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ABSTRACT

A study of the new renormalization group equations
is made, wusing the dimensional regularizdtion scheme. It is
shown, in a model-independent way, that these equations can be
derived simply by writing dimensional analysis for the
regularized Green functions and next reexpressing the result
in terms of renormalized parameters and fields. The solution,
valid for arbitrary momenta, involves effective momentum-
dependent masses and coupling-cohstants. For spontaneously broken
gauge theories the solution involves as well effective momentum-
-dependent vacuum expectation values and gauge parameters. We
exemplify these features in the context of a spontaneously broken
abelian model where the roles of these effective momentum-

dependent parameters are explicitly discussed.



INTRODUCTION

The equations of Callan and Symanzik [ 1,Z2] and
the closely related renormalization group equations of Gell-Mann
and Low [ 3:] have bheen extensively used in the
study of the asymptotic behavior of Green functions as the momenta
go into the deep Euclidean region. However, in deriving this
large momentum limit of the equations, one has to make certain
assumptions, such as the absepce of mass terms in the asymptotic
region etc. In addition, it is difficult to use these equations
to obtain non-leading terms that are important for weak ~and
electromagnetic corrections to the hadronic symmetries.Moreover,
computations are usually done within models which involve somec
internal symmetry group, under the assumption that the symmetry
is preserved. In the real world, however, most of these
symmetries are broken, and the question of the validity of high
momenta solutions of the Callan-Symanzik equation arises. New
renormalization group equations have been proposed [[ 4,57 ,which
can be solved before passing to the high energy 1imit and wherec
the above mentioned questions can be explicitly studied. The
solutions of these new renormalization group equations for
general, non asymptotic momenta involve, in addition to momentum
-dependent  effective coupling constants also momentum-dependent
effective masses. Also, in the solutions of spontaneously-broken
gauge theories in a general renormalizable gauge will appear
in addition to a momentum-dependent effective vacuum expectation

values,momentum-dependent effective gauge parameters.




- In this paper we study these new equations in renor
malizable field theories regularized with the continuous dimension
method [ 6,7 . One of the compelling reasons for using
dimensional regularization is that the symmetry properties of
the Lagrangian, in particular the scaling properties, are
preserved h} the renormalized theory. The method is remarkably
clear and powerful to study the response the Green functions to
the scale transformations p +) p. The Ward identities so
obtained for regularized but unrenormalized Green Ffunctions
~away from poles at rational values of fhe space-time dimension
'n, are true relations between finite quantities. We show, [for
arbitrary renormalizable field theories, that the content of
these Ward identities is just dimensional analysis in n dimensions.
Fprthermofe, by rewriting these dimensional analysis equations
~in terms of renormalized parameters and Green functions, we are
able to derive the new renormalization-group equations above
’ hentioned, for gauge theories with or without spontaneous
breakdown of.gauge symmetry. To-illusfrate these ideas we consider
in dqtéil an abelian gauge model with spontancous symmetry
breakd@wn, in the one-10op approximation. We show that in this
case, where the effective coupling constants are not asymptotically
small, the dssumptions made in the usual renormalization group
equation will give ih general an incorrcct resulf, as the effective
momentum-dependent mass, vacuum'expectation value and gauge
parameter do not vanish at high momentum. |

The paper is organized as follows: ié sect 2 we
dérive the " new " renorﬁalization group equation. In sect. 3

the model is discussed and we determine the counterterms needed




to solve the equation, in the ohe-loop approximation. In order

to obtain an explicit solution we choose a renormalization proce
dure with mass independent counterterms [ 8,9,10.] In sect.4
the solution is discussed. Finally, we show in the appendix
that by rescaling fields and parameters in such a way that the
counterterms are mass independent, all the vertices are made
indeed finite. The analysis makes use of the Lee's identities
for the proper vertices of the theory [ 11,12 ].

Our space-time metric is 6uv’ 4-vectors being assigned imaginary
fourth components. Thus the momentum 4-vector is K=( k.iK0 )

with norm squared k2

= v = 2 - 2
KK, K XS




2. The ﬁew.renormalization group equations.

Consider'a renormalizable theory with a set ¢; ( i=1,...s ) of

fields and_where { C:,Ca; a=1,...t} denotes the set of Fadeev-

Popov ghosts. We wish to study the response of the regularized
but unrenormalized Green functions to an infinitesimal scale

transformatioﬁ of the form:
0100 = 4;(x) +e(xd + 4 )60 (D)
c,(x) = C (x) + e[.x.8+% (n-2) Je,(x) (D)

where € is an infinitesimal parameter and dn is l(n-l) for
. )

fermions. ( The above assignments of d, are necessary for the
action in n dimensions to be dimensionless ).

The resulting Ward identities are conVeniently
;tudied in terms of the generating functional for the one-

particle-irreducible regularized Green functions T [4] defined

by
, , n

r [¢]=ZH% 'rIdxiQui)F(xP.”xQ. (3)
n 1=

It has been shown [ 13 7] that the following Ward

identities hold‘forAany ( gauge) theory:

1 6 8T 1 16
Xe a+d = .+ 2= [xe3+=(n-2) 2 2«1+
E It i 8J ¢ 1s 5C, 2 1 i 6k%
: (4)

C, c:

¢ =ir, (0,9).

1.
LKy > K,



Here J,K and K* are sources and A represents the divergence of

. the current associated with the scale transformation. FA(0,¢) is

defined analogously to T(¢) and represents the insertion, with
zero external momentum, of A in the Green function. Now, by
taking functional derivative of T with respect to ¢ at ¢ = 0 we

obtain the Ward identity satisfied by the function T (xl,...xn).

It is more convenient to study the resulting Ward
identity in momentum space.‘ We obtain ( repeated indices imply,

summation and the suffix o indicates unrenormalized quantities):

d K ¢
( pir;p—— = Dp ) Ty (pys-eepy) =i T, (0.pg,..opg) (5)
i

On the other hand the regularized Green functions
depend also on a set of masses m? (i=1l,...r), a set of coupling
. constants gg (i=1,...u) with dimensions d? and, for gauge

. . . Oo,.
theories, also on a set of dimensionless gauge parameters si(1=1,..v).

Then dimensional analysis tells us that

5 -~ D) T, =0, (6)

and comparison with (5) shows that the insertion of one zero-

momentum A is soft, in the sense that

K s o] ) o o 23 K
FOA (Oapl’-°'pK) =1 ( mi 'a"";n"b‘ + di gl 'a“‘(’; ) _Fo(pl’”'pK)' (7)
i *i

This relation can, of course, be explicitly checked in each

particular model.




Until now we have been treating the case with no symmetry breakdown.
To include spontaneous breaking we must allow for the pbssihility

20

of some of my being negative. Equation (4) is not affected in

this case. To obtain the Ward identity for the regularized Green

. . . ~0
functions with <¢°> = v? we write ¢0=¢ + v®and note that

8 0.0 0 8 o 3
dx 40 ()— — r(e263W= [ (dx 8000—0— + v>-2. 1 1 (8
S‘ X ¢ (x 6¢;(x) ° vy [‘S x & X)6$°(x) v1av2 115 (8)

i

Proceeding along exactly the same steps as hefore, we ohtain the
following Ward identity, that exhibits the response of the regularized
Green functions to the scale transformations (1): ( dimensional

analysis in n dimensions)

d o 3 0 .0 ) 0 O d K _
{pi tmy o ! di Vi o " di g o DI‘}Focpl’"'pl()"0 (9)
op . om; 9 v, 3 g.
i i i i

where di is the dimension of the field ¢g in a space-time of n

dimensions. In this space-time the dimensions of the bare parameters
depend on n. We would like that the renormalized parameters keep
their physical dimensions, for each n. This is done through the
introduction of a mass parameter p [ 5,8 ] that absorbs  the
n-dependenf part of the dimensions of the hare parameters in such

a way that the renormalized parameters end up with dimensions,

for any value of n, that coincide with the dimensions of the
corresponding'bare parameters at n=4. By first writing T in terms

of the renormalized parameters and then reexpressing.the

derivativeé ao . 80 , ao
om; AV, og.
i i i

in terms of renormalized quantities

with help of the chain rule we obtain



{p, + (Dm,)—2— +(Dg, )= +(DE,)—2— +(Dv.)—— -D_}TX(p,,..p,) =0
1 i i i i "ol K
api_ ami agi. agi avi (10)
= 0 3 10 .0 3 o o 3
where D= my —— + dK Ve =5 ¢ dK 8x —5
amK avK agK

By dimensional analysis,

Dmi = ( l-u—3 )mi
du
_ )
ou

Dg; = (d;-u— g,
oy

where di is the physical dimension of the coupling constant g5

DE, = -u2 €,
ou

Finally, using the fact that

3
— *dy gg—Dp IT (p;.m;.v;.8;.8;)=0

oy api 13mi i agK
we obtain:

om, av. g . 3k .
(g + (2 )2+ (u—2)-2 L2 2
du ami du avi ou agi ou

i} F0=O (11)

This equation, which can also be written as

u .4 Fo=0 is obvious, as Po, the unrenormalized Green function,

du

LT



does not depend on u. It is often taken as the starting point for
the derivation of the 'new' renormalization group equation. What
is not obvious is the connection bepween it and scale transformations,
i.e., dimensional analysis, in n dimensions.
By rewriting the unrenormalized Gteen function in

terms of the renormalized one:

I‘o(pii“') = Zl" r(pivmi’vlsgivgvu) (12)

we obtain the 'mew" renormalization group equation

du dg am,; v 9E '
K K K K (13)
where
og am v
By=H X Sy=u— § Pg = —X
ou oy “9u
(14)
9
aK = u.._..._K_ and ’Y=u-—'—a— log ZI..
du | u

Remark that in deriving the above equation we have
considered vi,mi,gi.ii as independent parameters. Our ultimate

interest is, of course}nthose values of vy that satisfy the

spontaneous breakdown condition sr =0 , at least in the trce
§d. v. .
_ i i
approximation. This condition will lead to a relationslup

among v and the other renormalized parameters of the thecory.
In order to be able to find a useful solution to the
renormalization group equution it is however important that the

coefficients BK,...Y be explicitly independent on u. The mass




independent renormalization procedure discussel below will ensure

the fulfilment of this condition.

3. The Abelian Model

The abelian model discussed in this paper is described

by the Lagrangian

2
: M
S o _ o \2_ s o 2,0 * _ * 2
Le =2 Ou Ay -3 A )7-[a-deg A 0 %5 (8, ¢9-ho(6, 6)° (15)

where ¢ is a complex scalar field and the suffix o indicates

that the quantities are not yet renormalized. We take Moz>0,

ho>0 so that ¢ must develop a vaéuum expectation value to make

)
the physical masses of the scalar bosons non-negative. We will

write accordingly ,

¢ =

o (vy + ¥y *UX ) (16)

1
Nz

The Lagangian in Eq. (15) is invariant under the gauge transformation

i6
% € %
(17)
A o, 1
e Au + . aue
o
We choose a general class of gauge conditions given by
0 o
F (‘bo,Ao) = \/Eo (3u AU M 'E‘O‘ Xo ) =0 (18)

where £ is the unrenormalized gauge parameter and A = A _(£_,v_,
) & o 0’0’0
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mo,go,ho) is a parameter to be identified later.

The gauge condition (18) implies that the Fadeev-Popov effective

Lagangian will contain also the term ¢c_M_c_, with

o o o’

M, = 32 + to e, (W, + v,). The full unrenormalized Lagangian is
0

given by
Lo=-2 (o A% -3 A°)% - (5 -ie A%) & IZ+M9-2(¢ ") "
4 - v u U M 0O U (o] 2 (o] (Q

(19)

_ 2 1 o, Ao 2,= 1a2,)
T (0570007 =2 (0, A o Xo) AL g2 e, (W *v )| C,.

Notice that in n-dimensions the fields Ag and'¢b will

have dimensions 2%2 e, will have dimension A-n and he will

2
have‘4-n.

A simple way of generating the necessary renormalization
counterterms is by performing the folloving scaling transformations

on the quantities of Eq. (19):

1 3
o] 2 " -
Au & Z3 AU s ¢° Z ¢ (20)
with' Z3 and Z dimensionless and
E%i _% yA 7
n-4 _ "h 2 _ "M 2
u eo = 23 e , U hO = ’Z—z- h . MO = -——z~ M (21)

where now the renormalized coupling constants e and h are

dimensionless for all n.



N

In addition, the parameters Eo and Ao will be renormalized

so that the gauge fixing term remain invariant. This requires
£,= ZS E ~and Ao = 23 Z A (22)

and, consequently,

A .
VE (5 A° 4 2o \E A
| EO(Bu Au + 3 Xo) E(Bu AH+E X) (23)

o

Strictly speaking there is still another counterterm,
associated with the FadeeévPopov ghost term. As we are not going
beyond the one-loop level, it will not enter our discussion.

We require the field ¢ not to have ( divergent) vacuum

expectation value, so that a further rescaling of v_ is needed.

(8]
The entire renormalization of v, reads:
4-n 1 1
u 2 Vo = Zf va v (24)

Notice that v ( the renormalized vacuum expectation value)
has always dimension 1.

The dimensionless counterterms introduced above are
defined to be precisely those needed to subtract the poles in the
corresponding Feynman integrals, and thus give a finite result.
Clearly, the requirement that the Green functions should be finite
at n=4 does not fix the counterterms, and one must add normalization

conditions to eliminate this ambiguity. Together with dimensional

regularization we adopt a normalization prescription which requires
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- that the couterterms contain only poles at n=4. This also
guafanties that the renormalized theory will have the same symmetry
properties as are formally present in the Lagrangian [ 14 ].With
this prescription the parameters that appear in L do not coincide
with the physical masses and coupling éonstants. They are however
perfectly suitable renormalized parameters in terms of which the
Green functions are regular in the limit n-+4.

It can be shown [ 8 ] that the counterterms generated as
indicated above are independent of the mass and of the pérameter
u. This ié essentially due to the fact that, with dimensional
regularization, the residues of the poles are polynomials in the
masses and in the momenta. Since u only appears as a power of
u4'n ( when the Laurent expansion of each Feynman  integral is
made , onlyvlogarithms of v will appéar‘) and since the Z's are
dimensionless, they must be independent of the masses and yu.

Performing the substitutions indicated above we obtain

for the renormalized Lagrangian the expression:

4-n

_ (n-4)
2 1 N Z
A - z[(3 -ieu A (2

1 wZ oveprix ]2

< ol

v 3\)

: 1 n-4 n-4 1
L1 2 2 2 . 21 4-n 2 .2 R
+ ; ZU M [Zv n vep+iX ] ~Z Zy v h [u Z, y+w+1X] (25)
4-n n-4 %
1 A 2, = 2 2 A ; 2
- £, A + X)) T [ 3%+ " : e (Y+p z,v) ]cC
We determine X by requiring that the cross term which :

couples the longitudinal cnmponent of the vector boson to X be

absent in zeroth order of perturbation theory. This yields A=-ev.
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The Feynman rules are presented in Fig.l. As mentioned
before, v is kept as an independent variable. Only after we solve

2
equation (13) will we put V2=M- as a relationship among

2h
renormalized quantities, making <¢>o vanish in the tree approximation.

We shall determine ZV§1+zv by requiring that <¢>o be finite in

higher orders. The one-loop tadpole terms are shown in fig.2,while
the necessary counterterms can be read from the Lagrangian (25).We

obtain, therefore,

2 2 1 ) _
[hv zp - Mizy + " ( 3hv“-M“) zv']-

(26)
_ .2 2 h 2
= ez, [3(ev) + 3—7-(3 hvz_Mz) +_% (hVZ_M2)+hv ]
e o “E‘
where Zh = 1+zh, ZM = 1+zM and Z = _17 1
° &n 4-n
Let us now look at the vector boson self-energy:
T . (k%)= Ak%) 5 +B(k%) (k% -K K ) (27)
uv uv HV u v’

We shall determine the counterterms so that l luv be finite as

n + 4. The relevant diagrams are shown in fig.3. We then find:

pole 2 2
| Iuv = (z+zv) (ev) Guv + 23(K Guv - Kqu) +

(28)

v -k, K)) 1 =0

+ezzo{ -(3+l )(ev‘)2 ) v
g

RRPRCH
2 H

>

Therefore we mnmust have
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(29)

Note that since e, and L, are gauge independent, e will also

be gauge independent. We can determine Zy by requiring the four-

point function of the scalar meson ¢ to be finite. From the

Feynman diagrams shown in fig. 4 we find:

r zy = [ 10 2 -? r+ 3] el ZO (30)

where 1r = h .

el

A particularly convenient way to determine Zv is by the use of

Lee's identities ( see appendix). We obtain

v = Z (31)

oy
o

( To check this result an independent determination of z, was made
by the requirement of regularity of the 2-point function of the
scalar meson Y at n=4 ). A

Therefore, from (26),(29),(30) and (31) we find

z = (3+l ) e2 Zo
; (32)
-1 2
2y = {-= + 4r} e Z,
£
Zy
Note that — 1is gauge independent and therefore h will
2 X .
Z

also be gauge independent, as ho does not depend on the gauge
either. Similarly, due to the fact that Mg and . are gauge

Z
independent, MZ will also be gauge independent.

These considerations are necessary if we want to write equation
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where v,g,h,M,E are considered as independent parameters. We
observe that indeed the counterterms are mass independent and do not
explici;ly depend on yu.

Finally, it remains to be shown that all other vertices
are made finite by the above renormalization procedure. This is

discussed in the appendix.

4. Solution of the new renormalization-group equation.

In our model, the renormalization-group equation satisfied
by a one-particle irreducible Green function involvilng n, external

scalar particles and n, external vector bosons becomes:

. n n
(u3—+3e~§+Bh3_+53_+p2_+aim+y) r.s» Vv

= (33)
ou oe 2h oM v ag (pi’M’vaah’gvu) =

Using, the definitions (14) and the counterterms

determined in equations ( 29-32) we obtain in 1lowest non-trivial

order:
3
n-4 e
B, = — e + — (34)
2 48 2 -
B, =(n-4) h + I (1onti6 efn o+ 3 e (35)
-:
s
1 2 e? re 1, 9
a = —,e’f ;v =—= |(~3)n,+ > n_ (36)
24112 lénz I 3 § 3 V-
1 2 4-n 1 2.1
§ = Me“[-3+4r] ; p= v+ e“( =+3)v. (37)
16m2 ] 2 16wt £

>

Notice the important fact that the coefficients Be,...y
are independent of p. In order te iind a solution to this equation

we first make a chanie of variahle. Calling QZ an arhitrary

2
quadratic function of the momenta D introduce t=! log Q. We

2 uz.
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see that the parameter u, which is intrinsically connected with
the dimensional regularization scheme, effectively fixes the scale

of the momentum dependence of Green functions. Then the equation

becomes:
(--a-—+ Be—i +Bh3—+5§—+p§—+a3f+y) r' (p.,,e,h,M,v,t 0= 0 (38)
At de 3h am av 3¢ 1

The solution of this equation is obtained in two steps
[ 15 ]. First one defines momentum-dependent effective coupling
constants g, h, mass M, vacuum expectation value v [ 16 7 .gauge
parameters £, which -are solutions of the following set of

differential equations:

28 . g (8,5,) ; g (EED

at at

oM = FF v s RE.V

—_—F 6 ( eoﬁvg) ' ’ = p ( e’H’E’V)

e 3t (39) !

IQJ
Yy

"

Q

—~

ol |
=1
™
N/

with the boundary conditions

T (t=0) =e ; W (t=0) =h ; M ( t=0) = M ; ¥ (t=0) = v;
(40)
T (t=0) = £.
Then the solution will be:
— ——— — t — —-——
I (p;.M,v,e,h,t.5=T (Pi,M,V.e,ﬁ,E,O)eXPf y ( e,h,E) dt* (41)
0o

The main achievement of this solution is that the explicit
t dependence of T is transfered to an implicit dependence through

e,M,v,h,E, which are independent of the particular Green function
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considered. Furthermore, it is important to notice that this
solution is valid for any choise of the momenta D;- Wherever e
and h (t) get small compared to unity, we can relay on perturbation
theory. For this domain, using eqts. (39),(40) and (34-37) we find,

as n+ 4,

— -3
ot 487
and
oh _ 1 —4 -2 —_
h. 1% [wov? 67+ 37, (43)
ot 8
where T = EZ‘
22’

The solution of (42) is

22 2
-2 e . e’ t
e’= with <1 (44)
1_e2t 2477
241r2

Equation (43) is most conveniently writhen in terms of

r, becoming

3T 1 =2 =2_ 19 =
— = =% e ° [10T"- == T+3] (45)
ot 8n 3

which can be solved by quadratures. Observe that, the discriminant
q2 >0, so that in this region T increases with t, that is to say,

h increases faster than EZ. From (45) one then gets

r =28 (46)
1+bG
'ezt
where G = -tan [ 3q log ( 1- sy V] (47)
24w
q being the square root of the discriminant, and
19 19
-~z T —x-6r
a=20 3 30 (48)

q q
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The above solution requires

2

Ul e’'t i '
- — < log ( 1~-——7 ) ¢ = (49)
6q & 24m 6q .
so that
a2 '
et ¥l (50)
241r2 2q

This means, using (44), that e2 it self must be small,
that is, the perturbative calcularion makes sense only for a
theory of weak and electromagnetic interactions. For these, e2 is

typically of order 10_2, so that, by (49) our solution is valid
241000
for a very large range of momenta in the region 97< e . In this

u
region we can effectively solve thé-system of equations (39),

finding
M _ 6 a . . _ 392
- = exp {~ ) [ bat-log (cos a t+b sin ot)] with a= i
M q 1+b 8w
— 2 2 _
v 3e e 1
- = (1+———7‘t) exp — =t (51)
v 167 167~ &
£ 2 (1+-2" ¢t) - s, 1 1
2 = v Y= —p [ —=*—5- (-3ng+=n) ].
£ 2472 1672 [ £, et Sz Vv

' 241r2

Perturbation theory cannot tell us anything ahout the

limit t<+»., We will assume here the existence of the limit and

define
_1lim M (t)
Mw't-)oo
,~"'tv
v_ = %12 v (t) (52)

Note that, except for the cases when M_ = v_ =0, one is not allowed

[
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to neglect the mass and vacuum expectation value terms in equation
(38). This means therefore that one does not, in general, obtain
the correct solution by starting with the usual renormalization

group equation.
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AEpendix.,

We have determined all the necessary_counterterms_hy
faking a definite set of vertices and requiring them to be finite
in the limit n+4. 1In order show that these counterterms make all
the remaining Verticés finite we will make use of Lee's identities
for the renormalized one-particle irreducible vertices [11,12],
which are a reflection.of the invariance of the renormalized theory
under a set of gauge tranformations of setond kind. As was shown
by Lee [12]} these identities can be used to show, by induction,
the:renormalizability of the theory to an arbitrary order in
perturbatidn theory. Therefore, we may restrict our explicit
computation to the one-loop order.

To this order and in our model the identities read (we

send the reader to ref. [12] for more details):

4-n
8 o,,1," 2 8§ 40.,1
3, — (L7+L7) + v e |x-v,(@®)]— (L7+L7) -
Von, [ v ]esw
4-n 4-n (A1)

1
2

-[ u—z— e Y + Zv ev + u—f— ey@&j;ﬁ (L°+L1) =0
X :

ﬁere L, is the renormalized Lagrangian in the tree approximation
without the inclusion of the gauge-fixing paft. L1 is the effective
Lagrangian which represents corrections to Lo‘resulting from one-
loop graphs, and the vy(4) are related to the generating functional
of proper vertices with two ghost lines. L

When we eéxpand Yx(¢) around the vacuuﬁ éxpectation values
of the fields, that is, <Au>=<W>= <x>= 0, only the first term,
denoted by y_, is divergent, in the limit n+4. This term is

X
represented in fig.5. The other terms, which represent the proper
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vertices of two ghosts and one field are finite in our model. _
Similarly, when we expand Yy around the vacuum expectation values
of fields, the first term is identically zero,while the others

will be finite. We will be interested only in the divergent part,

as n+4, of the above identity. We get

4-n o 4-n 1
(.}. ZV ev + 1 2 ey )§_Ii +(u 2 ey+ev) .§_.Ii_ -
2 X 8x 8y
n-4 | '
1 (A2)
—u 2 X SL -3 8 ng 0.
89 W osAp

On the other hand, the unrenormalized Lagrangian is inva
riant under the gauge transformation ( 17). This invariance may

be formulated as:

sL SL SL

o 0 o _
au o +eo(‘boﬂlo)dx “€5%o XN =0 (A3)
GAu o o

After renormalizing fields and parameters according to
(20, 21,22,24 ) the Lagrangian L0 hecomes LO+Lct, l.ct representing

the counterterms, so that the above equation mayv be written as

5L on s nd |
1 o Lct ct S _
E z, ev o +(p eP+ev) —Xi—-u ey - -auﬁAu Lct =0 (A1)

Adding (A2) and (A4) we get

n-4 4-n
T—ew+ev)§§~ (L1+Lct)4u

2 oSV eLet) +

S
4-n | (AS)

+ (zV ev+y 2_eyx)‘Lo = 0.

-3 S wleLet)+(u
“cAu

Therefore, if the thcnry is renormalizahle we must have
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4"1’1 2

———s

Y
z., = polepart of (-u 2 X ) = 2e” yA ' (A6)
v » v £ o

The relations above can, therefore, be written

-a(L1+Lct)A +(ew+ev)(L1+Lct)x~ex(L1+Lct)w=0 (A7)

where we have dropped the u term, as we are interested only in

the pole part of the above equation and

- 1 ' ) 1 . | S .
a[L +L;t1A apgx~ (L +L;t) ¢ (L +Lct) =— (L +Lct);

1
U x 8x

(A8)

S (L *Let)

(L, +Lct)
1 v sy

Taking the functional derivative of this equation with

respect to Au,x,w we obtain respectively (I = L1+Lct):

—BFAA? +t(e p + € V) rAuX ~-ex PAuw = 0 (A9)
-SPAX + (ey + ev) FXX,- ex wa = () (10)
-aFAw + (e + ev) wa + éTx - éx Fww = () | (A11)

From the first equation, evaluated at A=y=x=0, we see
that by choosing the counterterms such that the vector boson self-
energy is finite, the vertex [hux will be finite. With this
result it follows from equation (A10) that the scalar meson ¥
2-point function is also finite. By taking the functional
derivatives of equationsk( A9,A10,A11) with respect to Av.w and x

we obtain six independent relations:
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™ | -BPAAuAv+(ew+ev) rAu AXX-eX I‘AuAvlp =0 (A12)
-SFxAAu+(ew+ev) rXXAu— ex.PxAuw _ZPAH¢ = 0 (A13)
‘BFWAA +(ey+ev) rwA x+e FA X -e xrA oo = 0 (A14)
M wh o Tu !
-BPXXA +(eyp+ev) FXXX -exrxxw -2 erx¢ = 0 (Al15)
| —3waA +(ey+ev) Fwa +e1‘Xx -exrxww -erww =() (Al6)
-arAww +(ep+ev) rwwx +2eer-ewaww = 0 (A17)

From eq. (Al14) follows that if the chosen conterterms

make TYA A finite, then T will also be finite. Togethen
wv VA X
. with the previous results, eq. (A16) shows that if the counterterms
are chosen to make T finite, T will also be finite.
Yy ' XX :
Power counting arguments show that graphs with more than
4 external lines are convergent. Using this fact and taking the

appropriate functional derivatives of the equations (A12-A17) it

is straight = forward to show that T and 3T

AuAvAaAB

xxxAu‘rwWXAu’
are finite. This must be so, since there are no counterterms
avilable for the above vertices and the countributions of the 1-loop
terms must be finite. Finally, using these results and eqts.

(A12-A17) it is easy to show that if we choose conterterms such

that Fwww is finite, then the four-point vertices FAAXX’FAAWW'

Fwwxx and FXXXX will be finite. But we have determined the

counterterms already, wi thout the necessty of considering FwA A
' nv

. T and T . These vertices are not directly related to the
vy
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vertices PAA’ rww’rwwww’ which determine all the counterterms.
This is due to the fact that Lee's identities only relate vertices
which are linked by gauge transformations. It can he shown,[l7 ]'

however, that the counterterms already determined make finite

1
AAAA

I r

VAA and _ Finally it ‘remains to show that TAAAA = L

is finite, as there are no counterterms available. The graphs
contributing to the vector meson-vector meson scattering arec shown

in fig. 6. A detailed calculation shows that the vertex FAAAA is

indeed finite. We can understand this result as follows: since

the vector mesons satisfy the Bose statistics, Ll (K
- A AvAaAB

should be invariant if we interchange a+-+8; K ++K4,u+*v;K1++K2,etc.

Now, by power counting, L can at most be logarithmically
AuAvAaAB

divergent, so that the pole part is independent of the momenta.

’2) 3,K4)

Therefore L1 must be a symmetric tensor in indices wuvaB. It must

then have the form

1(pole)
LuvaB 2C( Guv 6&8 + 6u8 GVu + 6ua Sve).

Now, use of Lee's identities has shown that gauge

invariance impliesau Ll(pole) =0 so that we must have (=0

uvop !
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Figure captions.

Fig.1 - Feynman rules in the £ gauge. The wavy, straight, and
dashed lines stand for, respectively, the Au’ ¢ and x

lines. The dashed line with the arfow represent the Fadeev-Popov

ghost and appears only in closed loops. The Feynman rules for the

graphs a)...n) are given respectively, by the following expressions:

a) = ———— + ———
i K2+(ev) af (ev)2+£K
1 1
b) = : 1 1
. 2 2 c) =
i 2 2 M° (ev) . 2
Ko ehy? "Ll i 2 2 M
2 2
a L 1 e) L (4-)/2 gy
1
f) % u(4—n)/2 2hv g) % u(4-n)/22 ey 8t
i i
i £ , o
5) L4 oon, | k) + w{#™en
1
1) 1 u4—n 6h m) 1 u4--n2e2 aaB
i i
l 4-n 2
n) . u 2e aaB

Fig.2. -~ One loop tadpole graphs.
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One 1loop
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graphs for the vector-meson sclf energy.Crosed

are always to be understood.

graphs for the scalar meson ¢ four-point function.

diagrams for Yx. The vertex denoted by ® is equal

graphs for the vector meson four-point function.
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