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Abstract

We revise the problem of the quantization of relativistic particle, presenting
a modified consistent canonical scheme, which allows one not only to include
arbitrary backgrounds in the consideration but to get in course of the quanti-
zation a consistent relativistic quantum mechanics, which reproduces literally
the behavior of the one-particle sector of the corresponding quantumn field. At
the same time this construction presents a possible solution of the well-known
old problem how to construct a consistent quantum mechanics on the base of

a relativistic wave equation.
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Already for a long time there exists a definite interest in quantization of classical and
pseudoclassical models of relativistic particles (RP). This problem meets such difficulties
as zero-Hamiltonian phenomenon and time definition problem. Consideration in arbitrary
electromagnetic and gravitational backgrounds creates additional difficulties. The usual aim
of the quantization is to arrive in a way to a corresponding relativistic wave equation without
any attempt to demonstrate that a consistent quantum mechanics is constructed, since there
is a common opinion that the construction of a such a mechanics on the base of relativistic
wave equations is not possible due to existence of infinite number of negative energy levels,
and due to existence of negative vector norms (in scalar case), and these difficulties may
be only solved in QFT [1]. One of possible approach to the canonical quantization of RP
models was presented in [2] on the base of a special gauge, which fixes reparametrization
gauge freedom. However, the difficulties with inclusion of arbitrary backgrounds were not
overcome and the consistent quantum mechanics was not constructed. It turns out that the
whole scheme of quantization, which was used in that papers and repeated then in numerous
works, has to be changed essentially to make it possible to solve the above problems and
to construct a quantum mechanics which is consistent to the same extent to which a one-
particle description is possible in the frame of the corresponding QFT. One of the main
point of the modification is related to a principally new realization of the Hilbert space. At
the same time this construction gives a solution of the above mentioned old problem how to
construct a consistent quantum mechanics on the base of a relativistic wave equation Below

"we present a demonstration for a spinless particle case. The spinning particle case and all
long technical details may be found by a reader in [3].
We start with a reparametrization invariant action of a spinless relativistic particle in-

teracting with gravitational and electromagnetic backgrounds,
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We select a special gauge go; = 0 (then g% = ggg' > 0, g*gx; = 6%) of the metric and define

canonical momenta
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The discrete variable ( = =1 is important for our consideration,

- qA,u s A,u = guvAy- (2)

¢ = —sign [po + gAo] - (3)

It follows from (2): sign(i®) = ¢, and there is a constraint ®; = py + g4y + (w = 0. The

total Hamiltonian H!) we construct according to a standard procedure [4],
n={n, HY}, & =0, >0, HY = (301, = (a*,p), (A= |#°]). (4)

®y = 0 is a first-class constraint. A possible gauge condition, which fixes only A, has the

form [2]:
Py =2"—(Cr=0. (5)

We study equations of motion to clarify the meaning of { (below for simplicity g, = M =
diag(l,—1,...,—1)). Interpreting (7 = " as a physical time, {(p; = F, as a physical
momentum, d2? /d((T) = dz’/dx® = v’ as a physical three-velocity, PF™ = P, + ({q)A; as
the kinetic momentum, we may see that (4) in the gauge (5) read:

APrin _ ___ Prin ig
dz® (CQ) {E+ [V:H]} y V= m) dz®

prin — (me) Thus, the classical theory describes both particle and antiparticles with

=0, ¢ ==,

charges (g. One can prove that for independent variables 17 = (2, py;, () equations of motion

are canonical with an effective Hamiltonian Hy

rf] = {"7; Hﬁff}r Heff = [Cqu(.’L') +w]m°=(?’ ’ (6)

Commutation relations for the operators X ’“,ﬁ’k,é , which correspond to the variables
x* pr, ¢, we define according to their Poisson brackets, and we assume the operator f to have
the eigenvalues ( = £1 by analogy with the classical theory. Thus, nonzero commutators
are: [Xk,ﬁj] = ihdY and (%2 = 1. As a state space we select one R, whose elements ¥ € R

are x-dependent four-component columns (x = z¢)
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g | T L Te(x) = X (x) (=, (7)
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The inner product in £ is defined as follows:

(,¥) = (T4, Uyy) + (T, 0s),,

(¥, ) = / T(x)¥ (x)dx = / D" @) (x) + " (x)x/ (x)] dx, ¥ =TT oy, (8)

We seek basic operators in block-diagonal form, { = bdiag (I,—I), X* = #*I, B, =
Prl, Pr = —ihdy, where I and I are 2 X 2 and 4 X 4 unit matrices respectively. A quantum
Hamiltonian H,, which defines the evolution in T, is constructing using its classical analog

He}'f 3

i 0 M
H: = (qAs+Q, Q =hdiag (&],0_, ,Blpo__,), &= ,
G 0

M = — [pr + gAs] v —99" [; + ¢A;] + m* /=g, G = \/gf’_g. (9)

The operator Ay = bdiag (Ao I, Aol I) is related to the classical quan-

20=T

tity Ay and ) is related to the classical quantity w]wa:CT. Indeed, 02 =

#0=¢r
bdiag ( MG|,0_. I, GM]|,__, 1) corresponds (in classical limit) to square of the classical
quantity w| o_ o Quantum states evolute in time 7 in accordance with the Schréodinger equa-
tion ih8, W (1) = H,¥(r), where the columns ¥(7,x), and the functions @, (7, %), x¢(T, %)
from (7) depend now on 7. As before we believe that z¥ = {7 may be treated as physi-

cal time and reformulate the evolution in its terms. At the same time we pass to another

representation of state vectors.

Yz x “(x
B (2) = () W) = x(z) o) = X (z) 7
¥¥(z) p(z) ©°(x)
U(x) = U4y (2°,x), T(z) = U, (—2°,x), == (=%x) . (10)

The inner product of two states ¥(z°) and ¥'(z°) in such a representation takes the form
(T, %) = (T, ¥) + (T, 9%, (11)
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where (¥,¥') is given by (8). In this representation the operators ¢ and X* retain their

form, whereas the Schrédinger equation changes
ihBe® (%) = HoW(2), Hyo = bdiag (ﬁ(mﬂ), ﬁc(:c")) ,

h(2°) = qAol + &, h¢(a®) = h(z°) = — [033(x0)03}*. (12)

g——q

In accordance to our interpretation g“ is charge sign operator. Let W, be states with a
definite charge ((q), ¢ W, = (W,. It is easily to see that states W ; with the charge g have
U == (). Then the equation (12) reads thdy¥ = fl(:co)\Il. In fact it is KGE for the charge ¢
in first order form. It reproduces exactly the covariant KGE for the scalar field ¢(z) with

the charge g,
1, L .
Ner (118, — qA,) V/—g9" (ihB, — qA,) —m?| 0 =0, (x = v=g9" (160 — qAo) ) .

States W_, with charge —¢q have ¥ = 0. In this case the equation (12) reads iAdy¥°® =
i?f(:co)\llc, with the Hamiltonian h°(2°), i.e. the KGE for the charge —q. The inner product
(11) between two solutions with different charges is zero. For two solutions with charges ¢
it takes the form of KGE scalar product for the case of the charge ¢. For two solutions with
charges —g the inner product (11) is expressed via KGE scalar product for the case of the
charge —g. The Schrédinger equation (12) is totally charge invariant.

The eigenvalue problems for the Hamiltonians h and h° in time independent external

backgrounds

Aty = Gx,n'ﬁl)x,n ) (¢x,n:¢x’,n’) = 050,50 Onmt X, W ==,

hew;,n = E;,n'llbfz,n ) (Qrblcc,n 3 lb;’,n’) = %6%,%'67’?:,%': 1/};,71 = _0-31/&1%,71, ’ ch-r,n = —€ sn- (13)

solve the eigenvalue problem of the Hamiltonian (12):

-E[.‘BD‘I’ = EIIIJ ‘I’ = (‘I’x,n; ‘I'i:,ﬂ) y E = (Ex,'n.; E;,n) 3

A X 0
‘I’x,n = v ( ) » ‘I’;,n = ) (\I': ‘I’c) =0
0 e (%)
(‘I'i:,ni if',m) = (T, Uorr,m) = 30,0,06pm , =% . (14)
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On the Fig.1 we show typical spectra (one can keep in mind e.g. external Coulomb field):
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Fig.1. Energy spectra of KGE with charges ¢ and —¢; 1 and II - spectrum of fL, II1 and IV -
spectrum of A°.

Let us compare results of the first quantization with one-particle sector of the corre-
sponding QFT. In course of second quantization the the classical field (10) becomes operator

B(z) (B¢ = —(Ftos)T, T = Ttoy),
(& (@), T(@)]woyo = BS(x — y) , ihdgT(z) = h(z®)B(w), inBT(z) = he(z*)T(z). (15)

In external backgrounds, which do not create particles from the vacuum, one may define
subspaces invariant under the evolution with definite numbers of particles . Let us consider
below only such backgrounds which do not depend also on time to simplify the demon-
stration. A generalization to arbitrary backgrounds, in which the vacuum remains sta-

ble, looks similar. One may decompose the operator lif(:c) in the complete set 1, ,, then

U(z) = 3, [anthin(@) + 550 a(@)], [an, 0] = [Bn, b5 = Sam, [an, @m] = [bp,bm] = O .



Thus, we get two sets of annihilation and creation operators a,,a, and by, b}, one of par-
ticles with a charge ¢ and another one of antiparticles with a charge --q. Indeed, the
Hamiltonian H9FT of the QFT, charge operator Q®FT and particle number operator N
read

Py ~ OFT FTQREFT §
HQFT = Hg + EO: H_g = [E“hna:an + efl-,nb:b”] JED == Z €-m>
n

n
Q¥ T =g [atan—bib,] , N = [ata, +b}b,] ,
. n n
where H2™ is a renormalized Hamiltonian. The Hilbert space R%*T of QFT is a Fock one.
.In the backgrounds under consideration each subspace Rﬁ{gT of state vectors with the given
number of particles A and antiparticles B is invariant under the time evolution. Now we
are in_position to demonstrate that the one-particle sector of the QFT may be formulated
as a consistent relativistic quantum mechanics. We reduce the space R%7 to a subspace of
vectors which obey the condition N|¥ >= |¥ >. It is the subspace R' = R&T @ RZFT.
We call R! one-particle sector of QFT. All state vectors from the one-particle sector have
positive norms. The spectrum of the Hamiltonian ﬁgFT in the space R! reproduces exactly

one-particle energy spectrum of QFT (it is situated on the areas I and IIT of the Fig.1.),
HETT W >= BT\ W > | [ >= (a}]0 >; 57|0>) , B = (e, €, ,) - (16)

The dynamics of the one-particle sector may be formulated in a coordinate representation,
which is an analog of coordinate representation in nonrelativistic quantum mechanics. Let
us consider time-dependent states [¥(z%) > from the subspace R'. One may describe these
states in the coordinate representation by four columns
¥(z)
ve(z)

W(z%) = , U(z) =< 0|F(2)[¥(0) >, T°(x) =< 0|F°(z)|®(0) >, (17)

where ¥(z) and ¥¢(x) have the form (10). The QFT inner product reduces in this case to
the inner product (11). One may find expressions for the basic operators in the coordinate
representation in the one-particle sector. In particular, the Hamiltonian, the Schrdodinger

equation and charge operator Q9FT are



one-particle states:

1) a:l())], b'n!O)l) (anlo 17 b;HO Z17= 0),
2) CLﬂ,IO)g, bn[())z , (a;HO o= b:|0 o= 0);
3) an|0)3, b,;HD)3, (a:{|0 >g= bn|0 >a== 0)
The states from the group 1) reproduce the usual spectrum of the KGE which is situated on

the areas I and II (see Fig.1). The states from the group 2) reproduce the spectrum which

is situated on the areas IV and II. The states from the group 3) reproduce the spectrum

. which is situated on the areas IV and IIl. These states are eliminated from the state space

of the quantum field theory.

Thus, we see that the first quantization of classical actions of the relativistic particle leads
to relativistic quanfum mechanics, which is consistent to the same extent as corresponding
quantum field theory in the one-particle sector. Such quantum mechanics describes charged
particles of both signs (particles and antiparticles), and reproduces correctly their energy
spectra without infinite number of negative energy levels. No negative vector norms need
to be used in the corresponding Hilbert space. There is also an important analogy with
the second quantization. Both in first and second quantizations we start with actions with
a fixed charge and in course of the quantizations we get charge symmetric theories where
particles and antiparticles are present on the same foot. It is also important to stress that
the first quantization and its comparison with one-particle sector of the quantum field theory
provides a very simple solution for the well-known old problem: how to construct a consistent
quantum mechanics on the base of a relativistic wave equation? The solution is very simple,
instead to try to use the lower branch of the spectrum (area II on Fig.1) one has to unite
particle and antiparticle in one multiplet on the base of Schrodinger equation (12). Then

the area III appears naturally, and areas IT and IV have to be eliminated.
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