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ABSTRACT

Using many-body theory we develop a set of formally exact kinetic equations for inhomo-
geneous condensate and one-body observables. The method is illutrated for ¢* field theory in
1+1 dimensions. These equations, when computed with the help of time-dependent projec-
tion technique, lead to a systematic mean-field expansion. The lowest and the higher order
terms correspond to, respectively, the gaussian approximation and the dynamical correlation
effect.

t Supported by Conselho Nacional de Desenvolvimento Cientffico ¢ Teenolégico (CNPq), Brazil.




1. Introduction

The dynamical evolution of inhomogeneous field configurations is an important problem
and a common theme in cosmology, high energy and condensate matter physics. In cos-
mology inhomogenous field configurations appear when topological objets such as textures
or cosmic strings involving inhomogenous fleld configurations are considered. Their relax-
ational dynamics is thought to have a bearing on the spectrum of fluctuations in the cosmic
microwave background radiation [1]. In the ultrahigh energy heavy-ion collisions (/s > 200
GeV /nucleon) a large energy density (few GeV/fm?®) is deposited in the collision region cor-
responding to temperature above the critical value for chiral symmetry restoration. In this
situation, it is possible within a volume of few fm® an inhomogeneous condensate is formed.
When these regions cool down this field relax toward the equilibrium situation which might
be misaligned with the vacuum state [2]. On the other hand, the recent sucess of the experi-
mental observation of Bose-Einstein condensation for systems of spin polarized magnetically
trapped alkali atoms at ultra-low tempeture is smulating development of theory for the evo-
lution of nonuniform condensates [3].

A microscopic description of this off-equilibrium process require a nonperturbative treat-
ment of inhomogeneous condensates and in the field-theoretical context, this has been im-
plemented through the use of a Gaussian ansatz for the wavefuncctional in the framework of
a time-dependent variational principle {4]. Actually, the Gaussian ansatz, having the form of
an exponential of quadratic form in the field operators, implies the many-point functions, can
be infact factord in terms of two-point functions. The dynamics of the reduced two-point
density becomes then itself isoentropic, as a result of irreducible higher-order correlation
effects being neglected.

The purpose of the present paper is twofold. The first one is to reevaluate and improve
the gaussian approximation. We follow a time-dependent approach developed earlier in the
context of nuclear many-body dynamics [5]. This methos allows for a formulation of a
mean-field expansion for the dynamics of the two-point correlation funetion from which one
recover the results of the gaussian mean-field approximation in lowest order. Beyond this,
we are able to explicitly incluide higher dynamical correlation effects. The second purpose is
to extend the former results in the context of spatial uniformity to the inhomogeneous field
configurations [6]. In this case the spatial dependence of the field operator is expanded in the
general natural orbitals. These orbitals can be given in terms of an expansion of convenient
basis which willm also evolve in time according to additional dynamical equations. Although
the procedure is quite general, we will apply our method in the context of a single scalar
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field in 1+1 dimensions. This will illutrate all the relevant points of the approach and cut
down inessential technical complications.

II. A Simple Example in Quantum Mechanics

This section will illustre the scheme of approximation in the context of ¢4 in 0 + 1
dimension [7}. Although this theory is finite, we introduce nevertheless a counterterm for
the further use. Therefore the hamiltonian reads as

v 1. M’ G4 9 72
H= 271' -f-?qﬁ +£¢ —8—m¢ (2.1)

where m is the renormalized mass. In the usual quantum mechanics (QM) language, one
speaks of a particle in the quartic potential with ¢ and 7 being its position and momentum
operator and satisfy the usual communtation relation, [¢, 7] = i. In the quantum field theory
(QFT) language, however, one imagines that this field lives in one point and the particles
have quartic self-interaction [§].

A natural choice of the subsistem in the context of many-body problem is the observables
associated to the one-body density. The exact microspic description of the time evolution of
the one-body density of a& many-body system can be formally given in terms of a sum of two
parts: the usual gaussian contribution (also known as time-dependent hartree-bogolinbov
approximation) plus additional dynamics arise from the time evolution of quantum correla-
tions in the entire system. The physical origin of the later contribution lies in the complicated
dynamical evolution of quantum correlationin the entire system and their consequences in

the change in the coherence properties of each system.
1I-a. Gaussian Variables

In order to derive the dynamical equations for the one-body observables we focus on the
operators which are either linear or bilinear forms of creation and annihilation, henceforth
referred to as gaussian observables. We begin therefore write the Heisenberg field operators
¢ and ¢ as

1 [
N P =i 2ty —

6 = =[O -] 7(e) =iy/5 [0 — att)] 2.2)
where a, a! are the usual annihilation and creation operators satisfying the boson commuta-
tion relations: [a, aff} = 1; the parameter 1 will be fixed later in a convenient way. The state
of the entire system is given in terms of the matrix density /' in the Heisenberg picture. It

is Hermitean, time indenpedent and has a unit trace.
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The first variable of interest is given as mean value of annihilation,
Ay = Tra(t)F, (2.3)
and its complex conjugate. From this one can define the shifted boson operator
b=a—- A (2.4)

Next, we consider the possible mean values of the bilinear forms of the shifted operators,
which can be combined in an extended one boson plus pairing density,

o ((bf(t)b(t» (b(£)b(2)) ) _ (A n ) — Rt (2.5)
BHOBtE)  (B)bi()) L

The quantities A and II together with the mean-value of field, A, describe the one-body
observables of the system.

To deal with the pairing density IT we proceed, as usual, by defining the Bogoliubov
quasi-particle operator as [9]

d(t) = 2;60) +y01(e)  dI(E) = mbH(E) + vb(2) (2.6)

and require that (dd) = (dfd') = 0. A sistematic way to determine the coeflcients of the

Bogoliubov transformation, z; and 4, is to solve the follwoing secular problem:

GRX = XGN |, (2.7)

1 0 : 0
G = x| oy T
0 -1 U x* 0 1+Vt

The eigenvalues 3 = Trdl(£}d(t)F' stand for occupation numbers of quasi-particles. Since

where

the Bogoliubov transformation is canonica one can verify that X; satisfies the orthogonality
and completeness relation, i.e.,

X'ex =xext=¢ (2.9)
In terms of coeficients of transformation (2.9) reads as
| ze |* — |3 [*=1 (2.10)
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Thus, the paring densities {d(¢)d(t)) and (d'(¢)df(¢)) can be obtained from x, y; and 14. The
next step is to get equations of motion for these quantities.

II-b. Equation of Motion and Gaussian Approximation

The Next step isto obtain the time evolution for the variables of interest discussed in
the previous subsection. We begin with the amplitude of condensate A, defined by Eq.(2.3).
Using Heisenberg equation of motion one has

iA, = Tt[o, HIF = 2, Tr[d, H|F + Try*[d, H]F (2.11)

where we have used (2.4) and (2.6). Now, to get equantions for the Bogoliubov coeficients
we rewrite (2.7), using (2.9), as
XIrRX, = N. (2.12)

Taking time derivative of this and using Eq.(2.9) we get
XIRX, = N - XIRX, + X]RX,. (2.13)

The left-hand side of this equation can be evoluated from the Heisenberg equation of motion
and (2.6) and yields

(2.14)

. Te[d'd, H|F  Tr|dd, H|F
ZXt RXt =

Te[d'd)F  Tr[dd!, H]F

The right-hand side of (2.13), on the other hand, can be obtained with the help of {2.9).
Equation now the result to (2.14) one gets

iv = Tr [d'd, H|FF (2.15)

ity — zy) = Tr [d'd, H]F. (2.16)

The equations (2.10), (2.15) and (2.16), together with the normalization condition, deter-
mine fully, in principle, the time evolution for the gaussian observables if the density matrix
F is expressible in terms of the quantities themselves. However, when the hamiltoniana H
involves self-interaction fields, traces of these equations will involve also many-body densities
and therefore they are not closed. One emergent approximation to deal with this situation
is to replace the full density F by a truncated one, Fy, which has the form of a exponential
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of bilinear in creation and anmhilation operators (sece, e.g., Eq.(2.22) of [6]). In terms of
quasi-particular operator Fy can be written conveniently as

Fo(t) = — (

v dt(tyd(t)
1+ Ut)
Notice that Fp is diagonal in the quasi-particle basis and contain no irreducible two or many
quasi-particle correlations. Furthemore, it is easy to verify that Fy given by (2.17) has a
unit trace and reproduce the corresponding average of linear and bilinear field oprarors of
full density, i.e.,

Tr aFy = A= Tr oF
Tr dtdiy = v = Tx didF
Tr ddFy = 0 = ‘It ddF

Therefore the approximation gives a set of self-consistent equations for the one-body observ-
ables and is is what we refer as the mean-field or gaussian approximation. In particular, when
£y is written in terms of field representation, it is equivalent to the density used by Jackiw
[4]. This approximation constrains the time evolution of the system to remain in a gaussian,
which contains no irreducible two or many particle correlation, whereas the true evolution
will, as time progresses, introduce (quasi)particle-particle correlation not describable by the
gaussian-like matrix density. In terms of general discussion made in the previcus subsection

the limitation of the approximation shows up in the dynamical evolution of occupancy,
iy = Tr[did, HlFy = Tr[d'd, FolH = 0. (2.18)

Therefore , further improvements have to be achieved in order to describe correlation effects
between different subsistems.

II-c. Projection Technique and Dynamical Correlations

The question we want to address ourselves at this point is how to express the full cor-
related density F' of entire system in terms ingredients of subsystem (gaussian variables) in
such way that one can get a set of closed equations for the one-body observable. A framework
to achieve this goal was developed some time ago by Willis and Picard using time-dependent
projection technique [10] in the context of master equation for coupled systems. The method
was extented later by Nemes and Piza to study nuclear many-body dynamics [5]. The method
consists essentially in writing the correlation informations of the full density in teerms of a

memory kernel acting on the uncorrelated density Fy .
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Following their strategy we first decompose F' in two parts
F = FRy(t)+ F'(t) (2.19)

where Fy(t) is the uncorrelated part given by (2.17) and therefore F'(t) is a traceless
correlation part. The substitution of F by just Fy(t) in the equations (2.11) and (2.15)-
(2.16) gives the usual gaussian approximation as we have discussed before. The crucial step
18 to observe that Fy(t) can be seen as a time-dependent projection of 7, i.e.,

=Pl F , P)IP(t) = P(t) . (2.20)
For the explicit construction of IP(t) we require, in addition to eqgs. {2.20), the condition
iFo(t) = [Rolt), H] + PO, F] (2.21)

which is the Heisenberg picture counterpart of the Schrédinger picture condition used in [11]
to determine IP uniquely. The resulting form for P(t) is (see appendx A of Ref.[6] for
details of the derivation)

P = {[1— de“p} Tr(-) + g&% T (dd-) + [g T (d) + i 'I‘r(d-)}

L+p 1+p
dd T g
+ [% ¥ (df d )+ ST ﬁ(dd.)J} P . (2.22)

where the dot stands for objets on which the projector acts.
The next step is to obtain a differential equation for the correlated density F'(t). This
follows immediately from eqs. (2.19) and (2.21),

(z'd% — P(t) IL) F(t) = Q@) LEE) | (2.23)

where we have introduced the operators
Qi) =L-P) , L.-=1[H, . (2.24)
This equation has the formal solution
F'(t) = G{t,0) F'(0) — ifﬂt dt’ G(t, t) Q) L By (t) (2.25)
where G(t,t') is the time-ordered Green’s Function

Gt,t) = T expi Lth]P(T)L . (2.26)
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What we have obtained so far is a formaly exact expression relating F'(t) and Fy (for ¢’ <)
and the initial correlations F/(0). This allows us to get a set of closed dynamical equations
as traces over functional of Fj(¢') and initial correlations. An actual calculation is, however,
hopeless becanse of the complicated time dependence of the Heisenberg operators present in
the memory kernel of (2.25). A systematic expansion to treat the memory integral of the
equation (3.8) has been discussed in Ref. [11] in the Schrodinger picture. The implementation
of the corresponding expansion in the Heisenberg picture consists in approximating the time
evolution of the field operators, when evoluating memory effects, by a simpler one-body
generator of mean-field evolution, i.e.,

id = [d, Ho| — iA + i(#5z, - gy)d — i(aiz} —gryl)d. (2.27)

The last three terms account for the (explicit) time dependence of d{t) on condensate and
pairing effects; The hamiltonian [y is taken, in this approximation, as a mean-field one,

Hy = PYH d'TY[d, H F' — dT.r[dT, H] F

dt df dd

—"—2(1+2p) Tr[dd, H] F— m Tr[dT d’r’ H] o (2.28)

This approximation results a Unitary time evolution for the Heisenberg field operator and
operators in different time are related by a phase factor

d(t) = e, (2.29)

(see the third equation on page 1609 of [7]; see also (5.3) of [6] for details).

In this way, the authors of the ref.[11] devised a systematic expansion for the correlation
density F(¢) [see their Eq.(3.10)]. The corresponding expansion in the Heisenberg picture
reads as '

F) = GEOF©O) ~ i [ 4 Qh)LAH)

- fotdtl U,:dt? t2) (]L—ILU(H)} Q)L Fy(t) +--- (2.30)

where lLg- = [Hy, -]. In what follows we restrict ourselves to initial conditions such that
F'(0) = 0 and to the lowest approximation for F (t). Therefore, the evalnation of the



equations of motion involves traces of the type

T O, H Flt) — ¢ TX[O), H] [ @ Q) [T, Fo(t)]

mean — field correlation (2.31)

where O(t) can be d(t), di(t) d(t), d(t)d(t), and operators at different times are related
by equation (2.29).

We have now all the necessary ingredients for implementation of the approximation and
the derivation for the equation of motion is a straightforward algebraic exercise. The results,
including the mumerical caleulation, for ¢g,; model are shown in [7]. Extensions of this
method to other models of field theory were obtained recently [6]. The results demonstrate
that this approach can overcome some conceptual dificults of gaussian approximation as well
as a much better description for the gaussian observables.

II1. Kinetic Equations for Simple Observables of the Field

Qection I1 reviewed some important points of our extended gaussian approximation and
its implementation in the simplest context of quantum mechanics. In this and next sec-
tion we will report its applications in context of inhomogenoeus field configuration, which
is relevant for the dynamical evolution of many body finite system. The simpler case of
spatial uniformity was discussed for sevaral field models recently. Technical dificulties in
such cases reduce tremendously because of translational invariance and the gaussian vari-
ables are automatically diagonal in momentum space. In other words, the eigenfunctions
of the body-density, known as natural orbitals, are independent of time and given by plane
wave. For this new scenary, however, the natural orbitals are time dependent. Therefore,

additional equation is needed in order to get self-consistent equations of motion.

1II-a. Generalized Bogoliubov Transformation
In order to implement the idea let us first expand the Heisenberg field operator  ¢(t, z)
and the canonical momentum = (t,z) as

stn) = 3 [fl@ad) + i@d®] (3.1)

k

nte) = =i ko [ el alt) — Fi@)al®)] (32)



where ag(t), a;fc(t) are boson operators satisfying the equal time commutation relation
[ax(t), aw ()] = S . (3.3)

The fi(z) are the periodic boundary condition plane waves
eék-x
Lk

L being the lenght of the periodicity box and &7 = k? + 2. The expansion mass

folz) = (3.4)

parameter g is conveniently fixed, e.g. in terms of the equilibrium solution in the mean
field approximation [6].

The next step is to focus on the variables of interest, which are mean-value of linear and
bilinear boson operators. The first of them is the expectation value of the field operator,

(@t, z)y = Tro(t,z) F (3.5)

where F is a density matrix in the Heisenberg picture that characterizes the state of the
system. In terms of the expansion (2.1}, one has

(8(t,2)) = Zk:[fk(fc) Ai(t) + fi(z) A (0] (3.6)
with
Ap(t) = Trax(t) F . (3.7)

We can now define the shifted boson operators with the help of the Ax(2),
bu(t) = aw(t) — Ael?) , (3.8)

and include as variables of interest also the expectation value of pairs of by(t), b}fc(t) at
equal times:
A (t) = Trbl(t) be(t) F | (3.9)
e (8) = Trbw(t) bi(t) F' . (3.10)
The hermitean matrix A and the symmetric matrix II are in fact the one-boson density

matrix and the pairing density for the shifted bosons respectively. The corresponding
matrices for the a-boson are easily expressed in terms of A, II and A.
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The next step is to write the one-body density matrix in diagonal form and also incor-
porate information of the pair density in an associated set of natural orbitals by setting up
an extended one-body density matrix [9],

A 1T
R = = Rf (3.11)
1+ A

and solving the extendend version of eigenvalue problem defined by (2.7), where the matrix
elements are given now the following matrices:

10 U v P 0
G = , X = , N = . (3.12)
0 -1 v U 0 1+P

Since (2.7) is a non-hermitean eigenvalue problem, it is important to consider also the adjoint
equation

RGX = XGN , (3.13)

from which one finds that

X = 6x . (3.14)

The adjoint vectors X satisfy biorthogonality relations with X which allow one to introduce
the normalization condition

X'x = xtex =¢ (3.15)

and the completeness relation
XGXxt =G .| (3.16)

Furthermore, one can use the eigenvectors of the secular problem (2.12) to construct new

(o) =[]
= X! . (3.17)
dt bf

This equation defines in fact the general Bogoliubov transformation

blt) = 3 (U3 bet) + Viu(8) L)) (3.18)

boson operators

It is easy to see that the secular problem (2.12) constrains the expectation value of products
of dg(t), di(t) as

Tr dl(t) da(t) F = Pu(t) ap (3.19)
Trda(t) ds(t) F = 0 . (3.20)
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where F, are elements of the eigenvaue matrix P and can be interpreted as quasiparticle
occupation numbers. With the help of the eq. (2.16) one can invert the relation (2.17) as

(1) = oxe(5)
= GXG . (3.21)
bt dt

On the other hand, one can now express the field operator in terms of the natural orbitals
as

¢t 2) = {($(t,2)} + 3 [valt, 2) du(t) + vi(t, ) i (8)] (3.22)
with

vat,2) = D[l Uialt) — £1(2) Vialt)] - (3.23)

k
Fquations have been used to obtain these results. Therefore, our treatment for the general

non-uniform field configuration involves expanding the field operator in the general natural
orbitals, which are in turn given in terms of plane wave (or some other convenient) expansion.

1II-b. Formal Equations of Motion for the Gaussian Observables
The next step is to derive the equation of motion for these simple variables (A, p.,
Uke and Vie). For Ag(t) one finds immediately from the Heisenberg equation of motion

P Ag(2) = Tr[ax(t), H|F | (3.24)

where H is the field Hamiltonian. The equation of motion for the remaining quantities
can be obtained by taking the time-derivatives of the eigenvalue equation (2.12), again in
close analogy with (2.13)-(2.14). Using the definitions for the matrices N, X and R,
this equation can be written explicitly as

UNAU + UV + VIO + VAV UTAV* + UMD + VIV + VAU

UTAV + UM + VIV + VIAU  UHAU* + UV + VHIU* + VAV
P+[UT-Vv1V, P| VIO —UtV* + {VIUx — UtV*, P},
VIU —UWV +{VIU - UV, P}, P+[UID—VIV*, P

(3.25)
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where { }. indicates an anticommutator. Note that there are two independent matrix
equations, the remaining two being their complex conjugates. The block matrix elements
in the left hand side of eq. (2.27) can be rewritten using the Heisenberg equation of motion
as

i [UTAU+UTI'1V+v*n*U+VTA*V]wﬂ = Tr [dido, H] F | (3.26)
i [UTAV*+UTfIU*+VTfIV*+VfA*U*]aﬁ = Tr [dgd,, H F . (3.27)

Equating corresponding block matrix elements on the two sides of equation (2.27) yields

i{P+[UtU-viv, P]}aﬂ = Tr [dyd., H| F | (3.28)

i [VTU* —U?V*+{WU* — Uty P}+] = Tr [dgds, H} F . (3.29)
o

Since P is a diagonal matrix, equation (3.28) splitts into two equations, one for o = j
and other for o # 3, '

ipo = Tr[dids, H F | (3.30)

; _ try _ vty — t

i(ps — pa) (UTT vv)aﬁ = Tr [dﬁda,H] F a#p8 . (3.31)
Moreover, equation (2.31) can be rewritten as

i (V%U*+UTV*)aﬁ (L+ pa+pg) = Tr [dad,, H] F . (3.32)

For the particular case of a spatially uniform system, eq. (2.33) is trivial since the plane
waves are the natural orbitals.
In order to treat the dynamics of natural orbitals, which is given in terms of the awkward

: looking combinations UtU —V1V and VIU*—UtV* in eqs. (2.33) and (2.34), it is convenient

to first define matrices h and g as

h=i(UD -V (3.33)

o =i (Vior — U (3.34
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The next step is to find simple relations between 7 , V and h, g. The crucial point is to
observe tat the dynamics of the eigenvector X can be described as being generated by a
dynamical matrix Q such that

iX{t) = X)) G . (3.35)
Using (2.16) and (2.17) one can solve eq. (2.37) for Q) as
. h g
Q) = iGXH) GX(t)G = . (3.36)
g* h*
Equating the matrix blocks of the equation (2.37) one finds

iU Uh+V*g* (3.37)
iV o= Vh+Ug" . (3.38)

Therefore, the final equations of motion for the simple variables of the field are eqs. (3.24),
(3.30), (3.37) and (3.38). The ingredients of the matrices A and g of egs. (3.37) and (3.38)
are found from (3.33) and (3.34). These equations are of course not closed equations since
they still involve the full time evolution of the field operator as we have seen in previous
section.

The basic idea of our approximation scheme is described in section IT1L. The additional
difficult because of the spatial dependence of field can be handled when orbital representation
is used. The crucial point here is to notice that the reduced density F0)(t) in mean-field
approximation can be conveniently written as

Fﬂ(t) = 1;[ 1+pa(t)

dl(t) da(t)
1 [ Pa(t) } (3.39)

1+ pa(t)

From these ingredients one can construct the correlated density F’ () and finally the equa-
tions of motion for a specific model.

IV. Mean-Field and Collisional Dynamics in ¢? Field Theory

‘Thus far we have presented a general procedure to investigate kinetics of one-hody observ-
able in the context of a scalar field, without mentioning, however, any specific field model.
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In this sections we will illustrate a specific example as an application of former more formal
treatment. We consider the ¢* Hamiltonian

= f dz H (4.1)

7 1 5 9 - dm?
M= G0+ Tt M (42)
The renormalization of ¢* theoryin 1+1 dimension is well known [13] and can be achieved
by introducing a mass counterterm dm? given as

‘ 1
sm? = — Ly 43
. . 41, Xk: v 2 + m2 ( )
The expansion of the hamiltonian on the basis of natural orbitals follows directly from the
discussion of section II. Therefore we have now all the necessary ingredients to implement the
proposed approximation to the collisional dynamics. This is a lengthly by straightforward
algebric exercise. The resulting equations of motion are

ide = Bga s TR g gLy =
CT TS T T VR T AW T UL 2 Thkaba ke
{(5k1+k2+k3+k,0 A}:‘l AZ} AZ:;; + 6k1+k2+k3*k;0 Akl Akﬂ Akﬂ)

3 (Bhyha—tti,0 A%, A%, Ak, + Stytg—tat,0 Ay Ar, A}
g 1

+ —_ —_—
8L kl,%m Vko1 koz kos ko

(5k1+k2—k3,0 AL+ Oy by ths 0 Akl) Z Thyo T (1 + 2pa)

SLA {Ap+ A%, Z \/kﬂ— +ila(t)

Pa = D) (4.4)
i
R (14 po + P5) Gos
_ ; -’;0 (Ut + Vo) (U + V) + %@ Ui = VI Uiz — Vi)

1+pa +Pﬁ * *
+ = Ok +ha-tha+e ,0 Ak, Af, + Okrko—ta—ks,0 Ak A
SL klkzzkik‘z kﬁ]_ ’i‘gz k03 kﬂ4 {( 14-ka+ka kg k1 ko 1-+k2 1 —HR4 1 2
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2k kprbarhe,0 A% Ak) Thya Tros)
1+p.+ Ps

g
_E_ pp— 5 _ %_T*QT* T*a,T o 1+2a’
8L kﬂgﬁ;ﬂm farkhatho—he, 0 kg1 koz kos ko Ry kzﬁ%) ks ks ( b )
SL ——_T*aT ——= — il f,') . 4.5)
e T (
(pﬁ _ch) hoaﬁ
Ko |y K +m?
B ZL: [E (U Vo) (Ui Vo) g TheThe| (75 — po)

g 1
{Brurkariar,o (Al Ak T Thas + A Aty T T, )
t Britbtytie,0 (At Ar Ta Tius + A%, AL Tis Thi)
28k oy ey, 0 (Azl Ay Tipo Thup + Aky A%, Ty T;Z;a)} (Ps — Pa)

g Oy o —ka—ky ,0 +
Z e T;1aTkﬂﬁ Z Tkza'Tk‘i”" (Pﬁ _pa)

8L ey ool v F01 Kooz Kio3 Kos
g 1 1

3L 2 5o TeaTis 2, =——=1{Ps—pa) +iln(t) , (4.6)
8L 4 kogy MM kZ /k2 + m?

where
Tko: = Ukaz — I/ﬂwz

and the collision integrals I'(t) are

92

1
Tult) = —=—— E e = E :
( ) 96L2 kikgky W kUl kUZ k03 k() ey oo

* * % 4
{5"“1'*"“2‘”‘3"']‘7:0 Tklal Tkzaz Tk.’scxz; Icgq)aza:s

4 *
- 5’614--'62 +ky—k, 0 Tkwl Tkzaz Tkﬂas Icgl)aza;;

* *® 5
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In these equations we used the abbreviations
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In summary, we have presented in this paper a framework to study real-time evolution
of scalar field theory. The technique has been applied to nuclear many-body theory and
extended recently in the context of homogeneous field configurations. Here we discuss this
general problem when the spatial dependence is important. Here we show that the spatial
dependence can be treated in the general orbital representation and the dynamics of these
orbitals are expressed in a closed form by a set of selfconsistent equations. In this way,
the time-dependent technique can be used to improve the usual gaussian-like mean field
approximation, where the collisional dynamics are given by approprite memorial integrals.
We have illustrated these procedures within the simplest context of self-interacting ¢* theory.

Appendix A: Projection Technique in Field Theory

In order to calculate equations of motion (2.24), (2.32), {2.33) and (2.34) we first decom-
pose F in two parts

F = Fy(t) + F'() (A1)

where Fy(t) is the exponential of a one-boson density given in (3.39). A crucial point is to
observe that Fu(t) can be seen as a time-dependent projection of F', i.e., For the explicit
construction of IP{t) we require, in addition to eqs. {3.3), the condition

iFa(t) = [Fo(t), H] + P)H, F| (A.2)

which is the Heisenberg picture counterpart of the Schriodinger picture condition used in
ref[11} to determine P uniquely. The resulting form for P(t) is (see ref.[6] for details of
the derivation)

dt do —p, dl ey — Py 6
P = |1-3% == 2| Ty(. 222 22 A Ty (gl d,, -
{|: g 1+p0‘ () + ng paz(l—'_pal) ( o« )
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pw Pa [ 2% -] 2pal pfxz
dl df
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The next step is to obtain a differential equation of F'(¢). This follows immediately
from eqs. (3.1) and (3.4),

(z’% - ]P(t)]L) Ft) = QLR , (A4)

where we introduced the operators
Qt) = L-P() , L =[H,]. (A5)
This equation has the formal solution
i
F'(t) = G(t,0) F'(0) — 4 /0 dt' G(t, ¥) Q) L Fo(t) (A.6)
where G(¢,%') is the time-ordered Green's Function
i
Git,t) = T expz'/ driP(r)L . (A7)
t’
A systematic expansion to freat the memory integral of the equation (3.8) has been
discussed in ref.[11] in the Schrédinger picture. The implementation of the corresponding

expansion in the Heisenberg picture consists in approximating the time evolution of the field
operators by the simpler mean-field Hamiltonian

Hy = P'H+Y dl D[, H F' =Y d, Tr [df, H] F"

aﬁlcﬁ2
oL Tr[d., ds, , H| F’
N o;ag 2(1 + Pay + Pas) (o ey, H]

doy du,
-2

T|dt & H| F. . A8
G102 2(1+p0t1 +p0¢2) [ ] ( )

oy g ?
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Using this approximation, one can solve explicitly the Heisenberg field operator equation as
duft) = 3 Mu(t,8) dy(t) (A.9)
Y

where the matrix M, is the solution of the matrix equation
iM(t,t) = F(t)M(t,1) | {A.10)

and the matrix F' involves matrix h and mean-field energy (see appendix A for details of
the derivation).

In this way, the authors of the ref.[11] devised a systematic expansion for the correlation
density F”(t). The corresponding expansion in the Heiserberg picture is

F(t) = C,OF(0) i [ 4 Q) LEn)

- [ [ /:dtzcz(m(L'—Lo(tz)] QU LFR(t) + -+ , (A1l

where Lg- = [Hp, /]. In what follows we restrict ourselves to initial conditions such that
F'(0) = 0 and to the lowest approximation for F'(t). Therefore, the evaluation of the
equations of motion involves traces of the type

~ -~

{0, H] Fult) — i T[O@), H] [ df (¥ [, Fo)] (4.12)

where O(t) can be da(t), dl(t)ds(t), da(t)ds(t), and operators at different times are
related by equation (3.11).

Appendix B: Approximation for the Time Evolution of
the Heisenberg Field Operator

In section II, we have discussed that our approximation consists in replacing the time

evolution of the field operator by a simpler mean-field Hamiltonian given by equation (3.10).
We show now that this allows one to solve the Heisenberg operator equation

ide = ldo Hol =Y Baqda =Y gradl — Tr[do, H] . (B.1)
Y i
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The last three terms are the explicit time dependence of d,,(¢) related to shifted amplitudes
Ax(t) and to effects of the general Bogoliubov transformation for operators (2.19).
First, we write P'H, using ciclyc properties of the traces, as (see ref. | | for the

construction of Pt)

di(;q Aoy — Poy Ooon
Paa(1+pay)

dL da ™ Fa
Plr = (1 _y _ﬁ???_) T (HR) + Y T (d, doy H FY)
o 2] o

- Z daﬂ[dL!H]Fﬁ + ngﬁ[de]FO

_ oy oy Doy
2(1 "J‘"pﬂtl +pt¥2)

(23833

Tr[dl_di_, H| Fy

&9 o2 ?

dt dt
i m%: gy 4. HER B.2
;«:z T por £ ) ez ey HI 2 (B.2)

Hence, equation (3.10) becomes

fo d, —p dt dcx — Da 50::2
Hy = (1= 2 2 ) Tr(HFy) + Y, =2 LM% Ty (4t d,, HF
0 ( 8 1+pa ) I'( 0) = pa2(1+poal) (ocz 1 0)

— S A B HF - Y d T, B

> grrete s md,d,, HF
Cepoen 2(1 +p041 +pa2) *
di, df,
+ 3 Tr [dog doy , H] F (B.3)

2(1 + Doy + Pay)

Using (A.3) in (A.1) one obtains immediately

id, = — DWHR )y d—'ﬂ(deaHFg)——Zhwdw . (B.4)

e

1+ po alpha! Pa’(l + Per) o

The calculation for the first two terms is straightforward. It yields

1 kz +m2
_2- Z Z kﬂ (Uf:a + V—*ka)(Ukw’ + V~ka’) + T T;:a Tkar d:al
o k
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One finds finally the Heisenberg operator equation as being

id, = ¥ Bod, -~ h
T ¥

> Fad,

or in the matrix form
idty = FE)dt)

It is easy to see that the solution for (A.7) is
dt) = Mt t)d(t)
where M(t,t') is the solution of the matrix equation
iM{t,t) = FEYM{,t)
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with initial cendition
M@ty = 1 . (B.10})
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