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Abstract

The mutual coherence of atomic-trap Bose-Einstein condensates gener-
alizes the usual symmeiry-breaking of boson superfluids. We show how the
mutual phase coherence, a remarkable property especially if the condensates
consist of particles as distinct as atoms and molecules, implies the existence
of massive collective modes. This feature appears as nodeless high frequency
modes in atom traps. We develop a Gaussian wavefunction dynamics to de-
scribe the structure of these modes, the detection of which could serve as a

signal of the long-range mutual phase coherence.

PACS numbers(s):03.75.Fi, 05.30.Jp, 32.80Pj, 67.90. 4z




The atomic trap Bose-Einstein condensates (BEC’s) [1] exhibit the long range phase
coherence that characterizes superfluidity in matter systems [2]. The corresponding broken
symmetry description captures the essence of the superfluid features and, hehce, the extent
to which the BEC’s behavior represents that of other superfluids. Against this backdrop, the
fact that available atomic and optical techniques can generalize the usual U(1) symmetry
breaking of boson superfluids [3], appears particularly significant. In this letter we discuss
the example of mutually coherent condensates and the possibility of observing its off-diagonal
long-range order by probing the hydrodynamic collective excitations. This long-range mutual
phase coherence — a novel quality for boson superfluids — can be achieved by converting n
condensate bosons of type 1, to a single distinguishable boson of type 2 (a molecule if n > 1).
If this process is ‘coherent’, i.e. if it does not alter the many-body state in any other way,

its contribution to the second quantized effective Hamiltonian takes on the form

fd3r (Jﬂgﬁ;f(r)af)?(r)+h.c.) : (1)

where 1,/:vj denotes the corresponding field operator, and where we have confined our attention
to the s-wave processes that dominate the relevant low energy regime. For n = 1, the
expression (1) describes a Rabi-like coupling between different states of the same atom.
The n = 2 case corresponds to the atom-diatomic molecule coupling discussed in the BEC-
context for the cases of Feshbach resonances [4]- [5] and coherent photoassociation [6] —
[8]. Furthermore, since the individual atoms ‘perfectly’ overlap in a BEC and high intensity
lasers are available, it may be possible to probe coherent transitions to tri-atom molecules
(n = 3). A simple mean-field argument shows that the interaction (1) in a condensate
of bosons 1, (1) = ¥ # 0 creates a second condensate, (1hy) = w9 # 0. Indeed, the
commutator with (1) contributes a source term J, (1,2!?) # 0 to the expectation value of the
Heisenberg equation of motion for 1), so that v £ 0.

Below, we show that, in addition to the usual Goldstone mode with a dispersion that




vanishes in the long wavelength limit, limj_,qwy = 0, homogeneous mutually coherent con-
densates support a ‘massive’ mode of finite gap frequency [7], limg—owi = Waap # 0 (Weap
plays the role of ‘mass’ in field theory). This massive mode involves coherent Josephson-like
.population oscillations. The mutual long-range phase coherence gives rise to coherent oscil-
lations of the population balance — a manifestation of macroscopically coherent chemistry.
To describe the corresponding collective modes of the inhomogeneous trap systems, we gen-
eralize the Gaussian wave function dynamics [9] to describe mutually coherent condensatePS.
We find that the essential signature of high-frequency modes with a characteristic frequency
dependence on the effective energy ¢, of bosons 2, remains. The massive modes then provide
a promising scheme to detect the mutual-coherence long-range order, especially in the case
of ‘the Feshbach resonant experiments that are hampered by significant particle-loss near
e=0.

The emergence of the BEC-order parameters, (1,55,} = ¥; = /p;exp(if;) with a well-

defined complex phase 0; breaks the symmetry of the Hamiltonian, [d®rH,

_H2¢y2 o2 A
H=¢’f[ om +Vl+%¢¥¢1}¢1+¢3[2?;: +Vz+6+—23¢§¢2}¢2
AT + In [T + e (¥])Y] (2)

In the above expression, m denotes the single atom mass, V; represents the external po-
tential experienced by bosons j, and the M-interaction strengths account for the usual
inter-particle scattering. Note that (2) is invariant under the simultaneous global phase
transformation ; — exp(i@)i1, Y2 — exp(ing)s. The only dependence on global
(i.e. position-independent) phases stems from the Jnp-interaction ~ cos(fy — nb), so that
9&0) - nﬁgﬂ) = 7 in the ground state. In the Goldstone mode the phases fluctuate around

their ground state value, §6;(x,t) = 6;(x,t) — 8%

7, while the system remains locally in

the potential minimum, 6, — nf; = 7, ie. 60, = né6y, implying that the superfluid ve-
locities v; = (i/m;)V0; fluctuate in phase, §vy = (B/nm)V(80,) = (B/m)V(66;) = v1.
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In the long wave length massive mode, the phases in the {f,8;)-plane fluctuate in the
perpendicular direction, néfy = —é0;, and the superfluid velocities fluctuate out-of-phase,
6vy = (R/nm)V (60:) = —(h/m)V(66;)/n? = —bvy/n’.

We describe the infinite wave length dynamics of massive modes by homogeneous wave-
functions, ¢; = \/W exp|if;(t)] that represent condensates j of /V; bosons confined to &
macroscopic volume £2. We obtain their time-evolution from the time-dependent variational

principle: Minimization of the action, I' = fdt L, where L represents the Lagrangian,

L= /dsm (i) 2)[5er — s + yehs — Pyvha] — Elthy, 1o (3)
and £ denotes the energy, E = [d%r H, yields classical equations of motion for (#;, N;).
Since the time derivative terms of L reduce to —N;f; — Nybsy, the N; and 0;-variables
are canonically conjugate and the equations of motion are Anderson-like: iN; = 8E/0;,
hi; = —OE/BN;. With (2), the energy is equal to

1A A

2J,
taEne

NoN}'? cos(8y — nby) (4)

We extract the massive mode structure by subjecting the phase variables to a rota-
tion alining the new axes with the fluctuation directions of the Goldstone (8, = [f; +
nba]/v1+n2) and massive (0- = [—nbd; + 6;)//1 +n?) modes. Rotating the conjugate
variables similarly to preserve the canonical nature of the variables, new number vari-
ables appear: N, proportional to the total number of atomic particles (N = N; + nlNa},
N, = N/v/1+n? and N = [-nN; + N,|/+/T + 2, which describes the population imbal-
ance. The rotated variables evolve according to new Anderson equations. The (N4, 0. ) equa-

tions, and specifically AN, = 8E /80, = 0 express conservation of atoms. The (N_,6_)-

equations describe the dynamics of population imbalance:

. E
No= 3¢
. E
_ 5
6 Nl (5)
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The equilibrium conditions, NO = O _ 0, determine the relative phase, 65 — n8; = 0,7
(7 in the state of lowest energy) and the equilibrium fractions, f; = N}O) /N. The massive
mode corresponds to fluctuations around this equilibrium N_ = N© +6N_,8_ = 09+ 66_,

which evolve according to a Taylor expansion of (5):

: &*E
RéN_ = 55 8a..
. OE .
- b
héd_ e ON_ . (6)

The corresponding frequency, w (N = —w?§N_, so that iw? = (PE/86%) x (2EJON?)Y)
is the gap ffequency or ‘mass’. In the ground state, the 8%E/0#%-factor measures
the energy gain due to the .J,—interaction. We express its value, FPE/8* = (1 +
*n,z“)(ZJR/Q(“_I)/Q)1’\/'21/21’\1?/2 in units of €; = J,p™ /2 where p is the atomic particle den-
sity, p = N/Q. Likewise, 8°E/ON? is positive for a stable system — a negative 32E JON2-
curvature indicates that the system can lower its energy by converting all bosons to the

same type. In terms of the equilibrium fractions, f;, the gap frequency reads
Ww? = 26, £, [772ap [0 = 20 (A /A0 + (A /M)]

+e% (%) {1 - 2n2% —n¥(n— 2) (%) 2] : (7)

In the off-resonant limit, ¢ >> 0, f; — 1, f < 1, so that fiw — eJ\/Im — € (the latteris a
consequence of the off-resonant limit of N, that follows from 8E/ONy = 0, Ny — N (es/€)).
Although at large detunings it may become increasingly difficult to excite and observe the
massive mode, this result suggests that an easily observable frequency shift may serve as
a signal of the long-range mutual phase coherence at reasonably large detunings. Such
detection scheme may be particularly attractive in the Feshbach resonance case where large
loss-rates hamper near-resonant experiments. Near-resonance, a measurement of the gap
frequency as a function of € reveals information about the boson 2 interaction strengths

(specifically, about —2n\ + A2), which are largely unknown for molecules.
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To study the inhomogeneous trap systems, we generalize the variational Gaussian de-
scription of single condensate dynamics [10]. We restrict ourselves to the n=2 case of mutu-
ally coherent atomic (a = 1} and molecular (m = 2) condensates generated by a Feshbach

resonance or coherent photoassociation. The Gaussian ansatz wave functions,

N2 _[Eg(_)m;g%.] [rj—rs@)] +ims(®)[rs—re(®)] +i0a(®
_ _*Ya TENREY
7/’:1(7": t) - 7{_3/4q3/2 j:m,Hy, € J (8)
N2 —1_ g O s Re®)] " +i15(8) [rs— RS (0)]+i0m (1)
Y (1, 1) = 7T3/4Q3/2 H e 2Q ® 3 i 5 ©)

J=z, 4, 2

contain gq;,p;, 5, @5 (Qy, Pj, RS, T15) as variational parameters for the atomic (molecular)
condensates and are ‘normalized’ so that [d®r|y2|?> = N, and [d®r|y?|? = Ny, (subject to
the constraint N, + 2N, = N) by the ¢ = (g,¢,¢.)"* and Q = (Q,Q,Q,)*/*factors. Thus,
We{thm) is a Gaussia,n centered at r§ (Rf) with a width g; (Q;) and conjugate momenta =¥

(II%) and p; (P ) respectively. Accordingly, with (3), the action takes on the form
- fdt{QaNa + 0.N, —E

cae Nﬂ . - £ .C Nm * :
+ > [Naﬂj?‘j + 1 Pid; — Pyg5) + NI RS + — (F5Qs - RfQ-f)}} (10)

i=z, u, 2
'The energy, E, consists of single condensate contributions, E,, E,,, and inter-condensate in-
teraction terms, £ and E;. The single condensate Gaussian Gross-Pitaevskii energies are of
the usual form [9]: Eo = Nu 3oj_q,y. (=72 + 21 -l—%q;?—i— swa (1) +Fws ¢] +%G/_2q 3
To obtain E,,, we replace m — 2m, w; — I1; etc... in B, and add €N,,. The elastic scattering
inter-condensate energy, £y, reduces to B\ = 2Mala{T]._ exp[— —42—'3—]( + Q%12
In performing the integration to evaluate the Jy-contribution, it is useful to group the vari-
ables into complex numbers, B; = (2Q%)7" 4 iP;/Q; and 8; = (2¢%)"! + ip;/q;. Finally,
the coherent atom-molecule interaction, reads F; = %ﬂg—;éfg—/—é—{e’(w“em) M=z, 4, = ea:p[ '
cjla; Y2 1 ¢.c.}, where we have introduced a; = B} +20;, b; = —2B} R — 46§ +4(115 - 271“;)
and ¢; = B(R;)? 4 28;(r)? + i(TISRS — 2n5re). Denoting all variables by X, the Euler-

Lagrange equations, 6I' = 0, take the form of first order equations,
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; oK
2: , — 11
; S X oX; "’ _ (1)

giving a simple description of the time evolution. The ground state is determined by (11)
with X, = 0. The small amplitude oscillation dynamics is described by an expansion around
that equilibrium, X©. Thus, if X is the fluctuation, we have

wKX®=A xO (12)

8’k

BX:0%; |(q) and K is an appropriate 26 X 26 inertia matrix. To obtain the

where A;; =
frequencies, we diagonalize the set of 26 coupled equations, which come out in pairs of
opposite parity. The resulting frequencies can be grouped into three sets: one corresponds
to the center-of-mass motion of the atomic/molecular gases; one describes the dynamics of
the spatial frontiers of the atomic/molecular condensates and one describes the Josephson
tunneling between the two condensates.

For the sake of deﬁnitenessA, we consider the center-of-mass modes in an isotropic trap

with the same trap frequency [11], w,, experienced by atoms and molecule. In the corre-

sponding equilibrium state, the center-of-mass positions are simple

ri=mi=Ri=1;=0. (13)
In addition, %{.ﬁc—w = 0 where X° are generic coordinates of the subspaces corresponding

the centers of mass and X% represent the other degrees of freedom of the variational space.
Thus, the matrix A reduces to the form (j ;)’ where Cj, = %‘%ﬁi and Wy, = 5%%?.
As a consequence, X, decouple from X, at X° and the dynamics of the centers of mass

system is described by two coupled oscillator equations. Eliminating 7{") and I we find

No#, = —[Now?2+ Aw?r, + Aw® R,
2N B, = —[2N; w? + Aw?] R, + Aw? 7, (14)
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where the frequency shift Aw is produced by the interaction between the atomic and molec-
ular condensates and thus depends on J; and . The Aw-shift is related to the curvature of

E'=E\+ E;,

PEN 1,88\ (N | N\ 8F 8B
At = il (o) + (o) + (7 + o) () (o) (15

The two coupled equations (14) can be uncoupled in favor of the normal modes, 7 = Nyr, +

2N, R, and £ =r, — R,, whose frequencies are, respectively,

N
92 = 2 92 — 2 A 2 .
- = Y T A N — 2N,

(16)

The £2_-mode corresponds to an in-phase motion in which the atomic and molecular centers
of mass move together [9]. The Q;—mode represents an out-of-phase (massive) dipole os-

cillation with the atomic and molecular center-of-mass moving in opposite direction. Since

B;NE; ~ NyN,, and %%1 ~ N,NY? we find that when N,, << N, Q, exhibits the charac-
teristic gap-frequency dependence Q, ~ NT;I/ 2, This result is illustrated in Fig.1, where Q,
increases significantly with .

Next, we turn to some of the other low-lying modes, the frequencies of which are shown in
Fig. 2. The lowest frequency represents a breathing mode. The other two curves represent
massive quadrupole modes in which ¢ and @ oscillate out of phase. In the dashed curve-
mode the number of atoms oscillates in phase with g, in the dotted-curve mode, the number
of atoms oscillates out-of-phase with ¢. As in the case of the massive dipole modes, these
frequencies strongly depend on the equilibrium state and, consequently, contain interesting

information about the many-body structure.




In conclusion, we have pointed out that the symmetry-breaking structure of mutually
coherent condensates gives rise to massive modes. In a trap system, the massive modes
appear as high frequency (> w,) nodeless modes of low angular momentum, the frequency
of which increases with detuning €. We have developed a variational Gaussian wave function
dynamics to describe such massive modes in a trapped mutually coherent atomwmolea;le
éondensate. Using realistic values for the density, trap frequency and J, (for the case of
a Feshbach resonance), we found massive mode frequencies up to an order of magnitude

higher than the trap frequencjr within a detuning range of a few kHz, suggesting that the

observation of these modes may be experimentally feasible.
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Figure Captions.

Figure 1. The massive dipole mode frequency as function of ‘detuning’, £, in units of
the trap frequency, w, = 2w50Hz2. The physical parameters were chosen to be realistic:
Ao = A = A = 100A(um)3s™Y, N = 104, V, = 27 % 50H 2, o = 200mp®/?s.

Figure 2. FEigenfrequencies of other low-lying modes, calculated with the parameters of
Fig.(1). The lower curve represents a breathing mode, the other two curves represent massive
quadrupole modes for which ¢ and @ oscillate out-of-phase. N, fluctuates in phase with ¢
in the mode of the dashed curve, and out-of-phase in the mode represented by the dotted

curve.
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