms,

’

1= J§ Jivii(y) )y, L 2 v,
| f(iz Jv—l—l(y)']u—l(y)dyz ! <v,

,

cl
11

Io Jewin w(W) I w(y)dy, 1> v,
L % - f{]z: JlmV+1*H(y)Jl*V*H(y)dyl l < Va
%=1 [ uv)Tioa9)dy

lel Z/[; Jlll+v—#(y)J|1I+v—l—#(y)dy- (5.61)

cl
12 = §

In particular, in the nonrelativistic approximation, one gets

Wst = wes? > Wi

3

- _ _ 1— 2 2

5 (5.62)
We have selected I = v = 0 for (1 — 2) transitions and |lj = » = 1 for (2 — 1) transitions.
The expressions (5.61) follow from the exact quantum expressions (5.37), (5.40), (5.49), and
(5.52) in the limit n — oco.

Semiclassical expressions (5.61) depend essentially on the initial quantum number [ if 4
is not zero. Taking into account the Eq. (2.17), which relates R? — R2 (minimal distance

between the classical trajectory and the solenoid) with I, we may express [ in terms of this

pure classical characteristic to make the formulas (5.61) formally completely classical as well.
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What seams really important for us to stress is the fact that both quantum expressions and
semiclassical ones do not have any degeneracy in parameters, which define the initial state,
in the presence of the magnetic flux with nonzero u.

It follows from the equation (2.17) that at a fixed R?> — R2 we get |I| ~ 1/h. Formal limit

to pure classical case demands |I| — oo. Doing such a limit in the expressions (5.61) we get

A (5.63)

it = 037

That result is natural. In pure classical theory the trajectory of a particle is given (there is
not any back reaction from emitted photons on particle motion) and transitions with change

of the initial state are forbidden.

G. Concluding remarks

Unfortunately, it is difficult to proceed further with exact analytic calculations. For
example, one cannot simplify sums of the form

> Jo(ve) i (vy) = fzy), 0<z <1, 0<y<l1,

v=1

S Jo(pxy =@uz), P=v+p 0<z<1.
v=1

which appear in such calculations. Such sums are known only at . = 0.

However, one may sometimes estimate a behavior of the quantities @;;» in the ultra-
relativistic approximation. Using an experience obtained in usual SR calculations [26], we
believe that J,(z) ~ /€, € = 1 — 8%sin? 4. In the ultra-relativistic case € ~ ¢y = (moc®/E)>.

From the identity

- Z 2
fo L) Jo-1(y)dy = Vfo J”T(y)dy + %JS(Z)

we get

foz Lo (y) Joa(y)dy ~ €.
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Finally, taking into account that the angle integration reduces the order of e,
L —s+1/2
/ € °sin@df ~ ¢ ,
0
we get from (5.60) in the ultra-relativistic case

Qjy = 0jj + Veoryy

where o are some finite quantities. That means that only transitions without a change
of j (change of the type of states) take place. We believe that the effective number of
the harmonics does not change as well due to quasi-continuous character of the spectrum.
Thus, the evidence of the AB effect in such a case are negligible in comparison with the
leading terms. These qualitative considerations may be wrong at small {{| =0,1,2,.... The
peculiarity of the behavior of SR in nonrelativistic limit may serve as a justification of the
latter consideration.

The exact expressions for intensity of SR, which we have obtained, may be analyzed
numerically in concrete cases. For example, transitions from lower levels in strong fields etc.

Analysis of SR for spinning particles will be done by us in a next article.

VI DISCUSSION

First of all, we would like to stress that several new exact results related to the magnetic-
solenoid field are obtained. Among them exact solutions of Klein-Gordon and Dirac equa-
tions in such a field. Besides, matrix elements of transitions with a photon emission are
calculated and on this base all characteristics of the SR in the field are obtained and ana-
.lyzed.

It is demonstrated that only the mantissa of the AB field affects characteristics of usual
SR (that is consistent with the fact that the AB effect is related to the shift of the phase
factor in wave functions). The main physically interesting peculiarities of such an influence

are the following:
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Each spectral line (harmonic) of usual SR is split into two lines. One of them remains
very close to the initial SR line. The corresponding to it relative frequency shift is small,
namely, it is proportional to H/Hj, and may be estimated as 1079+107% at present laboratory
strengths of magnetic fields. The relative shift of the second harmonic is equal to p or to
1 — u (depending of the type of the initial state). Experimental observation of such shifts
(especially in nonrelativistic case) sears to be not difficult.

As it is known, the intensity of usual SR does not depend on the orbital qguantum number
of the initial state. The presence of the magnetic flux with non zero p breaks completely
such a degeneracy. The quantum number enters in a nontrivial way in all the characteristic
of the SR.

Besides, in usual SR, in the nonrelati-vistic case (5% < 1), only the first harmonic (v = 1)
is practically emitted. The emission of all others harmonics is proportional to 2. The pres-
ence of the magnetic flux with non zero u changes this situation drastically. If initial states
of charged particles have I = 0, —1 then in the nonrelativistic case a set of harmonics has
the same probability of irradiation. That may increase the total intensity of the radiation.

Finally, there appear principle new lines related to the existence of two type of states in
the problem. Namely, there exist a radiation of harmonics with frequencies, which are less
then the basic synchrotron frequency w. These frequencies are pw or {1 — p)w, depending
on the type of the initial state. Important that the intensities of the radiation for these
harmonics are comparable with that for the basic synchrotron frequency. Significant relative
shift between these new frequencies and the basic synchrotron frequency allows one to think

about their possible experimental observation.

APPENDIX A: SOME PROPERTIES OF LAGERR FUNCTIONS

1. We define Lagerr functions [, », by a relation

I'l1+n) exp(—z/2) mmg
TiTm Thtn—m)® & 2™ +1;2) . (A1)

Lnm(z) =
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Here ®(a,v;z) is the degenerate hyper-geometric function in standard definition { {31},
p.1085, Eq. (9.210)). At v # —s (s is an integer nonnegative number) the function may be

given by a convergent at any complex z series

z* Dla+k)z

oo ,Y oo
= A2
Of")’, X=: O! ];] ’Y+k) k' H ( )

where Pohgammer symbols (a); are defined for any complex a as follows

Na+k) _

(@) = ala+1)..(a+k—1) = Fra)

(A3)

The Lagerr functions are defined for any complex = and for any numbers n, m, for which
the right side (A1) has sense.
2. I m is an integer nonnegative number, then the Lagerr functions are connected to

the Lagerr polynomials L2 (z) by the relation

(Ll +m)
T(1+n)

We use a standard definition ( [31], p.1061, Egs. (8.970), (8.972.1))

1 dr n n 4+ (—a:)k -+ o
Li(z) = ez ——e ™2 =3 — = ®(-n,1+a;z), (A5)
n! dz” o\ n—k k! n

I m(z) = exp(—z/2)z" % L ™), m=0,1,2,.... (A4)

]
7 n:

(a) _al@—1)..(a—n+1) (A6)

are binomial coefficients, and n is an integer nonnegative number. At the same time
o
_ NG Y ‘ (A7)
n F1+n)T{(l+a—n)

The equation (A7) defines (

(84

) for any complex a and n, for which the right side of (A7)
n

has sense.
3. Using well-known ( [31], p.1086; Egs. (9.212), (9.213), (9.216)) properties of the
degenerate hyper-geometric function, one can find the following relations for the Lagerr

functions
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/20 + 1) Insam(z) = (1 — 1+ )y (@) — 2T (2) (A8)
2/z(m + 1)y mya(z) = (0~ m — z) Iy () + 221 . (x) | (A9)

2T m(E) = (0 — M+ 2) Ly m(z) + 2311 . (2) (A10)
2T () = (0~ M = 2)m(2) = 201, (2) (A11)
VMM 1 m1(z) = (0 +m — 2) [, m(z) — 221, . (2) (A12)
2/(n+ 1) (m + DlInprmsa(z) = (0 +m+2 — &)Ly m(z) + 221, . (2) (A13)

and a differential equation
421 () + 4, o (x) — 27 — 22(1 + n+m) + (n—~ m)?| Ly m(z) =0. (A14)
Its general solution I has the form
I= Al m(z)+ Bl,.(z), (A15)

in case if the functions I, ,,(z) and I, »(x) are linearly independent. Besides the cases when
the equation (A19) holds, they are alway linearly independent. The relations (A8)-(A13)
and the equation{A14) have sense at any n,m = 0. Straightforward calculations based on

the Eqs. (Al) and (A2) lead to the following formulas

. sin mr 1tm
i v/l 1n(7) = ———T(L+m)o 3 exp(z/2), (A16)
lim v/mI, . 1(z) =0 . (A17)

m—0

4. Using some additional properties of the degenerate hyper-geometric function, one can

derive the following representation for the Lagerr functions

]._‘(1 + TL) eXp(:T_:/Q) n—n ‘
FiTm T tn_m®  Sd+mltn—m-a, (A18)

Inm(z) =
and a relation ( [31], p.1086, (9.214))
Lym(z) = (-1)" "™, (), n—m integer. (A19)

5. Using (A1), (A18), and (A2), one can derive series representations for I, ,,(z),
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k

sin ma & nmm o= Nk—-—m) =
1 r T2 z —
VEQ + (L4 etz L Th—minsD)H

Inmlz) = —

z

= /T +n)I(L + m)e ?z

(—2)* (A20)
T(m—k+1)I(n—m+Fk+ L)kl

JPRY
L () = exp(z/2)z 7 n+k+1) ( :r:) (A21)
\/P1+n)F(1+m 'n—m+k+1) Kk
6. At Rex — +oo an asymptotic formula takes place
r
D(a, ¢ z) = %e%“‘c . (A22)
That results in the following asymptotic behavior of I, m(z) at Rez — +o0
Ln(2) % == [D(1+ m)D(1 + m)a 5 exp(s/2) , (A23)
(under the supposition that m is not integer), and to the representation
n+m
—z/2
Lam() ~ (—1ym 2 c2p2/2) (A24)
yT(L+n)I(1+m)
if m is integer.
7. Below we present some asymptotics of [, ().
At n — oo, and m, z are fixed we get
nMz 7 exp(—z/2
Lnm(@) = pef?) (A25)
YT +n)T(1+m)
At m — o0, and n,z are restricted (n — m is not integer)
sinw(n — m) z n
Tnm(z) ~ W\/F(n +1)I(m+ 1)ezz 2 (A26)

If n — m is integer, then taking into account (A19), one may reduce the problem to the case
(A25).
One can get an asymptotic behavior of Iy, n(z) at n — oo and o, z fixed,

-z
2

Ipinn(z) = 2 )1/4 cos(ZM - —a — —) (A27)

Finally, one may calculate the following limit
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. z?
i psogis (3] = Jocalo). (A28)

8. At @ > —1 and n > 0 all are integer, the Lagerr functions I, .(z) may be written

as (see (A4))

n! z a
e 2zx2L(x) . (A29)

Ia n,n - PR
+nn(2) F'n+a+1) "

One can prove, using (A23) and (A24), that in this case they form a complete and orthogonal

set on the interval (0, 00),
[ Tatnn(@) Laimm(@)de = b (A30)
0

9. Substituting (A4) into (A19) at n,m > 0 and all are integer, we get for Lagerr

polynomials
(=1)"T'(1 +m)z" Ly, ™(x) = (—=1)"T'(1 + n)z™ L™ "(x) . (A31)

10. An important role in the radiation theory play the following two integrals containing

Lagerr functions

/Ia+m,m(x)lﬂ+n,n(x)*]a+ﬁ(QW)dx = (“1)n+mlﬁ+n,m(Q)Ia+m,n(Q)’ Ra+B+1)>0. (A32)
0

/Ia+m,m($)lﬂ+n,n(x)<]a—ﬂ(2\/‘1—$)dx = (“‘1)n+mln,m(q)la+m,ﬁ+n(Q)a R(a+1)>0, (A33)
0

where n,m > 0 and all are integer. An integral similar to (A33) is present in ( [31], p.853,
eq.(7.422.2)), but the answer contains a mistake, which is present in other tables.

11. Consider a sum

R (x) = > D (@) Iy pn () - (A34)
k=0
Then
LR @) = 2 [E Ui ) n(2) + @)1 @) (A35)
—C—lE 1 x) - —2— E u—l,m T n,n T H,m T ”_1’n T .

If Re (21 —m —n) > 0, then it is easy to see that R"(0) = 0 and we get
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Rp) = 5 / ) + ) 1)1, Re ) >0 (A3

If n,m > 0 and all are integer, then the latter restriction may be omitted

(@) = b | [ b @1a00) + Fn )1l (a37)
In this case one can also get
R(T)n’n( = ZIk m ()1 n(z) Z mk( )In,k(x) - (A38)
k=0

12. Similar results may be derived for the sum G}'*(x) ,

Gm n Z I k+u I, k+u( ) (A39)
“;Gﬁ y(z) = %V H_j+“1‘ [Im,n+s($)ln,u+s+1 (z) + Lot s41(%) Iy 5 ()]
__;_ B s @) L (@) + I (2) I s (2)] - (A40)

One can integrate the latter equation to get G (z). In particular, at © = 0 and at arbitrary

m,n, one gets

8 1 > [s+1 '
iE) = Z Im,k(m)In,k(m) = “-2- vy [Im,s(y)In,S-i-l(y) + Im,s-H(y)In,s(y)] dy .
k=0 z

(A41)
At integer m, pu = 0 and arbitrary n > m, we get Gg'o(z) = 0, that results in
S ILni () i(z) =0, n>m, m— integer . (A42)
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