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ABSTRACT

We study the commutation properties of the creation and
anniﬁilation operators of tﬁe theory of the relativistic quantum
string with the vertex of interaction that describes the
splitting and joining of strings in the transverse gauge.

As a result of the change of boundary conditions,
annihilation operators acting on the vertex are partially
transmitted through the vertex and partially reflected as creation
operators. A compact formalism is sestablished to describe this
effect, and an application is made to study the singularities of
the string operators at the point of splitting. The results of
this approach are compared with the previous results obtained on

the three-string interaction vertex.



1. INTRODUCTION

During the last few years much progress has been made
in understanding the dynamical structure underlying the dual
resonance models. It has besn established tﬁat the dual amplitudes
are transition ahplitudes for well defined relativistic extended
objects, the "relativistic quantum strings” which propagate in
space time with a spectrum of excitations identical to the
spectrum of intermediate resonances of the dual models.

An important operator of the theory is the vertex operator
which describes the combination of two strings into a third one
or the decay of a string into two fragments. The first evaluation
of the matrix elements of this operator was made by Ademollo, Del

Giudice, Di Vecchia and Fubinitl). but 1ts physical meaning became

apparent after the works of Mandelstam(Z)Cremmer and Gervais(al

Kaku and Kikkawa(4). In the transverse gauge of the strings.[S]
where the evolution variable is the "null time"” x’=[x°¢x1)/1J;

and the independent dynamical variables are the transverse
variables xl[c].p¢jo) and the conjugate pair x; and p+.the vertex
is simply a continuocus &8-function which imposes continuity of

both transverse coordinates and momenta of the strings,so that at
the vertex twe of the strings are jJoined together at the end points

to form the third one(3’4)

+The action of the vertex, therefore,
manifests itself through a change of boundary conditions:the
coordinates and momenta are continuos across the vertex,bot are

analyzed into different Fourier expansions on the two sides of

the vertex to extract the normal mode operators.




A general feature of a change of boundary conditions is
that annihilation (creation) opérators acting at the left(right)
of the vertex are partially transmitted through the vertex and
partially reflected as creation( annihilation) operators. This
is for instance what happens at the transition between the

(6,7)

Reggeon and Pomaron sector of the dual models and the transition

between the bosonic and fermionic sectors the dual model with
spinta.g.lﬂl_

In this note we present a rather simple technique to
analyze the transmission and reflection of normal mode operators
at the vertex among three strings, in the transverse gauge. We
start from the continuity reguirements on xy (o) and pL(o) at the

vertex (3,4)

» to derive a relation among weighted averages of
the generalized momentum operator P) (x) on the unit circle. By
selecting averaging functions f(x) with suitable properties of
analyticity, we can then solve the problem of transmission and
reflection of the positive and negative frequency parts of
Plﬁx).

The results which we obtain aré of course implicit in
the works of refs 1%4 (see also ref. 11), where the matrix
elements of the vertex are evaluated. We present our approach
here because we believe that it leads to the required commutation
properties of the vertex in a very straightforward and conclse
way and also because it provides another nice proof of the
connection between the general ideas of refsu 3 and 4 (the vertex
is an overlap function) and the formalism of ref.l.

In the last section of this article we apply our method
to a study of the singularities of the string operators at the

point of splitting.



2. Transmission and reflection of normal modes at

the vertex.

Let us consider the vertex operator V which describes in
tha transverse gauge the joining of two strings, b and c, at their
end points, to forﬁ an outgoing string a. We use a parameter range
0 £ 0 &7 for the three strings, and orient the strings so that

the extremities which join correspond to 0b=oc=n {see Fig.1).

In the transverse gauge the density of p’ momentum is a constant

along the string; at the point of joining we have therefore

* +*
p p
o = 25 = (1--S) 7. 2.1)
a Pa Pa

o
D +

The vertex V isaBperator with matrix elements betwseen the
ket states lkb.kc>, which describe the states of excitation of

the incoming strings b and ¢, and the bra states <Aal, which describe

the
states of excitation of the outgoing string a.V satisfies the
following equations (it is indeed defined by. them)(3'4):
g
xa[o] Vv = be(ﬁ) for 0 <Log 78, 2,.,3a)
x (6) V = vx (2=2) for "B oL 2.3h)
a c Y ~ ~ 0 '
o)
= = < < .
pato) v v pb(B)/B for 0 € o < 7R, 2.4a)




m-0
pa(o) V =V pc(—§—]/y for TR L o K, 2.4b)

where the operators x(o) and p(o) are the transverse position
and density of momentum operators of the three strings. Notice
that as the argument of xa.pa varies from 0 to w, the argument
of Xy o Py increases from 0 to w in Egs. 2.3a) and 2.4a) first,
and then the argumsent of X oPg decreases from T to 0O in Egs.
2.3b) and 2.4b). - The factors % and % appear in Eqgs. 2.4)
because the variable p transforms as a density in a change of
parametrization.

In the following we shall omit writing explicitly V in
equations 1like 2.3) and 2.4). - It will remain understood that
in any relation among the three stringsa V must be present at
the right of the operators of string a and at the left of the

operators of the strings b and c.

The operators X 4 and pa have»the following expansion
in terms of creation and annihilation operators a: and a :

+

, a8_-a
x {(0) = x + 3 2a (=) cos no, (2.5)
a 0,a ‘ J
n>o n i
n +
p (o) = p + 7 — (a +a3cos no. 2.6)
a 0,a J n
n>o V2a'

{ Analogous expansipons hold for xb.pb,xc and pc].



It is very convenient to introduce the generalized

momentum opsrator Pa(x). function of the complex variable x=eicz
: d n -n._ _t n
Pa(x] pa(o) * 2a' g5 xa(O) - po.a X4J§E,Ianx *a X ) 2.7)

In P(x) we distinguish a positive frequency part P[*)(x) containing

the creation operators, a negative frequency part P(-)(x) containing

the destruction operators and a zeroc mode po.

The operators a_ and a: can be ohtained from Pa(x) by

suitable contour integrations, for instance

1 20’ dx n
R Sﬁo x X Pata 2-8)

In general, the weighted averages

P o= 1 & 9% £(x) Px) 2.9)
2ni o X

will contain only the negative and zero frequency part of P(x)
if f(x) is an analytic function ‘inside the contour of integration,
the positive and zero frequency parts of P(x) if f(x) is an analytic
function outside of it.

It is immediate to check that Fq's. 2.33 and 2.4) are

equivalent to the following very simple relations:

1
B

Pa(x) = Pb(x

1/8  for x| =1,larg x |g 7B 2.10a)




|
P (x) = Pc((-x)Y) /Yy for |x|=1 mBg | arg x |g w, 2.10b)

which in turn can be rewritten as

d dx B
& = Patx) f (x)= & }—Pb“) f (x") »

le-l 'xl.l

x
|x|=1

. 4b dx P (x) f (-x7y, 2.11)

for an arbitrary function f.

Starting from the fundamental Eq. 2.11), which is a direct
consequence of the assumed properties of V, we can analize the
transmission and reflection of the positive and negative frequencies
of the P operators at the vertéx. Consider for instance & linear

combination of destruction operators a, acting on V, which can

*)

be obtained by averaging Pa(x) with a function f (x) analytic

inside the unit circle. To "commute” these destruction operators

through the vertex, we shall look for a function f(x) such that

B

both f(x") and f(-x') are analytic inside the unit circle whereas

the function

£ k) = fx) - 00 ' 2.12)

. is analytic outside the unit circle. Then Eqg. 2.11) tells us that




the weighted average of annihilation operators Pa f(+)(x)' acting
on V, is equivalent to the linear combination of the transmitted

annihilation operators Pb.f(xs)' Pc.f(-xY) and the reflected

creation operators Pa,-f(_)[x).

The mathematical problem we face therefore is that of

finding a function f(x), having a definite positive frequency

B) and f(-x') are analytic functions

part f(’)(xl. such that f(x
of x inside the unit circle.

To solve this problem let us consider the equation

8

{b-2) (c-z)Y

=1, 2.13)
pxZz

where b and ¢ are two positive real numbers, with b<c, and

- - *
o = (c-b)BB YY b8 1 cY 1. This equation determines a mapping.

x + 2z = 2z (x),
o]
where zotx) is a root of the equation at a given x.
If we follow the variation of zotx) as x varies in the
complex plane, we see that, if x describes a circle around the

origin with radius R>>1, its image point describes a small contour

C around the origin (see Fig.2), If we let R debrsase. we see

* This mapping is very closely related to the mapping

z = Zi pI log (z-ail used by Mandelstam in ref. 2.



the contour C expand, cross the point at infinity and assume an

"gight” shape for R=1. The double point of the contour, 2z

1'
+
then the image of the two points x--a'-“'B and is a singular point

is

of the mapping. The values of p in Egq. 2.3) is chosen so that
the singularity occurs precisely for |x|=1. If we let now R
become smaller than 1, we must distinguish two cases, according
to whether x approaches the origin with |arg x|<w8 or|arg x|>mnB.
In the two cases the image point zo(x) will approach the points

b and, respectively, c and zotx) will be an analytic function of
1 1
B

x or of (-x)Y in the neighbourhoods of the two points.
We use the mapping induced by Eq. 2.13) to define a

function f(x) in the following way:

dz F(z) 5  (b-2)%(e-2)Y

. 2.14)
m 200 1 (b-2)P(c-2)Y 92 ox2z

(o ¥4

'o—a

fix) =

N

The contour encloses the singularity at z-zo(x) and no other

singularities of the integrand. The derivative has bsesen intro-

duced in Eq. 2.14) so that the residue be precisely F(zo(x)).

If x satisfies Eq. 2.13) for a given z, then xB satisfies
the squation
1/8
x(pz) . 1. 2.15)
(h-z)(c-z)y/B




We sees then that

f[xB . 1 dz F(z) 3 x(coz)l/B . 2.16)
2mi 96 - x[(:sz)l/B ? (b-z)(c-z)Y/B
( (b-z)(c-z)YlB

In this equation we can displace the contour, avoiding the
possible singularities of F(z), so as to enclose the point z=b.
We must of course subtract the contribufion ( constagt in x) of
the singularity at z=b introduced by the derivative.

Thus we find

fixB)e (ﬁ dz F(z) 3 xtpz)t/P _Fiby. 2-17)
2mi 1- x(pzllle 92 (b-z](t:-z]Y/8
25 (x ) (b-z)(c-z)y/B |
Analogously, we can obtain
_ 1/vy
Fl-x") msie (5) dz Pz, s 2zl -f(e). 2.18
vz -xY) 1- x(-pz) Y (e-2)(b-2)
(e-2) (b~ z)§7

Notice that if we let x approach zero in the integrands

of Egq's. 2.17) or 2.18) the singularity 2z, moves inside the contour
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B

of integration ( approaching b or'c). We see then that f(x ) and

f(-xY] are regular functions of x inside the unit circle, so that
the above construction satisfies the requirement imposed on

these two functions.

We must still separate the positive and negative frequency
parts of f(x).

We do this by expressing the contour integral around

zo(x] as difference of two contour 1integrals

fix) « L 4) dz F(z) 3 (b-2)B(c-2)Y
. 2mi 1- (b-z)BTc-z)Y 9z Xpz
0,z (x) xpz
-
1 dz F(z) 5 (b-2)P(c-2)Y 2. 10)
2mi o 1- [b~z)8(c-z)Y SE_ xpz

Xpz

Since zotx] moves towards the origin when X =+ o,away from 1t
when x + 0, the first contour integral defines a function

{(-) and

f (x) analytic outside the unit circle the second a function

£0*)(x) snalytic inside the unit circle.

Let us now consider the expression

I P(-) -—}-@ dx f[’)(x] P (x) =
i X a
‘ (o]

af 2ni
L 4
2.,20)
. IS S dxP, (x) dz F(z) 3 (b-2)P(e-2)Y
(27 qs x qi 1_(b-z)B[c—z)Y 9z xXpz ’
o

xXpz
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which represents a linear combination of annihilation operators
of type a. We shall determine the function F(z) = F(z,y) 1in

() L ey,

such a way that PaF a

Let us take |y|>1 so that the contour of the z integration

can be taken to enclose the point zoly]..If we were allowed to set

s
1-—DyZ

Flz,y) =

. 2,21)

(b-z)B(c-z)Y

then, closing the z contour, we would pick up a contribution from

the singularity at z= zbly) given by (for z-zoty) we have

pz .1,
(b-218(c-21Y ¥

;l; Zop g« op ey 2.22)
“ »
(o)

and a contribution from the singularity at z=o given by

1 9X p (x) = -p . 2.23)
214 X a 0,8 .

0 that the sum of the two would produce exatly Pi-)(yl.
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0f course, we cannot use that function F(z,y) in our
integral representation, because of the singularities at z=b
and z=c, which would spoil the properties of analyticity of

B

f({x") and f(-xY).

But we can use a function

1 ]
Flz,y) = 537 dz 1 2.24)
z~z' 1- pyz'
o.zo(y) (b-z)ic(c--z')Y

If we insert this expression into Eq. 2.20) and close the 2
contour to zero, then the contribution from the singularity at

z=2' reproduces exactly P:—)[y). whereas the singularity at
z=0 generates a term containing only the zero mode p .

Summarizing, we have the following relation

(-) 1
Pa ¥Y) = - 12712 4) dx P (x) x

' X
° 2.25)
B Y
dz F(z,y) 3 (b-2) (c-2) -
@o 8 y 3z Xpz * Pa,o Flowy)
1- (b-z)-(c-2)
xpz
S, 9% b (y) ¢ dz Flz,y) 3 (b-21P(c-2)Y
(2m1) 96 X 8 ‘ _(tn-z)B(c:-z)Y.sm"j xpz
o] 0,z _(x) xXpz
o -
+p Flo,y) +

a,o
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1/8
, 1 , %5 Pb(x] dz F(z.y;/B 3 x(pz) y
(2m1) _ x(pz) 92 (h-z)(c-2)1/B
g} /8
o b.zotx ) (b-z)(c-2)
"Pb‘? F(b.YJ
.1 9X b (x) dz Flz,y) - 3 _ x(-p2)}/Y
(zn)z? x ¢ L xC-pz) 1Y 97 (o-z)(b-2187Y
0 ez, (x")  (e-z)(b-2)B/Y
- pc.o Flc.,y),

where F(z,y) 1is given by Eq. 2.24).

This equation follows immediately from Eqs. 2.11), 2.19)

2.17) and 2.18), and it shows that the annihilation part P:-)[y)

of Pa(y]. acting on the three-string vertex, equals a definite

linear combination of reflected creation operators(lSt term on

the r.h.s.), transmitted annihilation opérators (Srd and Sth terms

on the r.h.s) plus a contribution from the zero modes (2nd.4th

and Sth terms on the r.h.s).

By wusing the technique developed in these pages it is

;*)(y)(or Pé’)(y)) when acting on Vv,

(+) (+) (-)
a ° Pb and Pc plus a contribution

also immediate to express P

as a linear combination of P

from the zero modes. We do not reproduce the corresponding equations
here, but only remark that, apart from some obvious

'changes of sign and exchange of creation and annihilation operators,

they are nicely crossing symmetric.
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3. DISCUSSION

By eipanding the various terms on the r.h.s. of Eq. 2.25)
into powers of x and y(the position of the singularities
determinas whether the expansion must be made into positive or
negative powaers ) one recovers the rules given in ref. 1) for
the evaluation of the matrix elements of V*.

However, the purpose of this article was not to derive
the matrix slements of V, which have been already discussed in
refs. 1:4) and 11), but to 1llustrate in a simple and concise
way the effects of the change of basis inherent in the approach
of refs. 3,4) to the three string interaction vertex.

In particular, the role played by the mapping induced by
Eg. 3.13) in performing the change of basis emerges clearly
from the construction of the previous section.ThiS mapping,
introduced by Mandelstam in ref.2), is central to his construction
of the dual amplitudes in the transverse gauge, and we may say
that, in the approach of Ademollo, Del Giudice, Di Vecchia and
Fubini ( ref.l), the mapping is realized by the action of the
lightlike (+ and -) components of the operators.

We wish to conclude our discussion by applying the results

of Sect.2 to the study of the singularities of the P(y) operator

* Tha factor p introduces a different normalization of the
operators, which can be attributed to the effect of

propagators.
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at the point of splitting. This point correspond® to the two values

-1i78 3.1)

of the argument of P.
We recall from section 2 that |y|=1 must be reached
from |y| > 1. In this 1imit the location of the singularity

zo(y] in the integrand of Eq. 2.24) approaches from the outside

the eight shaped contour of Fig. 2. 1In general it will be possible
to displace the contour of the =z' integration avoiding the

: +
e-in

singularity; but for y -+ 8 pinching occurs with another

singularity i#(y) emerging from a different sheet, and the

function F(y,z) itself becomes singular.

+
We analyze the behavior of F(y,z) nearby yte.“'B by
setting
y- e:i‘"801¢. 3.2)
z (y) = z +tly) | 3.3)

and expanding for small ¢,t. Eq. 2.13) then gives us

16 = A t2 . higher order terms, 3.4)

where
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A 1 d2 (b-z]B(c-z]Y
=3 7o log =

dz 2 z=z,

3.5)
.-___B.__z- Y 2.12

2(b-zl) 2( c-zll 221

and ws have used
e B Y
d_ log (b-z) (c-2) -0, 3.6)
dz z 2=2
1
Zim8
It is easy to isolate now the part singular for y+ e m in the
contour integral of Eq. 2.24). It is given by
Fs(y.z) . — gz ' —23 1 »
2ni z-z' ,_ pyz'
2 (y) tb-z)B(c-2)Y
3.7)
. -1 ( 8 . Y . 141,
z-zo(y) b-zoty) c-zoty) zo(y)
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1
At (z-zl)

Fs(y.z)= . 3.8)

1
2 1o ACz-z))

where the signAin the last term depends on the direction of approach

+
of e ~inB on the unit circle. We see from this equation that

(-)

F(z,y) and therefore Pa

(y) develop a square root singularity
when y approaches the value it takes at the point of splitting.

Since the positive and zero frequency parts of Pa(y) are regular
there, we conclude that P(y), p{o) and x'(g)= gx , are not well
do

defined for o= wB. However, since the singularity is integrable,
the position operator x(0) is & well defined operator even st

the point of splitting. This is relevant for Mandelstam's analysis

of the behavior of V under Lorentz transformations(lz). In ref.

12)it 1s shown that for dtr (= number of transverse dimensions)

= 24 the commutator of the Lorentz generators Mi- with V produces

a term proportional to xi[ﬂB)V. which i1s a well defined quantity.

dxitﬂB]
Notice that the terms of the form

V, arising for

+

dx

dtr = 24, are instead singular.

The degree of singularity of p(o) and x'(0c) becomes worse
if one of the strings has p‘- o ( and zero length in parameter
space). If we take for instance Y = o, we have then z.= c, and

1
F{e,y), coefficient of the zero mode Po. in €Eq. 2.25), diverges

+ .
linearly for y-e-iﬂ- -1, In this case the position operator x(o)

becomes also singular (logarithmically divergent)at the point of

. splitting.® This singularity however occurs at an 1isolated value

* It is useful to recall that, for p;=o and ¢ in 1its ground state,

eipcx(‘n)

Ve : (where now xa(o)#xb(o)-x(o)). The product x(w)V

is then logarithmically divergent.
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of p+ and is integrable, so that no conflict arises with the

results of ref. 12).
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Fig. 1 - RELATIVE ORIENTATION OF THE STRINGS AT THE VERTEX.



, R>1
Re z
-
»
Fig. 2 - IMAGES OF THE CIRCLES [x|=R IN THE MAPPING

DETERMINED BY EQ. 2.13).




