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Abstract

We discuss a formulation of the relativistic bound
state problem for the case of a scalar hermitian field with a
¢3 interaction, which resembles very closely the second quan-
tized formulatioﬁ in a non-relativistic theory, with the light-
like plane t + z = const. replacing the usual equal-time sur-
face,and with PO-Pz playing the role of the Hamiltonean in this
formulation. Choosing as basis the eigenstates of ?L - (Px’P )
and Po+ Pz, where Po is the usual Hamiltonean of the interac-
ting system, one finds that the structure of this space is very
similar to the Fock space of a non-relativistic theory, and that
in fact non-relativistic Fock space methods can be used to
derive coupled integral equations for the n-particle bound state
wave functions. All calculations can be carried out with inter-

acting fields. As an example we derive the integral equation

for the two-body bound state wave function in the small coupling

limit making a Tamm-Dancoff type approximation.
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I-INTRODUCTION

There has been considerable interest for the past few
years in the formulation of field theories‘on light-1like planes
[1-4] as an alternative to the infinite momentum frame tech-
nique introduced by Fubini and Furlan in connection with current

algebra sum rules [5] and studied first by Weinberg in connec-

tion with old fashioned time ordered perturbation theory (6].
In fact it is well known that the current algebra sum rules
obtained in the infinite momentum limit, can also be derived
without actually going to this limit, if one assumes that the
commutators of thevcurrent algebra type hold on light like planes
t+z = const.[7]. Furthermore, as has been first pointed out by
Chang and Ma Ll] , Weinberg's rules for computing the old fa-
shioned time ordered perturbation theory diagrams of a ¢3
theory in the infinite momentum limit can be readily derived
by refor@ulating covariant perturbation theory in terms of a
new time variable 1 = (t+z)//2 and a new z-variable Z = (t-z)/ 2,
In such a formulation the new rules for computing <t =-ordered
diagrams are just those derived by Weinberg for time-ordered
perturbation theory in the limit p, > ©. The point of view
of Chang and Ma has been subsequently first used by Kogut and
Soper [3] to study the formal foundations of quantum electrody-
namics in the infinite momentum frame.

Because of this connection between the infinite momentum
frame technique and the approach on light-like planes, one ex-

pects that a formulation of the bound state problem on a fixed

light-like plane t+z = const. (replacing the plane t = const.



in a non-relativistic theory) will lead to similar simplifi-
cations as those encountered in the infinite momentum limit
where the vacuum structure of field theories simplifies con-
siderably [6].and where the dynamical equations acquire a non-
relativistic Schrodinger-type struc;ure [8]. Inm factvit is be-
cause of the many special features of the infinite momentum
frame, that this frame has proved to be a useful tool for dis-
cussing e.g. current algebra sum rules [9J,.par;on models (10!,
quantum electrodynamical calculations [11] aﬂd‘maﬁy other topics
of particle physics DZ]. Alternatively the light-like plane
has also been used extensively for a discussion of these pro-
blems [4].
In this paper we wish to take a look at the relativistic
bound state problem formulated on the light-like plane t+z = 0.
We shall show that the problem can be formulated in very close
analogy to the non-relativistic case if one choses an appro-
priate set of basis states in which the bound state is expanded.
These basis states are just the eigenstates of P = (Px,P )

1 y
and P°+Pz , where Po is the Hamiltonean of the interacting
system, and can be easily constructed on light-like planes. The
structure of the space spanned by these states is very similar
to the non-relativistic Fock space, and in fact allows non-re-
lativistic Fock space methods to be used for carrying out the
calculations. All computations can be done using interacting
fields. For simplicity we shall restrict ourselves to the case
of a scalar hermitian field wiﬁh a ¢3 interaction. As an exam-
ple we derive the integral equation for the two-body wave func-
tion in the weak coupling limit using a Tamm-Dancoff approach [13].

A similar point of view has been advanced by Feldman, Fulton and

Townsend ﬂ4] whose work we became aware of only after completion




of this paper. These authors however do not place the same
emphasis on the non-relativistic analogy, nor do they discuss
the details of the calculations including renormalization'
effects. It is our main purpose to stay as close as possible

to the non-relativistic case at every step of the calculations.
Of course the price we have to pay for this is that the formu-
lation is not manifestly Poincare covariant so that the appro-
ximations made are frame dependent. This is a consequence of the
fact that we shall be dealing with a one-"time" formalism, in
contrast to the multi-time Bethe-Salpeter approach [15!, which
for one thing is very involved and also has the unpleasant
feature of involving a relative time variable whose physical
significance is unclear. It is our hope that the kind of "non-
relativistic" approach to the relativistic bound state problem
to be described in this paper will give us further insight into
dynamics at small distances, and that it will eventually pro-
vide us with a simpler and more economical way for dealing

with bound statre problems.

The organization of the paper will be as follows: In
section II we start with a brief review of the non-relativis-
tic two-body problem in the second quantized formulation. In
section IIT we then construct a set of basis states in close
analogy to the non-relativistic Fock space states introduced
in section II. The bound state problem for the case of a scalar
field with ¢3 interaction is then formulated in this space in
section IV, and an integral equation for the two-body wave
function is derived in the small coupling limit using a Tamm-

Dancoff approach. We conclude the paper with some remarks and



an appendix where we give the Fock space represenation of
the generators of the Poincare group on the light-like plane

and discuss the transformation properties of the fields.



II - THE NON-RELATIVISTIC BOUND STATE PROBLEM

In this section we take a brief look at the non-
relativistic bound state problem in the second quantized
formulation, placing special emphasis on those features which
are peculiar to the non-relativistic theory. 1In the following
sections we then give a relativistic formulation which resembles
very much the non-relativistic treatement given here.

Let us consider a non-relativistic two body system
» . 3 I3 * +
interacting via a potential V(xl-xz). The state of the system-
3 3 L3 + -* * 3
is then characterized by a wave function w(xl,xz,t) describing
‘the instantaneous spacial distribution of the 2 particles. This
wave function is covariant with respect to homogeneous Galilei

- (3 . + +
transformations. In the second quantized formulation W(xl,xz,t)

is given by the matrix element.

WGx),%,,t) =<0] 9k, ,0)8(x,, ) [¥> (2.1)

where [0> is the physical vacuum, |{y> a Heisenberg state with the
quantum numbers of the two particle state, and ¢(x,t) is the field
operator satisfying the equation of motion (we restrict ourselves

to the scalar case): .

2 N . R
( i—g—-{ + % ) ¢(x,t) = rw/(x,t)(b(x,t) (2.2a)

where




?]}E,t) =~Jd;' S(XT,t) & (X',8) V (3-2") (2.2b)

-
and where ¢ (x,t) satisfies the following equal time commutation

relation

[ ¢ (x,t0), ¢T(x',t) ] = 6( x- x") (2.3)

The momentum operator and the Hamiltonean of the system

are given by

P o= Jﬂdi ot (X,00(-iTye(X,0) (2.4)

and

> + > "V}z >
H = Jhdx ¢ (x,0) (_7m) o(x,0) +
(2.5)

l_[di'di" ot et R, v E =TT, 06", 0)

N

where we have set t=o0 since the integrals are independent of t.

<>
Introducing the Fourier transform of the field d(x,0)
> '_l:—* .
a(k) = ___1375 J.dx e TN F $(%,0) (2.6)

¢ with

e

[a(®), aT (k") ] = &8 k-k" (2.7




(2.4) and (2.5) take the form

] -Jdﬁ tat & a (0 (2.8)
*2 1 [
H= fqﬁ %ﬁ at () a (&) + ———— | akakrakrat@nat@Mak -k .
3/2
2(2m ca(k"+K) v (k)
(2.9)
where
-+ 1 | -»> ’E * ->
v(k) = ——-————-~[ dx e % v(x)
A special property of non-relativistic theories is that the
bare and physical vacuum states coincide; thus the operator
(2.6) annihilates the physical vacuum:
. .
a(k)|] 0 >= 0 (2.10)

Introducing the n-particle Fock space states in the usual wvay

at &) ...at (&) Jo> (2.11)

-> > :
a two particle eigenstate of P and H with eigenvalues k and E will

have the form

- l e e > > > > > f - + .,
| k> . .[ dk,dk, 8(k-k -k,)f (k, ,ky)al (k))a (k2)|0>

(2.12)




(2.4) and (2.5) take the form

s

? -Jdﬁ tat & a @ (2.8)

*2 1 [
ie [ & at @y 0 iy v ——— | alabrabnat @at@mad b,
3/2 |
2(zm) = - ca(k"+R) v ()
(2.9)
where
- 1 > -1: * -+
V(k) = —mm™m @ JF dx e % v(x)
A special property of non-relativistic theories is that the
bare and physical vacuum states coincide; thus the operntorx
(2.6) annihilates the physical vacuum:
a(k)| 0 >= 0 (2.10)

Introducing the n-particle Fock space states in the usual way

at (&) ...at (k) Jo> (2.11)

-> +
a two particle eigenstate of P and H with eigenvalues k and E will

have the form

- 1 [ atat. sa-t.-toe @t at@yat@ ]
| k> 2'~[ dk dk, 6(k-k -k, £, (k ,kaT(ka' (k)]0

(2.12) .l
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(2.4) and (2.5) take the form
P =Jd§ rat & a (2.8)
>2 1 [
H= (dﬁ %E at (@) a &) ¢+ — Cdkdkratrat @ atkma®-k).
’ 3/2 ¢
2(2my=" La (BB v ()
(2.9)
where
<> 1 - 'E x ->
V(k) = — J- dx e F V(%)
(2my 372
A special property of non-relativistic theories is that the
bare and physical vacuum states coincide; thus the oporat. -
(2.6) annihilates the physical vacuum:
-
a(k)| 0 >= 0 (2.10)

Introducing the n-particle Fock space states in the usual vay

Lo k> =2 at@®@...at@ )y o> (2.11)
1 1 n

> -+
a two particle eigenstate of P and H with eigenvalues k and E will

have the form

_ 1 e > > > > > f > + >
k> = _[ dk,dk, 8(k-k -k,)f (k,,k,)al(k )a (k2)|0>

(2.12)




+ 3
where k = (E,k ) [ Since the interaction conserves the particle
number, the eigenvalue problem may be formulated entirely within

the two-particle subspace ]. Because of the commutation relation

[a(k), P ] = ka(¥®) | (2.13)

<
the state (2.12) is an eigenstate of P, 1In order that it also

be an eigenstate of H, i.e

H| kK,E> = E | k,E> (2.14)

>
fE (kl’EZ) must satisfy an integral equation. To derive this

equation we consider the matrix element

—>_ _+ -> > - ! - > <> "
§(k-ky=k,) £, (k,,k,) = <0ja(k )a(k,)|k,E > (2.15)

and make use of eq. (2.14) to obtain the following relation

B<ola(k)a(k,) |%,B> = <o fak),1] a(¥y) |k,E> +

(2.16;

+ <0la(§1)[a(z2), H]| t,E>

Substituting for the commutator the expression obtained from eq.
>

(2.9) and (2.7) and making use of the fact that a(k) annihilates

the physical vacuum, one arrives at the following integral

equation for the 2-particle wave function:




*>2 > > 2

k (k-k,)
1 1 e . - 1 > - S > > >
- £f_(k,,k~k,) = J-dk' V(k,~k!)f_ (k!,k-k!)
( 2m m ) E* 1’ 1 (2")372 1 1 1°7E ’ 1

(2.17)

As we shall see in the following sections, the
relativistic bound state problem may be treated in a manner véry
similar to the one just presented with the light like plane t+z
=0 replacing the surface t=0. However, while (2.17) is an exact
integral equation for the 2-body Schrodinger wave function we
shall of course be forced to make approximations when dealing with
relativistic interactions since the particle number is no longer

conserved.
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II1 - MATHEMATICAL PRELIMINARIES

J
N

’

In this section we ‘present some mathematical preliminaries
which we shall need for a formulation of the relativistic bound
state problem in close analogy to the non relativistic case. For

simplicity we shall restrict ourselves to a neutral scalar field

with a ¢3 interaetion. The corresponding Lagrangian 1is given
by
2
L = L% g0 0 -In? % -2 43, (3.1)
2 L T '

When deéling with a relativistic theory we are immediately
confronted with a number of complications which are absent in the
non relativistic case:

a) the interaction does not conserve the number of particles, so
that the Hilbert space no longer separates into invariant
subspaces of definite particle number.

b) the requirement of Galilean covariance of the theory is
replaced by Poincare covariance. Hence a wave function
describing the instantaneous spacial distribution of the
particles is not a covariant object.

¢c) creation and annihilation operators analogous to those given
by eq. (2.6) and its adjoint cannot be defined on the plane
t = const. if ¢(x) is an interacting field.

Since we are interested in formulating the relativistic bound

state problem in as close a way as possible to the non-relativistic

case, we shall want to discuss a one-"time" formalism, where

"time" however will not be the usual laboratory time. This of

course means that the formulation will not be manifestly
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~ Poincare covariant. Furtﬁermore, we shall want to work with
operators analogous to those given by eq. (2.6) defined on the new
equal "time" surface, having the property that they annihilate the
physical vacuum. Suéh operators can be réadily constructed if one

choses as the new "time" coordinate the variable [ 2]
T (3.2)

To this effect consider the operator

: : 72
( ;3/2 do e mE-ka.xlﬁug:MT’E,;l) (3.3a)
2%

‘>
a(k, ,n,T)=
n.x=27

where the integral extends over the light like plane

. T= const. with normal 4-vector

(1,0,0,-1) (3.3b)

=]
]

and surface element

do = dx df (3.3¢)
1
with
-
x, = (x,y) (3.34)
. ~ and
] E - t-z (3-38)

[
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In fact (3.3a) is (appart from a factor 2n) just the Fourier
transform of the field ¢(x) with respect to the variables

?l and £ in the plane T = const., since nu8u=3/35, so that the

*
derivative acts within the surface. Thus the operator (3.3a) is
defined in a completely analogous way to the non-relativistic
-+ 3
operator a(k) [cf.eq. (2.6)] which is given by the Fourier
transform of the field with respect to the usual space variables
_’
apprepriate to the plane t=const. However whereas a+(k) when
applied to the physical vacuum creates a state of definite 3-
> + o . .
momentum k, the operator a (k, ,n,T) acting on the vacuum will

- - * .
yield an eigenstate of P (Px,Py) and PO+PZ, (where Po is the

total Hamiltonean of the interacting system) with eigenvalues
) -;l and n respectively, if the field ¢(x) transforms in the
usual way under space-time translations. The analogy with the
non-relativistic annihilation operators (2.6) is now completed

by noticing that the operator (3.3a) annihilates the physical

vacuum for n > O i.e

R
a(k, ,n,T1)|0>=0 for n>o (3.4)

which may be readily verified by making use of the translational
invariance of the physical vacuum and the completeness of the
physical particle spectrum,

In terms of (3.3a) and its adjoint, the (hermitian)

field ¢(x) can be expanded as follows:

o0
> 1 s dn > -ik.x. + 2 ik.x |
$(T,8,x )= dk — [a(kl,n,‘t)e ~'Z+a (k,,n,T)e ~~] (3.5)
(2W)372 1 n 1
o
>
where k.x = nE-kfﬁLO Hence (3.5) gives the decomposition of
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the interacting field in terms of creation and annihil#tion
operators on the light like plane T = const. The equal T -
commutation relations among scalar fields with non-derivative
coupling have been studied in detail by Chang, Root and Yan [4]
using Schwinger's action principle. They find them to be the

same as those for free fields restricted to the light like plane:

[6(x), 6(x")] g0 = - €(E-E") & (X,- X1 ) (3.6)

where
€(E) = +1 for £>0 and €(§) = -1 for £E<O.

The corresponding commutator for the operator (3.3a) and its

adjoint then can be shown to read

[a(k,,n,1), at Gunho)] = 2n 8(h-n") § (X, -k)) (3.7)

with all other commutators vanishing.
' > >
Let us define a(KL,n) = a(k,,n,0). Written in terms of the

variables (3.3) we have that

> i > ing-ik, .x
a(k_L,n) mjd&dxl e 4 L 35 ¢(x) (3.8)

where 35 = B/BE. With the help of these operators we now introduce

a set of basis states in the same way as was done in the non-

relativistic case:

-+ +.,>
Ky any)e..a (knl,nn)|0> (3.9)
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These states are eigenstates of EL = (Px’Py) and

Pé‘= PO+P (3.10)

->
with eigenvalues X ki and 2 ng respectively,as follows from the
L

commutation relations

[a( KL,n), b, ] o= n a(k, ,m (3.11)
[a (k,,m), B] = Kja(k,,n) (3.12)

derived from eqs. ( A.10b,c) of the appendix. An important point
which should be noted about the states (3.9), is that because they
are defined on the plane T = 0, the space spanned by the vectors
for fixed n 1is only invariant with regard to those transformations
which do not change the surface T=0. The corresponding generators
are discussed in the appendix to this paper, where we also give
explicit expressions for the generators of the Poincare group on
the plane T=const.and discuss the transformation properties of
the field d(x).

Assuming that the states (3.9) topgether with the vacuum
state form a complete set, we now can proceea to the formulation

of the relativistic bound state problem for the case of a theory

described by the Lagrangian(3.1).
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These states are eigenstateﬁ.of ?L = (Px’Py) and

(3.10)

e
with eigenvalues z ki and z ng respectively,as follows from the
L

commutation relations

[a( —]zl’n)’ PE] - n a(-I:_L’n) (3.11)
[a (& ,m, 3] = Kuatk,m (3.12)

derived from eqs. ( A.10b,c) of the appendix. An important~point
which should be noted about the states (3.9), is that because they
are defined on the plane T = 0, the space spanned by the vectors
for fixed n is only invariant with regard to those transformations
which do not change the surface T=0. The corresponding generators
are discussed in the appendix to this paper, where we also give
explicit expressions for the generators of the Poincare group on
the plane T=const.and discuss the transformation properties of
the field é(x).

Assuming that the states (3.9) together with the vacuum
state form a complete set, we now can procee& to the formulation
of the relativistic bound state problem for the case of a theory

described by the Lagrangian(3.1).
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IV. FORMULATION OF THE RELATIVISTIC BOUND STATE PROBLEM

In this section we wish to solve the eigenvalue equation

p?| B> = u? |B> ) (4.1)
2.2 _ 32 . .
where P -Po - P°, and M is the mass of the composite system
characterized by the state |B>. Introducing the operator

PT - PO-Pz (4.2)

conjugate to the variable T = (t+z)/2, which hence plays the

role of a Hamiltonean in the present formulation, we have that

where PE is defined by eq. (3.10). Hence the eigenvalue problem
(4.1) is equivalent to solving the following set of eigenvalue

-«
equations:

-+ > + >
P, Ik ,n,e> = k) |k ,n,e> (4.3)
-> -
Pe |k ,n,e> = nlk ,n,e> (4.4)
> -+
P IkL,n,e> - elkl,n,e> (4.52)
where
EI
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-’
The Fock space representations of the generators {L, PE and PT

for the case of the Lagrangian (3.1) are readily derived from

eqs. (A.7a,b,c) and ( A.6) of the appendix:

-

o :
. dn
> . > IR s < >
P, jrdkl~fo T kla (kx'“) a (kL,n) (4.6)
[ .
- > dn +,? >
PE fdk [o i‘ﬁn a (kL’n) a (kl-,n) (4.7)

(4.8)
-]
] "
+ _A372 {Jdi:l d?(.'li .q_ﬂ gﬂ 1 _ af(’il,nl)af(“ﬁt'n").
o 2n' 20" 2(n'+n") )
3.3
-a(k1+kr,n'+n")+h.c}
where "h.c." stands for " hermitian conjugate".

- -
Now the most general eigenstate of ?L' Pg and PT in the space

spanned by the vectors (3.9) can be written in the form

n
dn
b g 1 -+ -+ dn n > >
|k, ,n,e> = § =, | dk, ... dk 21, 5 8(k, - J k., ).
1 o o 1, n; . an Znn L jo1 14
(4.9)
k- (Mz) > +> t,7 t,?
LSn= 1 omg) €27 Ty angieeesky ong) atley ) ealle o0 ) {03
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)

where the wave functions f have to satisfy certain integral

equations if (4.9) is to be an eigenstate of PT. For convenience
we have chosen to label these functions by the eigenvalue of P2,

rather than by €. Let us define

2 n n 2
(M7) ; . s - T v P _ (M%) 3 .
Fn;k. ,n(kl.’nl”""kn ’nn) 6(kl izlki) 8(ﬂ iglni) fn (kl ’nl’
1 ; L 1 1
> > > >
e knl,nn) = <0 Ia(le,nl)...a(knl,nn) Ikl,n,e> (4.10)

The right hand side of eq. (4.10) actually depends on n and Nso

only through their ratios

3

i

—= =x. (4.11)
n

1

This follows directly from the transformation properties of the
operators (3.3 wunder boosts along the z-direction [see eq. (A.12)
of the appendix] and the fact that the corresponding generator

annihilates the physical vacuum. Hence we may write

2 2
(M) - . L2 - (M7) ,» . >
Fn;ﬁln (le,nl,....,knL,nn) Fn’El(kIL, Xyseeess knl’xl)
(4.12)
-+ n > n (MZ) 5> >
- 8(k - igl kiz 8 (1-&1 x.) £ (kll,xl,...;knl,xn)

( for convenience we have used the same symbols for the functions

appearing on the right hand side). The equations which the amplitudes

(4.10) have to satisfy are derived in exactly the same way as was




18

done in the non-relativistic case. However now we shall obtain an

infinite set of coupled equations for the n-particle wave functions

>
since the interaction does not conserve the particle number. Thus
proceeding as in Section II we find that (4.5) leads to the
following relations:
<> > -
<
€<0 | a(le,nl)....a(knl,nn) |kL,n,e>
(4.13)
S
- -+ > ->
= < . N} . s 0o 0 b} ’ >
izl Ola(le,nl)-. [ack; .np),e.] a(knl,nn)llgL n,e
From the structure of the commutator
22 2
. kT+m
> 1 <>
[aCk ,m), P.] = ( 2 ) alk,,m
n
4
o0
]
+ 22 Jd":}_ —An__ atkint a (K skt ) 4
(2m) 4n' (n+n')
o
(4.14)
n
A > dn' > I
+ dk' a(k!',n")a ( k,~-k',n-n")
/ L : ’ 1l "Ll
(2m) 372 4n' (n-n') =
o

which follows from eqs.(4.8) and (3.7), we see that (4.13) yields

an infinite set of coupled equations relating the n-1,n, and n+lparticle
wave functionsf* To solve them we shall therefore have to cut off

this chain at some value of n. Since we are interested in two -
particle bound states it seems reasonable to break up the set of
equations (4.13) at n=3, whereby for n=3 the right hand side

of (4.13) is approximated by the contributions coming from the

two and three-particle wave functions. But before writing down
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the closed set of equations obtained in this.approxﬁpation,one other
technical point must be mentioned which we did not have to bhother
3
with in the non-relativistic case. Since in solving #he coupled
set of equations we expect to encouﬁter divergencies thch require

mass renormalization, we shall introduce the physical mass m of the

one particle eigen-states in the usual way by settinge
m- = m_ + &m (4.15)

and consider the term proportional to 6m2 as part of the

interaction

(4.16)

n

2 | > -.dn 1 _+,2 b |
\'4 -"Gm fdk'!- —— ﬁa(kl’n)a(k_l_,n) + VI

o

where V., is given by the term proportional to ) in eq.(4.8).

With this modification we obtain the following set of coupled
equations upon neglecting all contributions with =n>3, and making

use of the relation (4.10) and (4.12):

3 §2+m2 9.
32 2 i (M%) > . T
(k“+M ) - ) Fy (kX 3ky,Xyiky,xg)
j=1 t '
% ‘A 1 F(Mz)(I +t + i )
y X X, » X
(2")3/2 X, *+x, 2 1 72°71 7277373
(4.17)
A 1 (M ) > > >
+ ——eee T (kysx skotk, ,x, +x,)
(2my3/2 XpE; 2 1° %13 %2 3% %,
A 1 F(MZ)(ﬁ +E X, +X% 'E x.)
+ ?;;;377 X %y 2 17732 %17 %33 %20 %)
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2']:2+m2 2 2 .
% 2em2 i (M%) e A 1 M5y 2 2
(k+M°- ] ——)F (ky,%x 3k, ,x, )= F (k +k, ;% +%x,)
L T 2 1P*18 %20 %) T URTT kw1 1*tR2i%t %y
X
1 2
S T P
t—373 dk' | ’ F (k',x";k._-k',x,-x";k,,x,)
(217)3 ZJ J 4x'(x1-x') 3 1 1 272
o
X, ' (4.18)
[ ’ (MZ)-» > > ‘
. A 3K dx' (k',x':k -k',x2 x';kl,xl)
372 | Fq 2
(2m) J Ax'(xz-x')
o
2
ST RO N D SR
Sm (x += ) F, (kl’xl’kZ’xz)
1 72
and
2 ﬂ
(M%) 2 _ . 2
(Mz-mz)fl ( ®y=-om?e M ) (%) + A3/2 dier’ —dx féM )@kt E-%1-x"
(2n) 4x' (1-x")
"o
(4.19)

We have chosen to write the last equation in terms of the
2
M) rather than Fg

2 v
amplitudes fi M) [ cf.eq. (4.12) ] and have

dropped for simplicity all subscripts Labeling the distribution
functions as well as the "transverse' Label onTzi . Notice that a |
term proportiqnal to sz has not béen included in the approximate
equation fof the three-particle amplitude sifice this term is needed
te cancel the divergencieé which arise when taking the four-
particle contributions into account. We like to point out that
(4.17) is the only approximation.we have made and that the
remaining eqs. (4.18) and (4.19) are exact. In deriving

these equations use has been made of the fact that the
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s
bperators a(k,,n) annihilate the physical vacuum. In figs. 1,

2, and 3 the above equations are displayed in graphical form.

: 2
Substituting the expression for an ) obtained from

eq. (4.17) into the integrand of (4.18), we find that

+2. 2

ky+m 2 1 2

52 2 itm N\ (Y > A %y > o

DR >T2 (kysxp3kyaxy) = 377 e, 1 (kptkpixgtxy)
i=1 i (2m) 1 72

X

2
2 1 M7) = 2 3T A '
+-_i——— ar’ dx' Fpo "k ky & X #xymx kT, xT)
sy > 2 —> =Y =
2(21r)3 x'(xl-x')(x1+x2-x')[F2+M2 _ k'2+m2 k2+m2’( 1-k')2+m2F
x' x, xl-x' B
- —
+ klea k2, x14¢ x2 -
*
1 ) A2 1 1
“l—=< fm” - dk' | dx'
*1 (2m)° 4x'(x1—x')[¢(2mz_ k' 2em? _ k3em?_ ()-KY) +sz
‘ ° x' x, xl-x'
+ 126; F(MZ)(: x :1: x.)
17 kgs X1 0%y 159 1°X13%20%)
. - (4.20)

Notice that the integral within curly brackets multiplying
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2
¥ o . .
® Fé )(kl,xl;kz,xz) diverges. In fig.(4) we have displaved

this equation in graphical form..
We now would like to show that the divergent integral in eq.
(4.20) combines with sz to give in fact a finite term proportional

to Xz KZ’ where

2 22 2
22 2 kg tm
K, = kZen’- § (4.21)
i=1 x

and hence may be neglected for sufficiently small AIRH

To see this we determine 6m2 by considering the corresponding
eigenvalue problem for the physical one particle state of mass m;

the equations to be solved for the n-particle distribution
2
m”)

® functions Fi are of course the same as before with M=m,except

that now for consistency we shall cut off the infinite set of coupled

equations at n=2. This yields the following approximate expression

2 2
for fém ) in terms of f{m ):f
+2 2 + 2. 2
ko +m (k-k.,) “+m 2 2
>2 2 1 1 (m°) > A (m™) >
(k“+m”- - - ) f (K, ,% 3 k-K, ,1-%x,)% ——— > ()
xl 1 xl 2 1’71 1 17~ (2")3/2 1
(4.22)

where, for the same reason as discussed in connection with the 3-
. . . 2
. particle bound state wave function no term proportional to Sm” has

been included. Substituting this result into eq. (4.19) with M=m,

we find that
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Upon introducing this divergent integral into eq.(4.20) one finds

. 2,
that the expression within curly bracket multiplying FéM )(kl,xl;

-
k2’x2) is given by ~X2x1K2ﬂ (lez) where K2 is defined by(4.21),
and
1
1] - ] t
m(z) = ——l——j dk! J x (1-x7)dx
4(2m) o [ﬁ'2+m2(1-x'+x'2)][zx'(1—x');£'2-m2(1—x'+x2)]
(4.24)
»
Hence for sufficiently small X , this contribution to (4.20) may
be neglected as compared to the left hand side.
Making this approximation and going to a reference frame
- 5 o . . . A
where kl--kz-q we find immediately that (4.20) may be
written in the form
+2 2 +2 2 2 2
2 +m q +m (M°) ~» A (M™)
{n°-1 -1 T )¢ (q,x) = —575 f (o) +
x 1-x 2 (21?)3 21
1
Az 9| . dx' -+ +| ‘| (Mz) +l ]
+ —3 | dq ———— V(a,x3q',x") £,° “(a’',x") (4.25a)
L3 2(2‘") x’(l‘x’) *
o
»
2 2 2
where f(M )(;,x) = f(M )(E,x;-;,l-x) with f:'(M ) defined by

eq. (4.12), and where
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-
Lot +2 2 +>,2 2 > >, 2 -
V(q,x;q',x") = 2xTXT) 2 g vm _ g'T4m (9=g7) #m_4-1
x-x' 1-x x' x-x"'
(4.25b)
. *2 2 »,2 2 > >2 2 -1
+ 0(x"'-x) {M2_q +m-  q'"+m (q-q') “+m }
x'-x x 1-x" x'-x
Finally we still have to consider eq. (4.19) coupling the amplitude
2
f{M )(K) with the two-particle amplitude.
. : | > m?)
Substituting in eq. (4.19), with k=0, the expressions for f2'
and  6m? obtained from eqs. (4.25) and (4.23) we find that the
. divergent part of the integral in (4.19) combines with the term
proportional to to sz, giving a finite result proportional to
2
. Az f{M ) times a finite integral; thus for small A this contribution
may be neglected as compared to the left handside of eq. (4.19),
'sinée we are looking for bound state solutions with M%2m. Hence
we obtain that
1
2 '
fl(M)’< J\3/2)3 212 49! 2 -
2(27w) M x'(1-x") 2 q'7+m” _ q'"+m
o M x' 1-x"'
. 1 2
. >y dx" >y .00 " M7) >y, "
dq TI=x™) V(q',x';q",x") £, (? »x")
o
. (4.26)
m?) | . .
- Thus “fl is proportional to the third power of the coupling

constant.

obtain an integral equation for the

Upon neglecting this contribution in eq.

(4.25a) we

2-particle wave function

alone which has a form very similar to that obtained in the non-
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relativistic case.

Finally we wish to point out that the integral
equation just derived in the small coupling limit is equivalent
to that obCaiﬁed by Weinberg for the T-matrix in the infinite
momentum frame, after retaining only one meson exchange
contribuitions in the interaction kernel [6]. Tt is also the
same as that obtained by the authors of ref. [14], who however
did not discuss the details of the approximation scheme including
the effects of renormalization, nor have they pointed out the
extreme analogy that exists between the formulation of the bound
state problem on the-light like plane, and the corresponding non-

relativistic formulation on the plane t=0,



26

IV. CONCLUSION

The calculations of the previous sections suggest that
the states (3.9) may provide a very convenient set of basis
states to work with if one is interested in calculating the
invariant mass squared of bound systems. In fact, as has been
shown by Feldman, Fulton and Townsend ﬁ4] » the eigenvalues
of the Wick equation computed using covariant perturbation
theory agree with those obtained from an integral equation of
the type (4.25). It has been our purpose in this paper to stress
the extreme nonr-relativistic analogy of the formulation on the
light-like plane t+z = 0O, staying as close as possible to the
non-relativistic treatment of bound systems at every step of
the calculations. Of course we could not avoid those relativis-
tic complications which are connected with the fact that the
particle number is not conserved, and that renormalization
effects have to be taken into account. On the other hand we have
shown that some of the problems one encounters in formulating
relativistic problems on the space-like plane t = const. could
be avoided by a proper choice of basis states. In particular

we have seen that the Fock space spanned by the eigenvectors of

-

P, and PO%PZ, where Po is the full Hamiltonean of the inter-
acting system, has a structure similar to that in a non-relati-
vistic theory. The use of the light like plane has accomplished
a great deal for us by providing us with relativistic operators,
analogous to those of eq. (2.6), having the property that they
annihilate the physical vacuum. This allowed us to use non-

relativistic Fock space methods to derive integral equations

for the bound state wave functions which are much easier to




27

handle than those obtained in a manifestly covariant Bethe-
Salpeter approach, Forrscattering problems, on the other

hand, the states (3.9) will in general not be a very convenient
set to work with, except possibly at high energies. In fact,

in the Bjorken 1imes for deep inelastic electroproduction where
the leading contributions to the structure functions are deter-
mined by the current commutators restricted to the lighf—like
plane t+z=0, the eigenstates of ;i and P _+P_ behave like
free particle states, coupling pointlike to the electromagnetic
field. In low energy sScattering processes, however, we do not
expect these states to be very useful since their definition
involves an integration over a surface which includes dynamical
informatfon at all times; their relation to the free particle
scéttering states is certainly a complicated one. For the same
reason, however, these states may in fact provide us with a

very economical way of handling bound state problems, as opposed
to using scattering states which seems unnatural when dealing
with dynamics at short distances. Of course by using the light-
1fke plane we had to pay a price, for we have lost manifest
Lorentz covariance. Although fhe basic formulation does not
depend on any particular choice of Lorentz frame, the approxima-
tions made are frame dependent, since the space spanned by the
states (3.9) for fixed n 1is only invariant under the kinema-
tical subgroup of the Poincare group which leaves the surface
t+z = O unchanged (see Appendix). Henée the cutting off procedure
used in deriving the integral equation for the two-body wave
function is not an invariant procedure with regard to those

transformations which take us out of the light like plane. We

hope to come back to this question in a future publication.
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APPENDIX

The generators of the Poincare group written as integrals over

the 1light-like plane 5%5 =T, have the form++

. |
P = de™ T A.1l
" [ o (A.1)

!

§
Muv -N[do m

pvé

where

do’ = n do (A.2)

with nV and do defined by eqs. (3.3b) and (3.3¢) of the text,

and wvhere Tvu and muv6 are given by the following expressions

for the case of the Lagrangian (3.1)

Tov © au $ 3.6 -8

< (A.3)

uv
uwvé "Xy Tus ~ %y Tys

It is convenient to consider separtely the genérators which generate
transformations which leave the surface (3.2 ) invariant and those

which take us out of the plane t+2= const. The former ones are

given by
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= -

Pg P+ Pz Jdo nI T n (A.4a)
= 3 =

Pi {do Ti nI (i=1,2) (A.4b)
- = -

J‘3 M12 -[do (x1 Tz x2 Tl ) nL (A.4c)

oi 3i ui yv
(A.44)
and
ey, =l Mr ocmox ab v
K3 M°3 5 do(n.x m Tuv m.Xx n Tuv)n (A.be)
where
m" = (1,0,0,1) (A.4F)

The operators (A.4a,b) generate translations in the Light-Like

plane, while (A.4c,d) generate rotations in the plane. K

3
generates boosts along the z-direction.
The remaining generators are
- U v

PT- Po Pz - J’do m Tuvn _ (A.5a)
M . +M_.=m¥ M .= do(m.x T, -x. m T )nv (i=1 2) (A.5b)
oi 3i ui iv 71 uv ’ ’
where PT generates parallel translations of the plane tz. T,

2
and Moi+M3i generates rotations of this surface. Thus PT plays

the role of the Hamiltonean in this formulation.

Expressing the above generators (A.4) and (A.5) in

. (1) .
terms of the fields ¢ (x);
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(+) 1 T dn _t,» ik-
¢ T (x) = dk oaT(k,n;1) etk %
(210372 j J-J an il e
o
(A.6)
- t
6 = [69 (0]
where k.x = nf - iﬁ;;' one finds afte£ making use of the
relation
Lim a(zun;T) = 0
n-+20
which follows from eq. (3.8 ), that
’ - zfda o) (3, 2en?y ¢, xwamcb<+>4,<->,,<b<+>¢<-)¢<->, (4.7a)
- (#) & ,(-) )
Py zj’do ¢ g O , _ (A-7b)
3 - Zufda o) %, 07 | (A.7¢)
3, -—2~[do_¢(+) (x, 3,mx, 3)) ¢é‘) (A.7d)
Ry = T P fZJ[do £ 9, o) 2 6 () (A.7e)
Mg = My, = 2~[.do ¢‘*)(xi 3= 27 ai)¢é') - (A.7€)

M #M, =2 [‘do ;09,6006 (a6 Jhdo x; P, (x)

.

(A.7g)

where
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@T(x)=2-§l¢(+)§l¢(—)+2m2¢(+)¢(—)+M¢(+)¢(+)¢(—)+¢(+)¢(-)¢(-) )

b (A.7h)

and 85 =3/8E ,Bi = 3/axt , ¢€=3F ¢. For simplicity we have

>

suppressed the argument of the fields. 1In writing down the above
exptessions we have normal ordered for the usual reasons. The
corresponding expressions in terms of the operators (3.3a and its
adjoint can glso be easily obtained by making use of (A.6).Notice
that because of (3.4) all generators annihilate the physical
vacuum. Since the above integrals (A.7a-g) are independent of
the surface T, as may be verified by making use of the equation

of motion

2
-39 400 = (Tme) + 5 00 (A.8)

where : ¢2: denotes the normal product, we may chose as in-
tegration surface the plane T = 0. Since on this plane the ge-
nerators (A.4) do not depend explicitely on the interaction, the
states (3.9) will have simple transformation properties with regard
to transformations generated by the operators (A.4). It also
should be noticed that the integrals (A.7) do not contain terms
¢(+) or ¢(~)

constructed only from the operator , which is a special

~property of the formulation on the light-1like plane.

The commutators of the generators with the field operators

. may now be derived by making use of the commutation relations:?
N o]
* -) (+) 1,2 _* dn -in(g-£")
[¢ (x),¢ (x'):] r - §(x,-x]) €n e n
T=T L L
2 2n
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and

(A.9)

[oG, o(x1)] = % e(E-EN8 (X~ X))

and the equation of motion (A.8). One finds after some algebra

that:
[ 6(x), P ] = i3 6(x) (A.10a)
[ o), 2l = i3,0(x) | (A.10b)
' [ ¢¢x), P, = i3,0(x), (i=1,2) (A.10¢)
' [ 000, 3,1 = i(x,9,-%,3,)6(x) (A.104)
[ 0x), ®y] = i(13 -E3.)0 () (A.10e)
[ 6C,nMM ;] = ic2n 2j7%;2) #00) (A.10£)
[ oGx),m"m ;] = 1(280,-%,3 )6 (x) (A.10g)

These are in fact the usual commutation relations written
in terms of the variables appropriate to the light-like plane.
Furthermore one may verify after some fairly lengthy calculations

that the operators (A.7) satisfy the Poincare algebra.

Finally we wish to show that the matrix element (4.10)

only depends on n and ng through the ratios X, = ni/n .
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To this effect we consider the corresponding commutator to (A.1lQe)

for the operator a( ﬁl,n):

[8(-l:l.n), K3] = in an a(.f(i_srl) ; (A.11)

Since the operators (A.7a-g) form a representation of the

Poincare algebra, (A.11) implies the following transformation

Law:
i K -ilK
e 3 a(il.n) e a(El, eA n) (A.12)
’ Furthermore from the commutators
[Py Ky ]= i P
and
[ Pes Ky J=-i Pe
we deduce that
ilK *>2 2 *>2 2
3 3 ky +M -+
e ij_,ﬂ, Ln > - ‘k_L’ exn , k"'+M \)
en
. k242 ' g
. where | k,,n, > is an eigenstate of IZ_L’ PE’ and PT with
a . - . *>2 2 .
eigenvalues k ,n, and (k +M )/n , respectively. Thus the

1
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matrix element (4.10) 1is invariant under the replacement

n -+ exn, ny -+ exni, and hence depends only on the ratios

xi = ni/n.
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Footnotes and References

On leave of absence from the Institut fur Theoretische

Physik der Universitat Heidelberg, Germany

We have chosen to write the integral in this form in order
to preserve the analogy with the free destruction operators
written in covariant form over an arbitrary space-like sur-
face, and to which the operators (3.3a),when multiplied by

f. >
exp{i(kf+m2)/n11}with n = k°+kz , reduce if ¢(x) is a free field.

We shall loosely speak of the states (3.9) as being n-particle
states. In the Bjorken limes for deep inelastic electropro-
duction, where the leading contributions to the structure
functions are determined by the current commutators on the
light-1like plane T = 0, such states would exhibit parton-like

behaviour, coupling pointlike to the electromagnetic field.

. .
Unfortunately the approximation scheme is only consistent

- for small coupling.

++
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2)

2)

We shall verify below that the operators (A.l) defined on

the light-like plane still satisfy the Poincaré algebra as
required for the Lorentz invariance of the theory. The reader
may also consult the work of e.g. Neville and Rohrlich, and

Chan-Ting Chang et. al., ref.'4!.
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Figure Captions

Tree-graph approximation to the three-particle

wave function as given by eq. (4.17).

Graphical representation of eq. (4.18), which con-

nects the one, two and three-particle amplitudes.

" Graphical representation of eq. (4.19), which con-

nects the one and two-particle amplitudes.

Graphical representation of eq.(4.20) including self
energy contributions as well as the terms proportio-
nal to 6m2 needed for mass renormalization. We have
chosen to label the diagrams by the variable n rather
than x. The rules for computing these diagrams are
just Weinberg's infinite momentum rules. An energy
denominator for the 3-particle intermediate states

has to be included.
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