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Abstract

The critical exponents vra, nre and vz of a uniazial Lifshitz point

“are calculoted ot two-loop level using renormalization group and e,

ezpansion technigues. We found a new constraint involving the loop

momenta along the competition azis, which allows to solve the two-

-loop integrals. The exponent vy obtained using our method is in good

 agreement with numerical estimates based on Monte Carlo simulations
and high-temperature series. '
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The Lifshitz point occurs in a variety of physical systems and has been
extensively studied over the last twenty-five years [1, 2, 3, 4]. In magnetic
systems, the uniaxial Lifshitz critical behavior can be described by an axially

' next-nearest-neighbor Ising model (ANNNI). It consists of a spin-1 system
~ on a cubic lattice (d = 3) with nearest-neighbor ferromagnetic couplings
- and next-nearest-neighbor antiferromagnetic interactions along a single lat-
‘tice axis [5]. The competition gives origin to a modulated phase, in addition

. - to the ferromagnetic and paramagnetic ones. In spite of having several mod-

ulated phases, it was shown recently that around the Lifshitz critical region,
- a simple field-theoretic setting can be defined for this ANNNI model [6].
In general, the antiferromagnetic couplings can show up in m directions. In
that case, the system possesses the m-fold Lifshitz critical point. Here we are
- going to focus our attention in the uniaxial case (m = 1), as some materials
present this type of critical behavior. MnP was studied both theoretically
‘and experimentally and displays this sort of uniaxial behavior [7]. Theoreti-
cal studies involving the uniaxial Lifshitz point have been put forward using
analytical and numerical tools. Examples of the latter are high-temperature
series expansion [8] and Monte Carlo simulations [5]. Conformal invariance
calculations in d = 2 (in the context of strongly anisotropic criticality) [9]
and e-expansion techniques [1] have been the main analytical tools available
to dealing with this kind of system.

We report on what we believe to be the first study of critical exponents at
two-loop order for the uniaxial Lifshitz point. Using A¢* field theory and the
_expansion in powers of ¢, = 4.5—d in the critical Lifshitz region, we calculate
the exponents vz, and ;2. The exponents vy and 5, are associated with
the directions perpendicular to the competition axis. The exponents v and
N4 are associated with the competition axis. Knowledge of three of these
four exponents allows one to get all other exponents using scaling relations.

Using vy and 7z, we get vz, = 1.485 for this ANNNI model d =3.

' To begin with, we write down the bare Lagrangian associated with the
Lifshitz critical region{3]:

1 1 1 1 1
L=g|Vi¢l+51 Ve ¢+ 651 viol +5tod” + 5aet. (1)

The competition is responsible for the appearance of the quartic term in
the free propagator. The Lifshitz critical region is characterized by the value
¢ = 0. From now o, this is the case which interests us in this work. We follow
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‘the conventions and procedure described in [6, 10]. First, we are going to
- compute the renormalized coupling constant at the fixed point. We absorb

in the coupling constant a geometric angular factor, which is 3%5’,1_15’1,

‘where Sy = [Zd’lﬂ'%f‘(%)]“l. The beta function has the same form as the
~ one coming from a pure Isinglike critical behavior, with the loop expansion
~parameter € = 4 — d replaced by ¢, = 4.5 — d. In practice, we have to
- calculate the two-loop integrals Iigp = I, %IQSP = I} and the three-loop

integral %Islgp = I{, in order to find the fixed point at two-loop level and
the critical exponents. The subscript SP is used to denote our choice of the

- subtraction point. (We found convenient to label all loop integrals according

to the number of propagators they contain). They are given by:

/' di~ g d* Lgedky dk;
(6F + ki) (B 4+ K3) (0 + g2 + )2 + (k1 + ko))’

(2)

d qld‘i 1(]2dd 1(]3dkldkgdk3

/ (@ +kr) (a8 + £2) (6 + K5) (91 + @2 — )2 + (k1 + Ka)*)
1

(fh +qs—p)2+ (k1 + k)t

)

' / d* qud*  qodkydky
(@7 + k) (P —qu)? + k%) (3 + K3)
>< b
(n — 2+ p3)2 + (ks — k2)*

(4)

| - The symmetry point is chosen as follows. In the first two integrals, p is the

external momentum,associated with the two-point vertex, and in Iy, P = p; +
Po, With py, pe, ps being the external momenta associated with the four-point

“vertex. All these momenta are defined in (d — 1)-directions, perpendicular to

the competition axis. Note that the integrals have external momenta parallel
to the competition d2irection set equal to zero. For the four-point vertex, it is
defined by p;.p; = (46EJ 1). We fix the momentum scale of the two-point

function through p? = «? = 1.

In order to solve the internal bubbles in the diagrams we demand that the
loop momenta in the internal and external bubble at the quartic direction




should be related. This is the simplest way to disentangle the two quartic

- integrals in the loop momenta. In general, one can use k; = —aky, with
‘a(# *1) a real number. However, this is not simple enough to handle the -
- remaining integral [11]. To get a result just in terms of the usual Beta

function, we have to use a particular value for o (o = 2 for I3 and I5, and

- a= =2 for I;). This approximation then yields a well defined ez-expansion.
- The upshot of this procedure is that each diagram gets a purely numerical
factor in terms of the original ones. This ambiguity can be fixed by identifying
- the leading singularity in each diagram to the one in the pure A¢* theory.
- This is equivalent to fix the factors of the diagrams. One finds the factor %
for I3 and Is, and 2 for I,. We can then calculate all the integrals and make

-« -the ez-expansion.

We illustrate our method by calculating the integral I;, which is the

- simplest one. First, put k; = —2k, into the integration over k;. We have:
| | f 1dk1dd 1 20”62 (5)
b= g+ (Q2 +43) (@2 + 1 +p)* + £5) -
- The internal bubble is always proportional to the one-loop integral [12]
S _ . | _
Isp=1 = ——(1 + is€r), (6)
.where is = % -1+ gﬂ Performing the integral over ¢, , ks , we find:
qdky
Isp (7)
4/k%+k4Km+pH4

In the remaining integral we use Schwinger parameterization again to solve
along the quartic direction. We obtain:

=TT [ ®)

(@ +p)=

At this point, one can use Feynman parameters to solve the momentum
integrals. One solves the integrals in terms of Gamma functions with non
integer arguments. A useful identity involving the expansion of Gamma

- functions around a small number is given by:

I'(a + bz) = I'(a) [1 +bz1y(a) +O(:1:2)], ‘ (9)
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-Where ¥(z) = Linl'(z). This allows one to get an e;-expansion when the
Gamma functions have non integer arguments. The dependence of the inte-
gral in the external momenta is proportional to (p*)'~<¢. We find :

1 6
'l _ .
| L=-5" 1+ (zz +_?) z). (10)
The integrals Iy and I} can be calculated along the same lines. They are:
B 1 AR |

I4 = 'QT%I:]. + (22 -+ E)EL], : (11)

1 . 8
Ié = 6 7 [1 + (2?,2 + ?)EL]. (12)

With this information we compute the fixed point at two-loop level. In
case the order parameter has a O(N) symmetry, we find:

5 346 + 77T N — 34 (N? + 36N + 152)

= +2 13
A 8+ N)3 (13)

Therefore, the exponents 7.2 and vps are given by:
1, 24N (14)

T L BN
| s (2 4+ N)(5228 + 1174N + 6N? — 3145 (TN? 4 392N + 1680)

+

42(8+ N)4
1.1 24N
.VLQI——2+4€ 8—|—N (15)
&2 (2 + N)(380 + 139N + 3N? — 34, (28N+80))
24(8+ N)3 )
_Now using Fisher’s law v = vr2(2 — nza), we get:
1 24N
= = 16
=1+ LRI N (16)
e (2+ N) (356 + 136N + 3 N? — 34, (28N+80))-

12 (8 + N)°




For the ANNNI model, 7y; = 1.4 £ 0.06 is the Monte Carlo output {5},

. whereas the best estimates from the high-temperature series is y; = 1.62 =
10.12 [8]. Our two-loop calculation (N = 1) in three dimensions yields y;, =
1.485. Indeed, as conjectured in [6], even though the ¢; parameter is not
small, the ez-expansion is reliable. The agreement between the numerical
‘and analytical results is remarkable. The numerical value obtained here for
- the correlation length exponent is vy = 0.753. The experimental value of
--this critical index is still lacking. We hope our result sheds some light towards
its experimental determination (using neutron scattering measurements, for

-~ example).

- An interesting open question is the calculation of the critical exponents
 vy4 and 74 using the e;-expansion at two-loop level. The approach followed
- here is not suitable to computing these critical exponents (paraliel to the
competition axis), since our choice of the symmetry point prevents a proper
~treatment in this direction. The possibility of devising another symmetry
" point to deal with these exponents seems to be feasible, and will be reported
. elsewhere.

Nevertheless, our method can be used to test the consistency of the ratio
0 = vpaf/vpe = 1/2 (which is known to be true at O(ez), where 8 is the
anisotropy exponent) at O(e2 ). Recently, a renormalization group calculation
+ for an m-fold Lifshitz point (m # 1) was developed in [13]. There, it was
found that € # 1/2 at two-loop level for the cases m = 2,6 . In the present
-uniaxial case we can use Josephson law involving the exponents vy4, vy and
oy, to see whether this relation is valid at two-loop order. One should get
the exponent oy consistent with either the experimental value [14], or the
high-temperature series result [8]. The relation is not valid at two-loop level,
for one obtains az < 0 in this way. This corroborates the above mentioned
‘studies for m # 1.

In conclusion, we have found a way to perform two- and three-loop inte-
grals for the uniaxial Lifshitz point, needed to calculate universal properties
at directions perpendicular to the competition axis. The constraint in the
loop momenta at the competition direction is the key ingredient to carry out
the calculations. Topics including the extension of the present method to
the region out of the Lifshitz point (6 # 0) and two-loop calculations using
a modified symmetry point along the competition axis are in development.
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