BASE \$4 51500 1420399

IFUSP/P-35

ABSENCE OF THE INFLUENCE OF PAULI SPIN PARAMAGNETISM ON H_{c2} FOR A Ti-ll at.%Nb ALLOY*

by

F.P. Missell, N.F. Oliveira, Jr. and Y. Shapira**

Instituto de Fisica, Universidade de Paulo.

- * Financial support of FAPESP.
- ** On leave from Francis Bitter National Magnet Laboratory, MIT, Cambridge, Mass. U.S.A.

Submitted to Physica Status Solidi.
Setembro de 1974

Subject Classification: 14.2

Instituto de Física, Universidade de São Paulo, S.P. Brasil

Absence of the Influence of Pauli Spin Paramagnetism on H_{C2}

for a Ti-11 at. *Nb Alloy

by

F.P. Missell, N.F. Oliveira, Jr. and Y. Shapira*

Werthamer, Helfand and Hohenberg (1) (WHH) and Maki (2) have proposed theories to account for the effects of Pauli spin paramagnetism (PSP) and spin-orbit scattering on the temperature dependence of $\rm H_{\rm C2}$ in type-II superconductors. Qualitatively, the PSP tends to depress $\rm H_{\rm C2}$ at low temperatures T, whereas spin-orbit scattering tends to counteract the effect of PSP. In the dirty limit (i.e., $2\pi\tau k_{\rm B}T_{\rm C}/\hbar<1$, where τ is the electronic relaxation time) and for $\tau/\tau_{\rm S}<1$, where $\tau_{\rm S}$ is the spin-orbit relaxation time, the two theories give essentially identical results for $\rm H_{\rm C2}(T)$. WHH introduced $\tau_{\rm S}$ as an adjustable parameter to fit experimental data. Subsequently Neuringer and Shapira $^{(3)}$ introduced experimental evidence to show that $\tau_{\rm S}$ is, in fact, related to the spin-orbit interaction and that it is in order of magnitude agreement with $\tau/\tau_{\rm S} \sim (\frac{{\rm Ze}^2}{\hbar {\rm C}})^4$, given by Abrikosov and Gor'kov $^{(4)}$.

We have measured the temperature dependence of $\rm H_{C2}$ for the superconducting alloy Ti-ll at.%Nb in the temperature range 1.68 K \leq T \leq 5.40 K (=T_C). Resistive transitions were observed by standard four-wire techniques in a superconducting solenoid with the magnetic field parallel to the current direction. The criterion for $\rm H_{C2}$ was chosen to be the zero voltage intercept of the linear portion of the transition on a voltage-versus-field curve (5) for a current density of $\sim 1 \rm h/cm^2$. The critical field

 $\rm H_{C2}$ was found to be indempendent of current density below this value. Samples were cut from a boule, kindly provided by Dr. L. J. Neuringer, which had been arc-melted and vacuum annealed. The resistivity at 4.2 K, for H > H_{C2}, was found to be (56 \pm 2) $\mu\Omega$ - cm .

The relative importance of PSP is characterized by the parameter $\alpha=\frac{\sqrt{2}~H_{c}^{\,\star}(0)}{H_{p}}$, where $H_{p}=18400~T_{c}0e$ and T_{c} is the transition temperature in K . In the dirty limit, $H_{c}^{\,\star}(0)$, the upper critical field which would be obtained in the absence of PSP, is given by $H_{c}^{\,\star}(0)=-0.69~(\frac{dH_{c2}}{dt})_{t=1}\equiv0.69~H_{o}$, where $t=T/T_{c}$. In Fig. 1, we show H_{c2} as a function of temperature near T_{c} . The zero field intercept of the solid line gives $T_{c}=(5.40\pm0.02)~K$, the error being related to the thermometer calibration. Our $H_{c2}(T)$ data near T_{c} give $H_{o}=83.8~kOe$. Thus, we find $\alpha=0.82$. Near T_{c} , the resistive transitions had a width of $\lesssim800~G$. Therefore, we expect that the use of another experimental criterion for H_{c2} would give essentially the same results for H_{o} and α .

To describe the effects of spin-orbit scattering, WHH have introduced the parameter $\lambda_{SO}=\hbar/3\pi k_B T_C \tau_S$. In Fig. 2, we plot the reduced field $h^{=H}c2/H_O$ versus t for comparison with theory. Shown in the figure is a curve obtained from WHH Eq.(28) for $\alpha=$ 0.82 and $\lambda_{SO}=$ 0 , which corresponds to the absence of spin-orbit scattering. The data points lie above this curve and, as well, lie slightly above the curve for $\alpha=0$. The latter is also the curve for any finite α when $\lambda_{SO}=\infty$. Thus it is impossible to obtain a fit to the data with any value of λ_{SO} , although the best fit is with $\lambda_{SO}=\infty$. Such discrepencies with theory have been noted previously by Neuringer and Shapira

for Ti-52 at.%Ta and by Williamson ⁽⁶⁾ for Nb rich Nb-Zr alloys. Helfand and Werthamer ⁽⁷⁾ have shown that $H_{\rm C2}(0)/H_{\rm O}$ is about 0.73 for clean materials in the absence of paramagnetic effects. However, we estimate $\tau \lesssim 10^{-15}$ sec, so that the dirty-limit condition should be well satisfied.

We note finally that Neuringer and Shapira found their data for Ti-44 at. %Nb to lie well below the $\alpha = 0$ curve. is curious that for Ti-ll at. &Nb , where the effective value of Z should be smaller than for Ti-44 at.%Nb , the data lie above the $\alpha = 0$ curve, seemingly indicating a greater influence of spin-orbit scattering. To obtain an idea of how much below the $\alpha = 0$ curve we might expect our data to lie, we have tried to estimate λ_{so} for Ti-11 at.% Ib , using the value of λ_{so} which Neuringer and Shapira obtained for Ti-58 at. %V. This procedure seems appropriate since Ti-11 at. %Nb and Ti-58 at. %V have roughly the same effective Z value. Noting that $\lambda_{so} = 0.7$ for Ti-58 at.%V and that $\lambda_{_{{
m SO}}}$ is proportional to $^{-1}/{
m T_{_{{
m C}}}}$, we estimate that $\lambda_{so} \sim 1$, and almost certainly $\lambda_{so} < 2$, for Ti-ll at.%Nb . Thus, in Fig. 2 we have plotted the corresponding to $\alpha = 0.82$ and $\lambda_{so} = 2$. As can be seen, the experimental data still lie well above this curve.

The authors wish to acknowledge the financial support of FAPESP.

REFERENCES

- (1) N.R. WERTHAMER, E. HELFAND and P.C. HOHENBERG, Phys. Rev. 147, 295 (1966).
- (2) K. MAKI, Phys. Rev. <u>148</u>, 362 (1966). See also, K. MAKI, Physics <u>1</u>, 127 (1964).
- (3) L.J. NEURINGER and Y. SHAPIRA, Phys. Rev. Letters 17, 81 (1966).
- (4) A.A. ABRIKOSOV and L.P. GOR'KOV, Soviet Phys. JETP <u>15</u>, 752 (1962).
- (5) R.R. HAKE, Phys. Rev. Letters 15, 865 (1965).
- (6) S.J. WILLIAMSON, Phys. Letters 23, 629 (1966).
- (7) E. HELFAND and N.R. WERTHAMER, Phys. Rev. <u>147</u>, 288 (1966).

^{*} On leave from Francis Bitter National Magnet Laboratory, MIT, Cambridge, Massachusetts, U.S.A..

FIGURE CAPTIONS

- Fig. 1: Temperature dependence of $\rm ^{H}_{C2}$ as determined from resistive transitions. Bars on points represent experimental uncertainty in determination of $\rm ^{H}_{C2}$. The solid line represents a least squares fit to the experimental points.
- Fig. 2: Dependence of reduced magnetic field $h = {}^{H}c2/H_{O}$ on reduced temperature $t = {}^{T}/T_{C}$. Theoretical curves were obtained from WHH Eq. (28).

FIG. 1

FIG. 2