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I. Introduction

The quantization of models wiﬁh spacé»time dependent
internal gauge symmetries has always been a nontrivial. problem
due to the necessity of renormalization. Since the exhibition
of such a symmetry is one of the mest important and desirable pro
perties of such a theory, one would like {o construct its
quantized version, which maintains this classical structure. Xet
it is usually not easy to set up.a renormalization scheme, which
respects the classi¢a1.5ymmetry.
In this case there are essentially two ways to
proceed(l). One may stick to a preestabliéhed subtraction scheme,
like Bogoliubov-Parasiuk-Hepp~Zimmermann ( BPHZ ](z],which uses
Taylor operators arﬁund zero external momenta. This has the
advantage of easy use, but is in no way adapted to.any particular
‘dinamical structure. This straightjacket forces one to mbéify
_fhe classical Lagrangian in order to guarantee the validity of

the desired Ward-Takahashi identities, which the subtraction

scheme has utterly destroved. The ensuing complications are not
easy to handle(3).

. On the other hand cne may want to pfeserve:the classical
structure as much as voessible and adapt one's subtraction scheme

to the symmetTy at hand. This has the only disadvantage, that

the explicit calculation of a particular Feymnman graph may be

more laborious.

In this paper we introduce a modified version of the
soft momentum space subtraction procedure{4)(5)with the aim of

eliminating all unnecessary anomalies, 1.e. extra terms which

are not'preéent in thé classical version of the équations of
motion and which'épﬁggf:ohi§'Bécause of é.bookkeeping, which is
not suited fd'the—éﬁfti&ﬁiétﬂﬁ;6£lem. _This is true, except for
the trace of the “éﬁéféf—mbﬁenfﬁm.tehsbfu'Bﬁ(x), thch _ is
not soft, and when fermions are ﬁrééent.agtwili.be pbinted out in
sect. V. .

In the following series of papers we will abply this
technique to a non-linear og-model and its zers mass limit, ﬁo
the abelian Higgs-Kibble meodel in 't Hoft's gauge and to non-
abelian models. o .

In section IT we give some more ﬁétivatibﬁ'for what
will be dome in sections III ‘and 1V, which contain the
construction of subtraction oﬁéfétbfé'for.one.iineﬁtoné-ldbp
graphs ) and their'éktensidﬁ'to any graﬁh ﬁia a forest fbfﬁﬁla,
which classifies gfaphs.dccording to internal lines instead of
vertices. In éect; ? we give some exaﬁples including the
equivalence tﬁebrem. ékplicit-dalculations are relegated to the

appendix.

IT1. Motivation

We want to convince the reader that the production
of yet another subtraction cheme in order to remove ultraviolet
(UV) divergences is very desirable indeed.

As alluded to in the introduction the rencormalization
necessary in order to remove UV divergences has to be sufficiently
"soft'" so as not to destwmy the classical structure of the theory,
which we want to maintain, since this automatically preserves all
the symmetries present on the.cl;ssical level.

The usual "“hard" BPHZ(Z) subtractive renormalizationr

employs Taylor operators in the external momenta p. . UV diver-
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gences of any Feynman graph are removed by subtracting Taylor

terms around p; = 0. The combinatorics is disentangled by
Zimmermann's forest formula.. When this scheme is used to study
equations of motion and,consﬂvatioﬁ_laws for composite operators,
one discovers the ocurrence of oversubtracted and anisetropic
normal products, which have no classical counterpart and are called
anomalies.

The purpose of this paper is to .introduce a renormaliza
tion scheme, which avoids ali known anomalies in perturbation
theory, when no fermions are present, except when SE is involved.
One sfeg in this direcfion has been done by the introduction of
the so called "soft" quantizatian(4); wﬁere one employs Taylor
oeprétors also in mass-type parameters. m. . besides the external
momenta  p;. ?ere it not for the existence of infrared ( IR )
divergencies, a soft quantization scheme, using Taylor operators
_around p; =0, m%=0 would inﬁeed fulfill gur requirements. Thié

follows from the following twe rules valid for any composite

object Nsﬁj{x}j, subtracted around P;=0, mj=0 with degree 6&:
I Ng Lol = Ny [3,.060] 2.1y

m* Ns Lo} = Ny, [m? Bixd] (2.2)

Equation (2.2) isfnqtavalid_in thé_hard subtraction scheme and in
equatipnsuof"ﬁotion;éne-obtains-for example cobjects like.-
N4(mzAZ)j=am2§i(A2)H~andf;N¢{A;)'i§ an;aversubtfacted normal
?roduct, since'N2(3;}' is?‘dqua§y+finite. ;These-oversubtracied

objects lead to anomalies:and we have! to avoid them. Our aim is

thus the introduction of a mass-type parameter u, serving as an
IR cut off. This idea has already been used in ref. 6 to derive
a weinberg'type(7) hemogenecus rtenormalization group equation and
in ref. 8 to discuss. the Higgs phenomenon in an abelian theory in
the Lorentz gauge. However eq. (2.2) is not satisfied by the
schemes of ref. 6 and the trick used by the authors of ref.8 is
not immediately extensible to-more complex situatidns. like the
non.abelian: case. _

_ In the.présent ﬁaﬁer on ;ﬁe other hand, we . presezve
boeth eq. (2.1) and (2.2)._;All_nq:mal_éroducts to bebintro¢u;ed
will be miniﬁally subtracfed énd the index § will be dropped
henceforth. e o :

In ordéf to apﬁiéﬁe.thiS'gbal,,ong has te takc 
advantage of the fact, that. a certain number of sub;rattiohs can
be done at m2=0. without running foul éf_ IR divergenéiesﬁ How
many can be doneris_dete}mined by the phase-space d*k,aﬁd :fhe
amount: of derivativéé.5eing'hqok§d.onto a certain line. To keep
track of'this-all.iméqrﬁantgféct; one has to generalize first
the type'ofjéuﬁtrgttién opéfators used‘in the past. . This. will
be. done in sech.IiI; TFurﬁﬁeImdre. one also has to mcaifyf the
usual forest formula_and’¢1assify]graphs according to lines, and

not vertices., This is done in sect. IV,




IIT. Construction of Subtraction Operators

The purpose of this section is the construction of
subtraction operators T[n),n=0,1,2,.... They will be determined’
by the requirement, that the application of (1—T(n)) to the one-
loop integrands: .

£

ot
T Tearoaagn s e

lowers their superficial degree of divergence by {(n+l1) units.
Although for &=3, k k =k;=1 for example, one has
already a convergent integral, in non-renormalizable theories
1ike the non linear d-modeltg), such more-than-minimun
subtractions are necessary. They appear, when the integrand under
consideration occurs as a subgraph in a graph G of degree of
divergence De = n.
Furthermore our operators T(n) have to produce routing
-independent integrals, e.g. the integral over d4k of

2 24-1
Lip*k}™-m"]

has to be p-independent. It must thus be possible
to write the p-dependent terms to be subtracted in the form

‘s/akuf[p,k,m,u). It is then easy to show that

= 4 LRl

- e - su.l:‘tra.;‘tf@ns]k
s (apek Yam®

can be converted into a vanishing surface integral.
We will begin by the simpler case, where in expression

(3.1} 2= 1, i.e.

\ ) o
(“P"'hjb-mb . . (3.2)

This integrand will be referred to as zero-starred loop.

Consider first the Taylor expansion of the zero-starred

"loop around P, = D, m° = 0:
' :
T —
(P*h>2_ml ) h-‘b
o,nz m‘ﬁ
+ -EF; -+ -:gTr +
F Y . 2m¢
mAph e (3.3)
21 |} m* ' 210! &
-7 {?4. e+ 1 -4 (k) 1}24“ R ST

~Ttlera 22-?]

< Ny (Ph)‘('m) (k)

igm

The numbers N?{r)_are defined by this expansion.

To avoid IR ‘divergencies the above expansion has to
be modified. To each term arising from Bsfapz.ar/a(mz)r will
correspond: a newttefmA-whic£ ¢eé5es-to be a derivative although
we will still den&te them by 3;:3;2 for convenience.

The term mzlk4 will be replaced by

1=-% ]

('mz*?\'”)[h‘(hz D T R

(3.4)

: 2 .
when ‘uz. is put-equal-to.zero we.obtain -m“/kz. This guarantees

-that the correct amount is subtracted.off the unsubtracted u-indeper

deént ‘integrand.. This will always.be observed in the following.
The constants p. and: A will be fixed to ensure the appropriate
lowering of the sﬁﬁéifféi&l degree of divergence. Applying the

same procedure-to-éiI terms, ekcePt 1/k2 and noting that we may
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multipiy different powers. of (p.k) and 1/(k2-u2) by different.
polynomials in uz; we obtain the following definition:

(k)™= TR

2 ) 5 S'” =8

+ {m*+ ?\uf‘-' )[hz,{k} z.) UQZ }u"):'].:- -
t’f+ e} ?:.n = ?z' - e

+ (m M::»F ;l’u Rl SNCEE P
, o) o3 I= ?o‘an ?o‘-la. .. .

- Z-F‘R- &t h_‘l-+ h‘-_‘(h_‘,‘&)‘* (ha. ,H- )2. + % A e

[$Y] -
.)Z'-:n.N ) (?1) ) (Ph) 5- { r} ngls in'_-‘_)r “—z'l
(wr r-1o2 3

where  P.T(R) = s A e e

- TP P, 2 e

indicates the sumséfiterms in square brackets containing the -y

powers of e and,i(k;~u2), ranging from (k) = (k*- z) =
: -t

“to (.h,"-'lwl)_ {f'+r‘+-_§"-) : , wheré each term is

L (9 : ‘
~multiplied by a polynomial P(QJ labeled by u and an independent

‘constant § , except the last term, which receives (%- zg) 3
o : = od o

@ = 5_ 3 {or~ ] .

: N ] =even

(n)

This .is:the most general form - for 1 consistentl'

with IR convergence:and making use of only one subtraction peint
2
L .
The countably. infinite number of constants p -and X
parametrizes 2ll* the arbitraryness. of non-renormalizable theories.

The requirement,. that we obtain-equations .of- motion-of the type

" will determine the way A™d

NL[A™*AY = m¥*N[A™ ]+ .. (3.6)

ZA has to be subtracted but will not

fix any of the censtants p or A. We may for example single out
one particular theory, by Settlng all coefficients p equal to

-1

zero, except the one multiplying the highest power of (k ) Thls

means, that we stay as close as possible to a scheme, where all
the subtractions;aré done. at m2= 0. We may also say;ffhat in
this case the-subtfaétion terms display the slowest incréase in
uz possible;- %he‘cpefficients A corresponding to this case are
calculated belowtlo)m '
One may also set all coefficients .p equal to zero.
This gives a Taylor'subtractiqn scheme around p=0, mzéuz,which
will be used in thefépﬁendix.'. - .
We consider now the various cases.
i) n=j¥0. Pﬁ}e .B;Z .terms, r 0 1.2,
From the requirement'that;the superf1c131 degree of divergence
be lowered, in. the futufe.tq be referred to as requiriﬂg- uv

convergence,'.we get

B.( “") m ('m—/d-) (3.7)

Notice_that the different temnsors p_ .... Py in eq.

S _ i i
{3.5) do not get mixed in requiring UV convergence, but that one
gets equations coupling each of the above tensors with no mass

derivatives terms to terms with extra derivatives 3;2, r=1,2,..
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ii) 8y 3;2 terms; n=1,3,5... , odd: r=0,1,2,.....
All terms are trivially of the form. B/Bka f(p.k,mz,uz). The index

"u" takes only one value and the relevant part of expression.(3.5)

reduces to

o N 345 s
SN e ) rt—

N?(r) AL P R (PR (R*) * (K- ,u-) (3.8)

Equating now to zero the coefficients of an expansion
of expression (3.8) in powers of uzlkz in order to obtain UV

convergence, we obtain the following sistem of equations

$-1 . =\ .
€33 i " -—%r-t
Z W= Nj (=) ( z ]) =
T-ey5-v -
L= L
(3.9}
/YL-
=(-—l)s+l (r ) ( _1.""‘ S—l)
with n=1,3,5,
r=0,1,2,...; 1 ¢ s « r,
f%he above sistem has the solution
. o -1
AP Ny (e-5) T +r-s]
s ST m (3-10)
N () s

Equation (3.10) together with expression (3.8) defines the zere

star operators'_r(n) for n odd and # 0.

10,

iii) 3; B;Z termé; n=2,4,6,......, even; r=0,1,2,....

Because of the tensor structure of these terms, they are in general

not of the form 3/3]{cc f{p.k,m,u). We will guarantee routing

independence by taking the derivative- Dy a/ak of the expression
o

{(3.8) with n »+ n-1. The index "u” runs now over two values; we

obtair the expression

(PR (piyd }

=)

P NI Poe (v ) + G ONR e B
(R¥) Ma+ ( k>~ r& )‘ﬂ/:.-\-_r

-+

(m+2r) N - (r) Prs () ) g - '_(3.11)
( h})”z Kh'i-__ t" )-m./:,.-l-_rw v

where we used the convention:
N?(r) =0, if i is outside the-rﬁnge 1l g3 < m.

Imp051ng UV convervence leads to the f0110h1ng 51stem

of equations:

u)..

Z{") XN (r n(ma*lr) >\m -~ ::.NJ*, k—u)(;u)?\‘r_h s_‘ } ¢

_ (3.12)
%l S e e ' z
x (TFET )--i-_\) INT v N (r.-n)tm)\-( Z"i*"‘*")
) ;. S IR R
with n = 2,4,6, _
r=0,1,2,3, les £r.
The sistem (3.12) has the solution
' e . - [}E +r=-s7)
b v (r~8) 2
}\(}) _ N 3 ( 5 (3.13)

ne NT'( )
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This concludes the determination of (n) for the zero-star loop.
We now have:to extendzthis.result to.the case where
S F L, ki # 1. .Instead of writing long formulas, we will just

say how. to proceed..

r

. The pureu-am

2 derivatives are easily dealt with. The

polynomial Por is. just.

a(mz)h _Slm (- V') E | : (3.14)

where R = E: ky,

i=1

For the sg arz terms, notice that eq. (3.10) is obtained from

expression (3.8) by forming the ratio
N :" (r-5)
m
PJJ ir)

Whererthéée numbersjare éefineé, by the Tayler expansion about
Pu=0' and m°=0 of the integfand'to be subtracted an@,the numbers
_going-intd_the-binomiﬁl;céeffiﬁiénf'aré“read’off thé_ppﬁefnof
(x%-u?). This also holds for-_-eqs;‘ (3.13) and (3.11). '

o " When. we- consider: a: general one 1oop Lntegrand of the
fotm;(ﬁli) ‘all. that changes are-:the- numbers NJ(r) ,uhlch.are
replaced by Xabc...{r} say and the power to-wh:;h (k24u;) is

elevated. Call it y. The coefficients k(abC} are then.given by

(3.15)

’r\mc"') Xare... (r-s)r_' ~Ly-9l
s
X 3

abcwahkr)'
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This finishes the -prescription ¢f how to subtract all
possibiefone-loop integrands, when there are no polynomials in the

momenta- attached to  the vertices.

IV. Definition of the Subtracted Integrand

let G be a Feynman diagram. The momentum Eji that
flows. through a line Li_qf G.can always be decomposed into. two
parts, ope-that is  a linear combination of the-loop-(ihtegfdtion}
momenta and another one that is a linear combination of the exter

nal momenta, i.e.

,._23"- = h-a + ?;L | ' (4.1)

There are-in'general.several lines with momenta that
differ only in the=extéfnai momentum part and,.for subtraction pur-
pose, we will group such lines together. With this in mind the

unsubtracted- Feynman 1nteg:and associated with G  is defined

as

=T Bf}. | (4.2)

+

where Bj ‘has the form

Bl =P O RD Ae (i) L AL (G, -9

where P_{f...k, is a- 4 i i is
_ J( ji kJ} is. a pol}nomlal in iJl

5
. . and kj and A (231, )
is the free propagator asscciated with the line Ly

The: p,m and u dependence of the polynemials



-where 4(y) is equal to degree(k m
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Pj(iji,kj), the latter ariéing when we consider foresté.wifh more
than one element, is to be treated as follows: when applying T$(Y)
to IC, every external momentum pY in the numerator of IG is not
actgd upon by_Ti(Y), but &§{y) is lowered by one unit;
correspondingly  the monomial (mz)i(uz)n—i lowers §(y) by n units.
Furthermore, in eqs. (4.2) and (4.3), we assume that some
specification was given of how momentum factors are associated
with the lines of G. The momenta for subgraphs are chosen
arbitrarily but within an admissible set in the sense of
Zimmermann(llJ.

tet ¥ indicate the set of all forests of G, i.e.,sets
of non-overlapping, superficially divergent subgraphs of G. The

subtracted integrand is given then by

'R Z ’ﬂ-’ ( TS(%")) Ie. (4.2)

ue¥  yeu

,P)IY + 4 x (number of loops).

The subtraction operator 7% acts on G in the following way

s @
S(&) B 83 : (4.5)
T IG=ZZ“ E‘a B;}
m=o  15¢} 4 "
B, Tsi=m
vhere the PSJ in eq. (4.5) are determined by the construction

j
of the previous section and so satisfy -

degree, (1-t%) Bj < degree ( BjJ'- (§+1) (4.6)
J

14

The generalization of (4.5) for subgraphs is immedia

te with the feplacement of Bj by B;.

We should stress, that under the name subtraction
operator 15, we understand one and only one of the possible
operators constructed in the;prgviouszsection and labeled -by the
constants gp and A, That is,.once a-certain sét of p's aﬁd A's
has been chosen, we do stick to them.

One remark is also necessary with relation to the
distribution of momentum factors through the: lines of G. A loop
momentum factor decresases the IR divergencies coming from soft
subtractions_f(i;e;ntﬁose_made;difettly at ;erénexternalfmomentum

z=0.

and -mass) .and so can be used to make more subtractions at m
However, with exception oﬁ.bilinea; vertices, there,is,aﬁ ambiguity
due to momentum.cohéervation dépending to whiéh line'ihe_mbmentum
factors are to be associated. In the non subtracted integraid this
is solved by some- DIBVIOUS deflnltlon and in the case of loop
momentum factors generated from subtractlons, ‘we,.as’ general rule
will not use-them ‘to.inerease the number of soft subtractlons (i.e.
those momenta are Eard under the point of view of sﬁbtractions).
One important result of this section is

We will prove (4.7) only is the case that L consists of two

pieces. The proof for moTe. Beneral IG's is a straightforward

generallzatzon of thlS case._ Let -I =B, B,, then

G 71 "2
A B, E -. 3 5
RG—BB Z Z ‘P P_z-a.B‘-ngl
Co- fn‘"o S8 L : . N

S Sy E
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Define

B, 45, -
.Rfc,, = (\—-T:}Bl" (W -w)B, = B‘B,_"‘.E.'Ps! P B:}Bz

' (1.8)
ST PR BB (ERY BT P 6%B;)
which: certainly satisfies (4.7).. Now
R - R :-[za as-sua ek Bw
Sz Rl B][B TR a"Bl LN
+ 2 P PP "B 3%B
SuSp A N T Sa Lo
t+32_ N+\
where;we‘used:
o o % T W
D N AP W
MeD  HAydy - -*‘)ql'..__ . 2y ¢N
didly = S i+ diaNe)

The resuit follows triviailv from-éq {4 9)

The operator- T defined’ above is a subtractlon operator
in the sense of ref 4. ( B351des eq. (4. 7) the other requlrements

of ref.4 are eas1ly verlfled ) Thus_the convergence proof for

the forest formula can be applied and the definition (4.4)  is

©16.

indeed 2 finite part prescription for the integrand IG'

The renormalization scheme defined above has several
interesting properties as equation of motion, rules for differentia
tion,ﬁhich wili be used,to derive,in theories not invelving fermion
fields, Ward identities mnot involving Bs free from anomalies.
This will be discussed iﬁ the next section together with the
general derivafibp uf.equgtioné of motion.

The;rendrmaiiiéd émplitudes-has the factorization pré
berty: If .G

'_and_ _G2 -overlapp in onrly one point or are disjeint

1.
then

Re, ug, = R - Rg _ SISO
The proof_cbnsist5 in'verifying the equality

T Io T L = T R e v I Lo, w8 10)

V. Equations-of-Motion, Equivalence Theorem and Current

Conservation. -

Let us consider the theory described by the effective

Lagrangian density

Less Io i (5.1}

Green functions are defined by the Gell-Mann Low formula
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(T ALY A > =F P LTAY ). Aann)exPLSEC?:lMoL*x§) (5.2)

where the finite part (F.P) prescription is the same as described
in section IV. ©Note that there is no Wick ordering in eq. (5.2).

The equation of motion

. x - th\ Sii.nt
(3% + MA)LTA X D= <TN[3HFﬁL-EL ](x)X>*.

+Z' SLJ S(X-xé) <TX/;> (5.3)
d

with the normal product XN[&] defined by

<TN[@‘}K> Ep T 8¢ WX “expi| 2 m;ww,ﬁ’ (5.4)

_is easily verified.

. In additien to this, it is possible to define normal
products that satisfy the classical equation of motion. Thus, in
a2 theory not invelving derivative couplings, for example, the
équation of motion follows, if the normal product N [ @ 3 A ]
(where Q = A™) is defined in the following way. Let U be a
forest and oe U the smallest graph in U that confains.the special

.line in the normal product. Then the subtraction corresponding

to T acts in the following way

2 ' 8 (o) — ' <,
TEUEB T Be=2 BL(RTAVB), RE(E.N6E

18

where

B /o) s

Ps,. (B /A (E)) Lf 3% is ‘an @erq‘twn

{:hat does not con‘(:a.v.n. D5 AL(R) .

P 3 (B. 1Y) =

B oSe .
‘Y\"z,z P B, otherwise (in this case
S¢ ranges onfy upte 8(3-27

The equation -of motion follows by définitiﬁn. Some care must be
taken in the case of derivative coupling. 7
AS an:example; wégwill‘prcve?nqw_the_equivaiéncg.
theoremflz), asserting the equality of-tﬁe'oﬂ Sﬁell Green functions
of theories that differ by a Iocal fiéld'transfcrmation. Let the
effective. Lagrangian density be given by
L= L3 AA- g A e Line (W), Lie = Ta, (AT (5.6)

2
and consider -
2]+ L3 AsFA-LwE A L B RAY - ¥ ATV RV A

(5.7)
'n' S ‘Imt

2
--'}\"\/3\/-\-2-——?\ 5A

where the Tule to-associate momentum factors coming from the

. vertices in eq..(5.7).is the following

i)’ The contribution from the vertex i V 32 A is calculated as

in eq. (5.5). If there is more than one Malambertian in the
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same line, we use only one of them.
ii}) The momentum factors coming from the vertex VBZV are not
used to increase the number of subtractions.made directly at zero.
¥ is forma}ly obtained from eq. (5.6) after the
substitution A + A+AV énd partial integrations in the derivative
terms. Let < TX >y s X =TFA(xi) be the Green functions calculated

via eq. (5.7). Then. we.have -

(TX> == ch‘* l(T[\{(a"A +mE A+ mAV +k31V)]{x)X>I (5.8)

Now

<T‘Ma + T A m w‘»eava‘wm AAVV
R’-V’-\/% AVV! A +}\=-v vfa?-v}(x) XS =

= clelta terms

(5.9)

The proof of eq. {5.8) is as usual: Consider the-vertex V(32+m2}A.
(fig.1) The field. ( a +m JA in. this.vertex. .can be llnked either
to i).-‘fnc}-‘-ver.teﬂthis.ga,-x.re&-:.-..ths‘_-.de__lt.a.-\term.s::__qn th_e-.;r.-h.-s__. of eq.
(5.9) - fig. 2 below); 1ii) to-the vertex V 32 A (figs.3 and 4)ito
the vertex V‘BZ V {figs 5 and §6) or to a no derivative_weftex‘

(£ig.7)
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)
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FIG.1 ~ Fie.2 ' FI18.3 Fig.4 (5.10)

ne derivokive

—£24+m? - +m? vertex

v . Y . 2 A . {5.0)
+ . | + |

77T 7713\ 77T\
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Thus

3TN -
a?«<TX'>x

ST ' ' | 75..11)
2 A jot‘-*x .{(_T[v-v'_(ymmt;\+m‘-xv+aa*v)]mxﬂ (
This proc555”caﬁ be repeated as many times as we want so that
' {5.12
Al mess
Shell

which is the desired result. Note that, contrary to the usual proot,
here it is not necessary to introduce anisotropic normal'products.

In the}ﬁsual.nqrmal-product formalism(ls} there is
the so called dffféréntiapion fo;mula which permits to pass a
derivative-thrd#éhﬂthglnormél product.symbol increasing its degree
by one unity. Hefélsuch.a formula is glso true but should he

exercised with .some care... Thus
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FIGURE CAPTIONS

Appendix
FIG. 8 - First order contribution to ¢ N [A"QF_A] (x) A(y))

i) Let us calculate an example for <N [ A2 au A ] {x} A (¥v) >

te first order in g in the g A4 model.

The relevant graph. G is shown in fig. §:

P - FiG.8

The unsubtracted integrand %J is:

(P*R)p B (A1)

I1.=
B {pe o m* ) [ (R ok Yo T (kT

According to (4.2} we write:

(PrR) . 5 ! |

5 .1‘EE:€32;E) Bs=—EFT:;; (42)




A2

Let us use a subtraction scheme, where we try to
el .
kKeep only one subtraction at m™=0 for B, and all at m2=u2 for

B, and B

2 3
Consider first the forest G, with DG = 3,
For Bl we get:
l?t subtraction —= —Eii
h-ﬂ.
* kb
D"“’ . (Y:' 1‘*1 (A3)
R* (R*~ ")
5 o~ P 2RuPk N
¥ k> R =P k

{ Notice that routing independence forced two

. ) 7
subtractions at m~ = 0. }

sm;? . ,mzim}_

(R %“?'h[ww—t&) o 3“ :

2 [
=P E

'2_% ' _ 2?,‘2?.-}1. +'P‘£'& + L!'hp.t?h)z
hl (h‘._y‘z) h}_ &h-i"t)})"

53 Pu®r R BRT & 8 |
]‘i?" (&~ ?A. ) 3 - h'*(hl_ fﬁ.) R (k- ‘_&1)2] +

.,,

rd R)Ibﬁf}f

N h‘(h" 1

B

g 3
- 5 R (k) [

=-;—'P‘ah3

(3> - .h hﬂ
T Ir‘"-i“h RO

QPP\-:P k-t-?’“h.‘_\_ : khy_(‘? R )*g{
(hek )‘-

T
(H- 3 )( h;(h‘:. r‘) h.:.(h:. :.)':.

1
hq. (R*- If.)

3

+__3_ '] =
k> k- r\")s -

Z?P;.p R+ Ry ARy (3-R)* \
h‘x_(hz 1.) ‘l’-\." (h:._r‘})'l

{ Same'comment'as fof' Ip.)

U51ng (AS) in equ..(4 4) we now obta1n

+ (- 2){-.!‘.‘ +? k(

?Dh(_&) +'m?:’s=.(

A3

h?. (h:' 2

h‘— r\‘} "

4

(A%

muvh) T T

It- 15 now easy to write. down the subtractlons

Deflne ‘the

correspond1nc to tbe other six forests.

subgrgphs Yl’ YZ and Ys by cutting line

"P h.( )-1-‘7?1.‘? R(h’l(hzr-))+

2k-ky

(h‘

-¥)

3 e

By, By and Bs_respeqt1vely;"THey 5111 be - llnearlv divergent.
We thus'db;ain the foliowing subtractions:

© (w1 ARk
T SakEhidl ah‘ T ey

) ko L h}f

T‘G-?I {“_h% W (b~ z)
(14 49D (2?ﬂ>h+?m Q-kp.:?h) )U

A ®) W) TR ey
2.k, L R

=L L e P ) (BB e Qe ped D (B Y
(h}_mz\ PO () = 7 (o2 (i)

r\‘]" R

g_

|



R (R 1) = (-
w ' :
T i = I - h!& |
L w T Y % "v—-"'h) R R*)'D (_ o
i {.Rv-"\‘i;_l - { LS R“ —l_\
o 32 ¢ ) nﬂf"_]i.,\z‘ ‘ R
T (R=ROT~ W RO-R _
\ L 1
+ (2raR) 9 (L) |
T VA Rg:hlj_'h}‘yy
o ‘ { ‘”?L_r—?.;, (h%‘* ))\XL : _ _2Ryrhk
Ty M R ot ||';.. A R® B~ (h?__ V-}_)l
PN T G W UL,E&_HV;.; LE&)} .
TAY TRt ek (rE-pEpV LR R

2 2 -
ii) Let us now verify the equation satisfied by ¥ A" 3% A] (x}
for the same graph ~of fig. 1.

The unsubtracted integrand I is

i ($=~R)* - | (26)

PRV =MD (R )amE RE - mE

Instead of (A2) we now have for 3R’.:

1
(prRO* ! ’ \
- B.= Pa=
B, P Lh+‘m\,‘-m"_"‘ 3 k- - (A7)

N

For the forest C . we obtain the subtractions, with

lStsuEirQCﬁéon —_— 1

o 2 o
717, 31.%% 0 — 0

IEN

{ we also could have chosen ,but

)

k
let-us: try to obtain 2 Tavlor -

. . - q Pl
operateor arcund m™ = y° for N(AS})
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S d 1R

. ? - th_&}'e_)l
Y d e — At T 4 (PR
m e an, [(h,__?}):. (h." 5 ]

(A8)

= M (P

L? ) (h" ‘.\. )
¥, — )

(h‘l-._ P‘} )?..

In order to treat all three lines symmetrically in

3 : 22 :
N(A°], we use Taylor operators around m =u~ also for- BZ' 33.
This vields '

“*’1;:" ! L i me-ut o @ -

kY- T eyt T (it ™ Tk

\

+ T ()
(aP- ) (Rea )™ u“-j T {L ‘L(hm}‘ r&tm« R e

o ' 1 2p-k (A9)
+ ':. kS = + + = 'R +
[(h*?")—bk]l h|“'u- J { R, _r‘(a.
+ (P 3 ‘: - - Ly 11 ’ N ]
RTRT R W T (R - )R- u

A7
For the other forests we get:
e I - LTS ( ) \ R b
T P"‘”" (h+h o > o N

hl- ¥ (Rea 3w RE-pt
-,m“i.' o
+ v S 2 £ .t =
(F+RY=m” k- W ..(b.-«-‘a.)—}*

tg(:,) 1= (t“’ - __,l_) h‘ < \ |

PR (e B ek Ry
ey _ |
+’Yﬂ?-t-?m1_( V- ) 1 7‘ : 7
S > (PrRY - h;“‘.— ‘p- (h*h‘)?__r&:' _(AIO)
R _ v L - .
T I - : L. [l 2 Ty
¥ Y a s 2 m N
W*M»m‘.[hcr“ (Ri-p - v‘y;h?‘—}e]
() : SR : |
‘tal\ I_ -_-._i_.__'tubi o "l‘ﬂ.— >
2 lo‘,?-'—‘.k‘ i (h“‘h‘\)""‘fﬂ (h'}. P- "L -+
R R @ -
h‘(-f*" h?‘-}t"] ™ (Rer ) omr
(.1) - ad ) . .
A (. E sl
L) 4 L
X SO ST
> lheR)p rime T U T
e
(]Q"z._ t*l )1 ] m* h.f'— mr ,
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t(n)j for. the Taylor

Dy

where we have introduced the notation

> >
operator arcund p = § .and. mT=p~ up to order n.
All terms. with at:least one derivative Bm on line
" . ' Lz - T : Tk h
3 contribute - to- 'm~ < N(AT)(x) A(y) > and yield a mass.term
' 2

. : - . 2
subtracted. with a Taylor operator ‘around m™=p°. The rest

contributes to g < N(As)(x)A(y) > and gives

I"(l-tk:nz. ﬁ]{(]-t\::;\z)“—‘_} {Al11}

(R+R)-m*

. After integratiom- this gives the desired product - -

structure.






