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ABSTRACT

We study an instability of the antiferromagnetic phase
when subjected to an external field along the esasy axis of the
uniaxial antiferromagnet. This instability leads to a formation of
a magnetic order with more than two sublattices. This instability
occurs when the intra-sublattice exchange is also antiferromagnetic,

and it may happen for fields smaller than the critical fields for

the transition to the spin-flop or intermediate phases.




1. Introduction

The magnetic phases of uniaxial antiferromdgnets have

been studied by Yamashita[ll. That work was preceded by several

papers, among which the one Rohrer and Thomas(Z) and the one by

Fairall and Cowents). More recently, Morrison(4) extended Yamashita's
work by the inclusion of the single-ion second anisotropy
interaction and the Dzyaloshinsky-Moriya sxchange. All these papers

dealt with antiferromagnets with two sublattices in an sxternal

field along the easy axis, and at T=0K.

The Hamiltonian for the problem, restricting ourselves
to the interactions studied by Yamashita, and using that author's

notation, can be written as
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where x is the direction of anisotropy along which we apply the
field H. 1In(l) the second and fourth terms are the inter-sublattice
isotropic and anisotropic exchange intsractions. The first and
third terms refer to an interaction happening.within a sublattice.
These terms can be variously interpreted either as an exchange
interaction in the sublattice, or as a crystalline field acting on
each spin. If one uses the first interpretation, and within the

framework of the molecular field theory (statistical independence

of spins), the average value of these terms is treated as
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since the two spin operators refer to different units in the sub-
lattice; On the other hand, the crystalline field interpretation
does not permit one to equal the average of the product of the
operators to the product of the averages. In this case, the two
operators refer to the same spin. In what follows, the results
obtained with the two interpretations are very different.

The preceding works mentione above have the common
feature of assumeng that at T=0K the average of a spin operator
always attains its maximum value MO. Barring one special cir-
cumstance to be discussed below, this assumption is amply justified
within the molecular field framework. Indeed, a molecular field
is a sum of the external field and of effective fields due to the
exchange interaction with neighbouring spins. At T=0K, 1if the
molecular field acting on a spin is not zero, even if it 1is very
small, the spin will minimize its energy by choosing a state with
maximum projection along the molecular field. Thus one has only
to consider the direction of this axis and minimize the ensrgy of
(1) with respect to the angles defining this axis. This procedure
was fully explored by Yamashita(ll.

A special case may happen when the molecular field for
one of the sublattices 1s exactly zero. In this case, the average
value of the sublattice magnetization becomes undetermined and may
assume any value between zero and Mo' In thi; circumstance, the
magnitude of the spin becomes a variational parameter for the mini-

mization of (1). One may see that this case 1s only possible when

the two sublattices have magnetizations aligned with the external




field. Indeed, for canted magnetizations, the vector sﬁm of the
exchange and sxternal fields is never null.

.In what follows we are going to study the situtions when
the two sublattice magnetizations are aligned with the field but

have arbitrary values between -Mo and Mo. The study neglects guantum

effects and is made for the intra-sublattice exchange interpretation

of the 1st and 3rd terms in (1)(section 2), as well as for the

crystalline field interpretation (section 4).




2. Intra-sublattice exchangp interaction

In this case Eq.(2) is valid, and we let 0 and u be
the average magnetizations of the two sublattices, assuming that
both are aligned with the field. Then, the average value of the

energy (at T=0K) becomes

.
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This scpression has an extreme at

O =u= H (4)
' + A+ Qx + 9
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and this extreme is a minimum 1if
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If (5) is satisfied, the solution may exist for fields wich make

(4) to be in the range of zero to Mo’ and whenever its energy is

lower than the energy of the antiferromagnetic (AF) phase, or

0 <KH<C<M (T «+ A+ O + ¢ )
[} X X

The inequality (5) means that the intra-sublattice exchange is
greater than the inter-sublattice interaction. This is an unlikely
situation is an antiferromagnet with two sublattices because it
favours other types of magnetic arrangements. 'For this reason we
are not taking the discussion of this solution any further.

. If (5) is not satisfied, namely

A+ 9" >T + 0 (6)
X X




then one of the sublattices has a magnetization equal to Mo. Thus

setting

o= M

in (3) and minimizing the energy with respect to 0 we obtain

H-M (A + &)
o X
o = (7)

if -M <o <M
o o
and the stability condition

r «+ ¢ >0 (8)
X

This solution represents an antiferromagnetic phase in which the
sublattice anti-paralsl to the external field as a magnetization
smaller than Mo. From here on we refer to this solution as the
Reduced Spin (RS) phass.

The RS phase has a critical field of transition

H = M (A+d* - T - & ) (9)
cl o X X

to the normal AF phase, and a critical field

H . =M (A+d' «+ T + & ) (10)
c2 (4] X 4

to the ferromagnetic phase. Depending on the value of T, the RS
phase may be stable or not with respect to the other phases studied
by Yamashita. It is worth noting that the parameter I' does not
come in any theory which, at T=0K, begins by making the sublattice

magnetization equal to MD. In that case, tje corresponding term

in Eq.(1) is a constant and may be discarded. However,I becomes an



important parameter when we study a situation, such as the present,.
in which the sublattice magnetization is less than Mo'

‘When varying T between the limits set by (6) and (8),
one may obtain maﬁy situations in which the RS phase is the most

stable. For instance, defining, as Yamashita, the following symbols

0= (11)

R= - (12)

and letting

r

2A + O - 0
x x

it is simple to establish that in the region of the 0 vs R plane

where
R >0, Q >0 and Q + R <1

when, according to Yamashits, we could have only the AF, the SF
(spin flop) and the F phases, the RS phase sets in for a lower
field than the SF. In order for this to happen it is enough to

satisfy the inequality

>
Har » sF Har + sR

or Vo(r - ry > 220 _ (13)

2

Certainly, a value of Y may be chosen to satisfy (13) and the

inequalities (6) and (8), here rewritten as




>y > R/2 (14)

3 - Instability of the RS phase

The RS phase is characterized by the onset of a new order
parameter: the value of the magnetization of one of the sublattices.
The RS is not truly a phase since at T # 0K the parameter of order
does not appear suddenly, as the field increases, but already
exists at H = 0. This means that though there is a discontinuity
of the differential susceptibility at T = 0K, the discontinuity
ceases to exist athigher temperatures.

On the other hand, the RS phase is unstable against
the formation of new sublattices. For instance, assume that, in
the reduced spin sublattice, the exchange parameters I' and ¢x refer
to an interaction between neighbours. The reduced spin sublattice
may be decomposed into two new sublattices, one having an average
spin o + £ and the other o - £. Then, the first and third terms

in (1), corresponding to the reduced spin sublattice, add up to

2«0 30 %)
If T «+ °x is greater than zero, a necessary condition for the
existence’of the RS phase (see (8)), the energy is lowered by
making £ as large as possible. Thus we arrive at the conclusion
that the onset of the RS phase i1s truly the onset of a much more
complicate magnetic ordering, the nature of which is difficult to

gusss.

Thus our calculation with the two sublattice model sets

the limits of 1ts own validity. These 1limits are established by

Ay

the occurence of the RS phase, which is unstable against the formation




[fs]

of a more complicate magnetic structure.

4 - Crystal Field Interaction

When the first and third terms in (1) arse interpreted
as the effect of the crystalline field, we cannot set the average
of the prdduct of two magnetizations as the product of the averages.
In this case both magnetizations refer to the same spin.

Since

m2em2sm?an? (15)
X y z o

we can subtract from (1) a constant, or squivalently set
I'=0 (16)

The variance of a magnetization component is always

greater than zero, or

<M2>.—<M >2>0
X b

Thus, confining ourselves to the case when the magnetizations are

aligned with the field (direction x), and letting

we have the following cases:

In this case, for given values of o and u, the energy is minimized

when
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Thus the present case is reduced to the case of intra sublattice
exchange interaction with T = 0.

Because of the signal of °x’ the parameter R given by
(12) is negative. According to Yamashita, in this region of the
Q@ vs R plane the first phase to appear after the AF is the Inter-
mediate phase. It can be verified that the critical field for the
transition AF + RS is greater than the field for the transition
AF -+ Intermediate. Thus the RS phase is never realized. In other
words, in this case there seems to be no field for which there is

instability against the formation 6f complicate magnetic structures.

and again the RS phase does not exist.

Thus, while the intra-sublattice exchange can build a
RS phase, the crystalline field is unable to do so. In this respect,
the two interpretations of the first and third terms in (1) lead

to very different results.
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5. Extension for T # DK

‘We consider the case when the first and third terms in
(1) are interpreted as an intra-sublattice exchange. As we have
explained before, for T ¥ DK, the sublattice magnetization 1{is
different from Mo even for a zero external field. Thus the
sublattice magnetization is not a parameter of order that varies
after a certain critical field is reached. Then, in order to
determine the beginning of the RS phase, we must look for the point
of instability when one of the sublattices breaks down into other
éublattices.

Let u be the average magnetization of the "+" sublattice

<M > = U (17)

and let us decompose the "-" sublattice into two, the "-+" and
the "--" gsublattices, each with half as many spins as the "+"

sublattice. Their average magnetizations are

< M;’ > 0 ¢+ E (18)

< nx > =g - § (19)
For given values of o0 , U and £, the energy is determined from
(1) as

E =y (T« ¢x1(a2+u2-£2) + N(A+8) ou - NH(gew) (20)

where N is the number of spin pairs in the crystal. Thus one

should maximize the entropy keeping constant the average
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magnetizations given by(17), (18) and (19). Introducing the
Lagrange multipliers p ,A and n, one has to minimize the following
expression

N -+
T = e > -
Fo 2,[0 *n) <Mx

N2

- - +
- < - -
(p n) Mx > =N <Mx > TS

TS5 (21)

= - N( po + Ay + pf)

This minimization is attained when the entropy S and the averages

are calculated in an ensemble with the following Hamiltonian(S]

Ho= - o+ m) I’ - (p-m I m -] M (22)

where the sums extend over the spins of each sublattice. Thus

F_ = N kT £n Tr exp [ (p +n) M;+ /kT] - (23)
2

N kT £n Tr exp [ (p - n) M;- /kT] -N kT &n Tr exp[x M;/k{]
2 .

The Lagrange multipliers are determined from the fixed values of o,

u and £ according to the equations

1 oF
= L2 .-9 (24a)
N 9p
1 oF
= —2 .-y ‘ (24b)
N 3A
1 dF
= O = - ¢ (24c)
N 3n

Finally, the average values o , u and £ of the

magnetizations should be determined from the minimization of the

free energy, which is given by the following expression
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F = E - TS = E +«+ N (pog + Ay + pE) + Fo (25)

where E 1is given by (20). Considering o, u and £ as indipendent

variables, we arrive at the equilibrium squations

1 2, 5.9 (26a)
N 3o
1 2% 5.0 | (26b)

R N du
L 3, ,.0 (26¢)
N 3E .

which, together with (24a-¢) solve the problem.

The esquations (26a-c) and the effective Hamiltonian(22)
give a simple interpretation to the Lagrange multipliers p,A, n.
These multipliers are the molecdlé?”fialds acting on the various
sublattices. |

Equation (28¢) can be writtén as

n -(I‘ + .X] E= U‘ (27)
while (24c) can be rewrittén as

- q ——
E = 1 Tr { M °* exp| (p + n) M “/kT [} /7r { exp[(o+ n) M Tkt )
2 X L X N X _

- r - -
-1 s { M. exp| {p - n) M /KT } 71 { exp[(p- n) M /KT }

2 b . -

One solution to these equations is

Enn-[]
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In this solution there 1s no difference between the sublattices
"--" and "-+". Depending on the value of p, one may have a
second solution with non zero £ and n. The beginning of this
second solution is determined by expanding (28) as avpower series
of n, and keeping only the linear terms in the small parametsr n.
We arrive at

E = n . Moo (29)
3p

where < Mx- >, the net average magnetization of the "--" and

"-+" sublattices, is defined by

<m o> - Tr{ M, exp (p M, /kT)} /7r{ exp( p M, /kT) }

A plot of 09 < Mx- >/9p as function of the molecular field p is

given 4in Fig.l. Eqs.(28) and (27) establish the beginning of the
RS phase as the external field is iIncreased from zero. For the

critical field one has

a<n;>
= _ (30)
°x 9p

_1
T +
As T 1is lowered, the curve becomes taller and thiner, because its
area does not depend on T. Thus, the critical point moves towards
p = 0, nahely it approaches the point where the molecular field op
is null. Then (26a) tends to the energy minimization made at

T = OK. With increasing T, the RS phase disappears when the whole

curve moves under the dashed line, or when
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6 - Concluding Remarks

In tﬁis paper we have completed the wo;k by Yamashita
on uniaxial antiferromagnets, by studying an instability that has
been overlooked by that author. This instability happens when the
intrasublattice exchange is also antiferromagnetic and leads, for
certain values of the external field, to the breaking down of the
two sublattice model. In this case, a much richer magnetic order

may result.

Note added in proof - It has been called to our attention the

papers by:

0,P.Van Wier, T.Van Paski - Tinbergen and C.J.Gorter,Physics 25,
116 (1859). H.Mptsuda; T.Tsuneto.Suppl.of Progress Theor.Physics
n® 46, 411, (1970); Kao-Shien Liu, M.E.Fisher, Jour.Low.Temp.

Phys. 10 655(1973) and M.E.Fisher, D.R.Nelson Phys.Rev.lLetts.32

1350 (1974), which deals with a similar probhlem. These papers

L)

also omit any re?erence to the reduced spin phase here discussed.
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FIGURE CAPTIONS

3 < M; > /3p as function of p. The area under the

curve does not depend on the tempesrature and 1is equal

to 2Mm .
o)




