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Abstract

We study- the statistical evolution of a charged particle moving in phase
space under the action of the vacuum fluctuations of the zero-point electro-
magnetic field. Our starting point is the Liouville equation, from which we
derive a classical stochastic Schrodinger like equation for the probability am-
plitude in configuration space. It should be stressed that we are not deriv-
ing the Schrédinger wave equation. An equation formally identical to the
Schrédinger equation used in Quantum Mechanics is obtained as a particular
case of the classical stochastic Schrodinger like equation. An inconsistency
appearing in the standard Schrédinger equation, when we take into account
the vacuum electromagnetic fluctuations and the radiation reaction, is clearly
identified by means of two examples using different sources of electromag-
netic noise. The classical stochastic Schrodinger like equation, however, is

consistently interpreted within the realm of Stochastic Electrodynamics.
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I. INFRODUCTION

The classical electromagnetic theory has been largely extended by the program of the
Stochastic Electrodynamics (SED) [1,2], due to the inclusion of the effects of the real electro-
magnetic zero-point radiation. According to the SED picture, there is a clear correspondence
between the nonrelativistic Heisenberg equations of motion, for a spinless charged particle
interacting with the quantized electromagnetic field of Quantum Electrodynamics (QED),
and the classical (Langevin type) Abraham-Lorentz equation with real vacuum fluctuation
forces. At the same time, it is well known [3] that for a special class of potentials the
dynamical evolution of any Schridinger wave packet is entirely determined by the laws of
Classical Mechanics. Therefore it is desirable to develop a method that is aplicable to any
deterministic potential, in order to better clarify the relation between the classical and the

quantum theories of the microscopic world.

A mathematical tool widely used in SED is the Fokker-Planck equation, which is derived
from the stochastic Liouville equation for describing the Brownian motion of the micro-
scopic charged particles [4]. Unfortunately, however, this method has a restricted use due
to the mathematical difficulties for solving the Fokker-Planck equation, mainly in the cases

associated with the motion under nonlinear forces.

Our purpose here is to show that the stochastic Liouville equation can be put in a
mathematical form that is easier to manipulate even in the case of nonlinear forces. We shall
derive a classical Schrodinger like equation from the Liouville equation, using a procedure
similar to that introduced by Wigner [5] for describing Quantum Mechanics in phase space.
Our approach introduces a free parameter &' in the Wigner type transform [6]. We shall

show that this procedure enables us to make a clear distinction between the free parameter




A’ and the Planck’s constant %. Only the vacuum electromagnetic fluctuations will depend
on the numerical value of the Planck’s constant %. We shall see that this distinction will be
of great help in order to clarify the physical meaning of the Schrédinger like equation and

its interpretation within the realm of a purely classical theory.

II. CONNECTING THE STOCHASTIC LIOUVILLE EQUATION TO A

SCHRODINGER LIKE CLASSICAL STOCHASTIC EQUATION

The description of classical phenomena by classical statistical mechanics is based on the
concept of phase space. The mean value of any dynamical variable A(x,p,t)} is calculated

according to the relation

(A) = fA(x,p,t) W(x,p,t) d*xd®p ; (1)

and the probability density distribution in phase space, W(x, p, t), evolves in time according

to the Liouville equation
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where x and p are obtained from the classical Hamilton’s equations of motion.

Consider an ensemble of systems which consist of a nonrelativistic spinless charged par-
ticle interacting only with the electromagnetic field. The Hamiltonian which describes the

time evolution of the whole system (particle plus field) is
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where e and m are the charge and mass of the particle, repectively, ¢(x,t) is the scalar

potential, and

A(X, t) = A‘ext + A-VF + A—RR (4)

is the vector potential. The term A, is an external deterministic disturbance. The term
A is the vector potential associated with the real vacuum fluctuations, and can be written

as
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where V' is the volume containing the particle and the radiation field, k is the wave vector,
wi = clkl, A is the polarization index, and é(k, \) are the polarization vectors. The ampli-
tudes ayxy are taken to be random variables. The random character of the field is contained in
these variables which are such that {(axx) =0 and {|ax,|*) = 1/2 ({ } denotes the ensemble
average). The term Agg is the vector potential that describes the radiation reaction [1,2]

and Hyp is the Hamiltonian of the background radiation field {(contains only variables of the

- field). In the case of zero temperature, Hy. can be written as [2]

‘ 1
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where
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(Hypy = Zk:hwk . (8)

The extension to a non-zero temperature T is obtained by introducing the factor

coth(huwy /2kT).

Each particle of the ensemble evolves in time according to the Hamilton’s equations
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Substituting the equations (9), (10) into (2) we get the Liouvillian form of the equation
governing the time evolution of the ensemble of particles for each realization of the stochastic

field Ayr, namely
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It is important to stress that, after obtaining the solution of (11), it is necessary to calculate
the ensemble average over all possible realizations of the field Ay in order to obtain the
average distribution (W (x, p,t}). This is done by considering the average over the random
Gaussian amplitudes axy in (5). Notice that in (11) A = A(x,t) and ¢ = ¢(x,t) are explicit

functions of the variables x and ¢.

Consider the Fourier transform defined by




Wix,y,t) = f d®p W(x,p,t) exp (—zzg,y) , (12)

where y is a point in the configuration space and &’ is a free parameter having dimension of
action. The meaning of the free parameter %’ will be discussed further below. Notice that

(12) corresponds to the well known Wigner transform [5] if #' = . Using the definition (12)

~ the Liouville equation (11) assumes the following form
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In what follows we will concentrate our attention in the particular case of very small

B (K < h). In this case W(x,y,t) is different from zero only if |y| is small, as can

be seen from equation (12). Therefore, the scalar products appearing in the last term of

equation (13) can be replaced by the expressions

y- %qﬁ(x, t) = ¢(X TY, t) - qb(x? t) ’ (14)

and
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For instance, using (15), the term of (13) containing p - A can be written as follows
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After rewriting the integrand of (13) using approximations (14) and (15), we perform an

integration by parts. The result is the following equation
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We shall study the case in which the Fourier transform W(x, ¥,t) can be written in the

form [5,6]

W(x,y,t) = 9" (x+y,O)o(x —y,t) = ¢°(r,)0(s,t) . (18)

This restriction deserves a comment. A more general expression for Wi(x,y,t)is
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where {G} is a complete set of orthogonal functions (or states). A differential equation
for the coefficients Ay can be obtained from equation (17). Therefore there is no loss of
generality in using the hypothesis (18), provided that a complete set of (Fourier transformed)

“phase space” states {Gy} is introduced in a later stage of the calculation [7].

Substituting (18) in (17) we obtain the following Schrédinger type equation for the func-
tions ¥ (r, )
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and the corresponding equation for 4*(r, t), with the vector potential A as given in (4) and

(5).

‘Therefore, the Schrédinger type equation depends on the Planck’s constant only due to
its presence in Ay defined in (5). In other words, equation (20) has terms which are pro-
portional to vA and %. Moreover, the solutions of (20) must be interpreted by considering

that the limit A" — 0 must be taken in the end of the calculations.

III. INCOMPATIBILITY OF THE STANDARD SCHRODINGER EQUATION

WITH THE ZERO-POINT FIELD

The above derivation shows a clear correspondence between the quantum Schrédinger
equation for spinless particles, and the classical stochastic Schrédinger like equation given
by (20). The case of neutral spinning particle has been already discussed by Dechoum,

Franca and Malta [8].

The limit ' — 0 of the solution of the classical stochastic Schrodinger like equation cor-
responds, physically, to classical (non-Heisenberg) states of motion as shown by Dechoum
and Franca [6]. Nevertheless, we shall observe several effects, arising from the vacuum fluc-
tuations, which depend non-trivially on the Planck’s constant % . This is better understood
by means of very simple examples. One interesting example, discussed in réference (8], is the
derivation of the Pauli-Schrédinger equation in the spinorial form, starting from the Liouville

equation. The experimental results of the Stern-Gerlach experiment, and also the Rabi type




molecular beam experiments, were appropriately described and interpreted classically, in the
limit &' — 0, that is, in the classical limit where the particles have well-defined trajectory,

and also continuous orientation of the spin vector.

The best example, however, is the one-dimensional harmonic oscillator discussed in many
details in previous works [6,7]. In order to apply equation (20) to the charged harmonic
oscillator, we shall assume that the scalar potential ¢ is the simple static function satisfying
e¢ = (1/2)mwfz?, wp being the natural frequency of the oscillator. We have shown in ref. [6]
that by introducing the function ¥(z,t) = exp [i%Az(t)] P(z,t) we obtain for (20) the
equivalent equation

‘I’ "o 2 2.2
ih’gw _[_(r)° 9 -+ T e (Ern + EVF):I ¥(z,t) (21)
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where Eyp and Epp depend only on t (dipole approximation). In this equation —MWT

. : e d . . :
is the harmonic force, eEhp = —E—a—t(ARR)x is the radiation reaction force, and eFyp =

3
_za(A"F)“‘ is the random force. The exact solution of (21}, in the form of a coherent state

V.., can be easily constructed [6]. It is possible to show that
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where p(t) = mz,(t), 2mg(t) = p2(t) — mPwiz2(t) + mh'wy , and

M, (t) = ~mwiz,(t) + e [Ean(t) + Eve(t)] (23)

so that z.(t) is the classical stochastic trajectory obtained from the equation of motion (23).
At equilibrium (or stationary state) we have (z.(t)) = 0, and

i
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as is well known [1,2]. However, using the exact solution (22) of the Schrédinger type

equation (21), we obtain

00 3 B+ h
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This gives the correct value at zero temperature, namely (22} = k/2muwy, in the limit
B' — 0. Only in this limit the solutions of equations (20) and (21) are physically acceptable.
This is an important result that is very easy to understand within the realm of SED, if
we recall the derivation (see egs. (13) to (18)) of the classical Schrodinger like stochastic
equation (20). The inevitable conclusion is that the standard Schrédinger equation, namely
equation (20) with %' =%, does not give consistent results if the zero-point electromagnetic

field Er is fully considered.

In order to further illustrate the advantages of the Heisenberg picture over the Schrédinger
picture, we shall consider the system consisting of a harmonic oscillator (electric dipole)
interacting with an anisotropic source of noise as for instance the solenoid of a simple RLC
circuit without battery [9]. The fluctuating current in the solenoid is modified by the magnetic
field (By,) created by the oscillating dipole, thus generating a random electric field (E,,,)

that affects the charge oscillating in the z direction as is illustrated in the Fig.1.

Following the steps of the (classical) stochastic calculation presented by Blanco et al. [9],
1t is possible to obtain the average oscillator energy by taking into account the effects of the
- zero-point fluctuations acting on the circuit (zero-point Nyquist noise [10]). The result is

e = mwd{z?(t)) = (26)

_ hruwd f°° dw w® [+ B(w, y)]
T b @ L o)

}

where 7 = 2¢?/3mc®. The function S(w,y) is given by (see [9])
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Blw,y) = c|Z(w)|2 )

(27)
where Z(w) is the impedance of the RLC circuit, £ is the length of the solenoid and y is the
distance from the dipole to the solenoid axis (see Fig. 1). The free space result (see equation
(24)) is obtained by taking y > a (or 8 =~ 0). In the case 7wy < 1 it is possible to show
that the integral in (27) gives [9]

€ — (28)

The contribution of the Nyquist noise does not affect the oscillator ground state energy.
Nevertheles one can show that the lifetime of the oscillator excited states depends on the
orientation of the oscillating charge, and are significantly modified by the presence of the
solenoid [9]. Similar results were obtained by considering the oscillator between parallel

- metallic plates [11].

It should be remarked that the theoretical study of these simple systems is rather cum-

bersome in the conventional Schrédinger picture.

IV. DISCUSSION

Dalibard, Dupont-Roc and Cohen Tannoudji {12], and Franga, Franco and Malta [13]
provided an identification of the contribution of the radiation reaction and the vacuum
fluctuation forces to the processes of radiation emission and atomic stability. Using the
Heisenberg picture and perturbative QED calculations Dalibard, Dupont-Roc and Cohen

Tannoudji [12] have shown that
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This equation is the quantum generalization of the Larmor formula (2e?#?)/(3¢®) for the rate
of radiation emission, including the zero-point field effects, of an electron in the quantum
state |a) (Dirac notation) with energy €,. We see that the inclusion of the zero-point electro-
magnetic field simply doubles the rate of the radiation emission, being thus very important
for obtaining agreement with experiment [11,13]. Dechoum and Franca [6] extended this re-
sult to the SED picture using the harmonic oscillator and the classical stochastic Schrédinger
like equation. Further insight on the general connection between SED and QED, for the free
electromagnetic fields and for dipole oscillator system, is provided by T.H. Boyer [14] and
P.W. Milonni [15].

Nevertheless the Schrodinger picture can be used successfully in many calculations if
we consider Ayp(t) = 0, Age = 0 and %' = % in equation (20). An interesting example,
having a clear classical limit, was provided by Sudrez Barnes et al [16] that have studied
the one-dimensional motion of the electron in the Coulomb field using the simple equation
(A" = 1)

( o 6—2) Wo,t) (30)

C2mds? e
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The Coulomb potential V(z) was approximated by

2

Viz) = —m ~V{g)+ (z — ¢)V'(q,) + w(M:‘E;Lt)gV"(qt) , (31)

where g is the classical trajectory. A coherent state solution was obtained from (30) and

(31).
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Equations (30) and (31) allowed Sudrez Barnes et al to obtain a remarkable reproduction
of the hydrogen spectrum, using classical reference trajectories that have a continuous energy
range. No quantization conditions were imposed on these classical reference trajectories. For
the reader’s convenience the spectrum calculated in [16] is reproduced in the Fig.2. As far
as we know, this constitutes the first accurate classical calculation of the atomic spectrum
since the advent of Quantum Mechanics. This calculation can be interpreted classically due
to the approximation (31). For potentials of this form, the Schrédinger equation is equivalent

to the Liouville equation as was pointed out by many authors [1,3,5,17}.

Our last remark is concerned with the necessity of the vacuum electromagnetic field within
the Heisenberg picture of the quantum theory. A good discussion of this point is given in
the book by P. Milonni [15]. Again, the simplest example is the harmonic oscillator that is

discussed within chapter 2. The zero-point electromagnetic field, with spectral distribution

A’

=5 (32)

po(w)

is in fact necessary for the formal consistency of the quantum theory. A striking demonstra-

tion of this fact is provided by the equal-time commutation relation [15]:

[2(8),p+(8)] = [2(t), m #(0)] + [a(t), ~Au(8)] =

the?  [8mr\ oo wh dw , '
_the” (?) [0 = —ih . (33)

2m2mc? — wi)? + 720

This result is obtained from the exact solution of the equation of motion for the quantum
operators  and p,. As expected on physical grounds, the quantum equation of motion in

the Heisenberg picture is formally identical to our classical stochastic equation (23).

Finally we would like to stress that it would be nice to extend our calculations so as to

14




reproduce the diffraction pattern observed in many experiments with electron beams.
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Figures Caption and Figures

Figure 1: Schematic picture of the electric dipole at a distance y from the solenoid axis. The
relevant electromagnetic fields generated by the solenoid (E,,) and the oscillating dipole

(B,,) are indicated.

Figure 2: Spectrum generated by the classical motion in the Coulomb potential, according
to the parametric oscillator approximation. The continuous energy is denoted by —e, and

the circles correspond to the exact quantum results. The units are such thate = m =% = 1.
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