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ABSTRACT

This paper seeks to check the validity of a hypothesis known as the “apparent

fractal conjecture” (Ribeiro 1999: gr-qc/9909093), which states that the observed

fractal structure of large-scale distribution of galaxies arises when some observational

quantities, selected by their relevance in fractal characterization, are calculated along

the past light cone. Since general relativity states that astronomical observations are

carried out in this spacetime hypersurface, observables necessary for direct comparison

with astronomical data must be calculated along it. Implementing this condition in

the proposed set of observational relations profoundly changes the behaviour of many

observables in the standard cosmological models. In particular, the observed average

density becomes inhomogeneous, even in the spatially homogeneous spacetime of

standard cosmology, change which was already analysed by Ribeiro (1992b, 1993, 1994,

1995: astro-ph/9910145) for a non-perturbed model. Here we derive observational

relations in a perturbed Einstein-de Sitter cosmology by means of the perturbation

scheme proposed by Abdalla and Mohayaee (1999: astro-ph/9810146), where the

scale factor is expanded in power series to yield perturbative terms. The differential

equations derived in this perturbative context, and other observables necessary in our

analysis, are solved numerically. The results show that our perturbed Einstein-de Sitter

cosmology can be approximately described by a fractal like distribution, meaning that

the dust distribution of this cosmology has a scaling behaviour compatible with an

observable single fractal system. These results show that, in the context of this work,

the apparent fractal conjecture is correct.
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1. Introduction

Pietronero’s (1987) case that the luminous large-scale matter distribution follows a fractal

pattern has started a sharp controversy in the literature between the proponents and opposers of

this “fractal universe” (see Turok 1997 and references therein). This controversy is so far mainly

focused on the issues of whether or not observations of large-scale galaxy distribution support or

dismiss such a fractal pattern, and the depth of this fractal system (see the reviews by Ribeiro and

Miguelote 1998, Sylos-Labini et al. 1998, and references therein). Although, a consensus on these

points is yet to be achieved, it is clear by now that settling, or even clarifying, those controversial

points has become an important issue in cosmology, inasmuch as this “fractal debate” has already

reached the main stream of cosmological research (Turok 1997; Coles 1998; Wu, Lahav and Rees

1999; Mart́ınez 1999).1 In any case, at very short redshifts (for interstellar medium, and clusters

of galaxies) we know that there is a fractal structure.

Since this is a debate in cosmology, it is only natural that the feasibility of a fractal universe

should also be investigated in a relativistic framework, and, therefore, relativistic aspects of

cosmological models bearing fractal features can be expected to play an important role in this

debate.

Some relativistic fractal cosmologies have already been proposed in the Lemâıtre-Tolman-

Bondi (LTB) spacetime, which is the most general spherically symmetric dust solution to

Einstein’s field equations (Ribeiro 1992a, 1993, 1994; Matravers 1998; Humphreys, Matravers and

Marteens 1998; Gromov et al. 1999), but a potentially important investigation is the possibility

of appearance of fractal features in Friedmann cosmologies with small scales perturbations. If

fractals could somehow appear in the standard cosmological models, many points of the fractal

debate could be clarified, or even resolved, if a relativistic perspective is taken for these effects.

In a previous paper, one of us (Ribeiro 1992b) studied observational relations in a non-

perturbed Einstein-de Sitter (EdS) cosmology, that is, without any type of metric or density

perturbation, and the general conclusions were that this cosmology does not show fractal features

along the past light cone, in the sense of not having a power law decrease of the average density

at increasing distances, as predicted by the single fractal model (Pietronero 1987). However, since

1 Pietronero’s (1987) article is only the most recent form in which the old idea that matter in the Universe

is structured in a hierarchical manner has resurfaced. For instance, following de Vaucouleurs’ (1970) case for a

hierarchical universe, Wertz (1970, 1971) advanced a model mathematically identical to Pietronero’s (1987), where a

discussion about scaling in galaxy clustering can already be found. However, as fractal ideas had not yet appeared,

Wertz was unable to reach many important conclusions found later, and independently, by Pietronero, in special

the significance of the fractal dimension in galaxy clustering, and the proposal of statistical tools to describe a

hierarchical pattern. That may explain why Wertz’s work has remained largely ignored so far. Unaware of Wertz’s

work, but inspired by de Vaucouleurs, Mandelbrot (1983) revived the hierarchical universe model and made a thorough

discussion about the scaling properties of galaxy distribution, fully characterizing it as a fractal structure. A discussion

about the similarities and differences between Wertz’s and Pietronero’s approaches to the problem of universal

hierarchical clumping of matter can be found in Ribeiro and Miguelote (1998; see also Ribeiro 1994).
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all calculations took the backward null geodesic into consideration it was clearly demonstrated

that this model does not show up as observationally homogeneous either, even at small redshifts

(z ≈ 0.04), and this result is a consequence of the fact that the homogeneity of the standard

cosmological models is spatial, that is, it is a geometrical feature which does not necessarily

translate itself into an astronomically observable quantity. Although a number of authors are

aware of this fact, what came as a surprise had been the low value for the redshift where this

observational inhomogeneity appears. Therefore, it was clear by then that relativistic effects start

to play an important role in observational cosmology at much lower redshift values than previously

assumed. Nonetheless, at least part of the fractal picture can be analysed in terms of a purely

non-relativistic model, as done in Abdalla et al. (1999), though in such a case direct comparison

with observational data is more difficult.

In a sequel paper (Ribeiro 1995), this result was further analysed and the reasons why

this relativistic effect seems to have been overlooked in the literature was clarified. Due to the

non-linearity of the Einstein field equations, observational relations behave differently at different

redshift depths. Thus, while the linearity of the Hubble law is well preserved in the EdS model

up to z ≈ 1, a value implicitly assumed by many other authors as the lower limit up to where

relativistic effects could be safely ignored, the density is strongly affected by relativistic effects at

much lower redshift values. A power series expansion of these two quantities showed that while

the zeroth order term vanishes in the distance-redshift relation, it is non-zero for the average

density as plotted against redshift. This zeroth order term is the main reason for the difference

in the behaviour of these two observational quantities at small redshifts. Pietronero et al. (1997)

referred to this effect as the “Hubble-de Vaucouleurs paradox” (see also Baryshev et al. 1998),

however, from the discussion above it is clear that there is no paradox. Indeed what seems to be

a paradox are just very different relativistic effects on the observables at the moderate redshift

range (0.1 ≤ z < 1).

Similar effects of departures from the expected Euclidean results at small redshifts were

also reported by Longair (1995, p. 398), and the starting point for his findings was the same

as that of Ribeiro (1992b, 1995): the use of source number count expression along the null

cone. Nevertheless, the path followed by Longair was quite different from Ribeiro’s. While the

former kept his conclusions essentially qualitative and did not make further investigations of the

consequences of this effect in other observational quantities, like the two-point correlation function,

or provided an explanation for the underlying reasons for this effect, the latter attempted to

address all these issues (see details in Ribeiro 1995).

Despite these interesting and encouraging results, they must still be considered as preliminary,

inasmuch as the analysis advanced by Ribeiro (1992b, 1995) was carried out in an unperturbed

model, and, therefore, some of its features are unrealistic, especially the behaviour of the

observational quantities at very small z, where the average density tends to a constant value. In

addition, one important question remained. While Ribeiro (1992b) showed that an unperturbed

EdS model does not have fractal features, in the sense of not having a power law decay of the
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average density at increasing depths, it nevertheless also showed very clearly that there is indeed a

strong decay of the average density at increasing values of the luminosity distance or the redshift,

an effect termed by Ribeiro (1995) as “observational inhomogeneity of the standard model”.2

Bearing this result in mind, it is only natural to ask whether or not a perturbed model could turn

the density decay at increasing redshift depths into a power law type decay, as predicted, and

claimed to be observed, by the fractal description of galaxy clustering (Pietronero 1987; Coleman

and Pietronero 1992; Pietronero et al. 1997; Sylos-Labini et al. 1998; Ribeiro and Miguelote 1998).

It must be clearly understood that the effects described above appear not simply by carrying

out calculations along the null cone, but by doing this by means of a set of observational relations

whose original purpose was fractal characterization, and which turned out to be more useful than

originally envisaged. That was fully explained by Ribeiro (1993, 1994, 1995), and it implies that if

one is simply doing calculations along the null cone it is most probable that one will find no fractal

pattern of any kind at all. Thus, to even start considering fractality in relativistic cosmology it was

necessary to adapt the original analytical tools proposed by Pietronero (1987) into a relativistic

framework, and when doing this it became clear that the chosen set of observational quantities

had to have their behaviour studied along the past null cone (Ribeiro 1992a). Therefore, the

surprising results stated in the previous paragraphs could only have appeared through a mix of

the use of a specific set of relativistically adapted observational relations, and the realization that

even at small scales (z < 0.1) relativistic effects start to play an important role in cosmology.

The apparent fractal conjecture, as advanced by Ribeiro (1999), states essentially that the

observed fractality of large-scale galaxy distribution should be a consequence of the fact that

astronomical observations are made on the backward null cone, and, therefore, observational

quantities necessary for fractal characterization must be calculated accordingly. If we take, at

the same time, these two considerations into account, then we should find a fractal pattern

in a perturbed standard model. If this hypothesis proves, even partially, correct, many of the

discrepancies between both sides of the fractal debate could be immediately resolved, and without

the need of abandoning the standard cosmological model or even the cosmological principle.

This paper seeks to prove whether or not Ribeiro’s (1999) fractal conjecture is correct, at

least in a narrow sense. Our aim here is to investigate if a perturbed standard cosmological model

could show fractal features as predicted by Pietronero and collaborators.

Here we show that by starting from the simplest possible cosmological model, EdS, and

carrying out a specific metric perturbation appropriate to our needs, the conjecture is correct

under an approximation which is very reasonable if we consider the large error margins produced

by astronomical observations. We followed the perturbative scheme proposed by Abdalla and

2 Note that this result is achieved only when an appropriately chosen set of observational quantities is calculated

by taking fully into account that light rays follow null geodesics, as stated by general relativity. Some authors do

not get this same result because they do not take this relativistic fact into consideration, and/or use different, or

inappropriate, observational quantities.
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Mohayaee (1999), where the scale factor is expanded in power series to yield perturbative terms.

However, in order to use this scheme we had first to derive observational relations along the past

null cone and then relate the results with actual observations as obtained in astronomy. Then we

found numerical solutions which show fractal features, in the sense of Pietronero (1987).

The paper is organized as follows. In section 2 we summarize the perturbative method used

here and present the perturbed EdS spacetime. Section 3 deals with calculating the various

observational relations in the chosen spacetime, and section 4 discusses the numerical scheme

which will be used to obtain numerical solutions for the observational quantities. Section 5 shows

the numerical results obtained, and how a fractal pattern appears from these results. The paper

finishes with a conclusion.

2. The Perturbed Metric

Let us start with the inhomogeneous spherically symmetric metric as proposed by Abdalla

and Mohayaee (1999),

dS2 = −dt2 + R2(r, t)

[

dr2

f2(r)
+ r2dΩ2

]

, (1)

where

dΩ2 = dθ2 + sin2 θdφ2, (2)

and

f2(r) = 1 − kr2; k = 0,±1. (3)

The proposal is to solve Einstein’s field equations,

Rab −
1

2
gabR = −8πGTab, (4)

for a perfect fluid universe with the metric above, but by means of series expansions of the form,

R(r, t) =
∞
∑

n=0

Rn(t)

rn
, ρ(r, t) =

∞
∑

n=0

ρn(t)

rn
, p(r, t) =

∞
∑

n=0

pn(t)

rn
. (5)

The zeroth order terms in this expansion are of unperturbed standard cosmologies. Thus, R0(t) is

the scale factor of the Friedmann universe.

As a first approach to fractal modelling in the standard cosmology, both the metric (1) and

its perturbation scheme, given by equations (5), are well suited for the purposes of this work,

inasmuch as all previous relativistic fractal cosmologies have so far been proposed in the LTB

spacetime (see §1 above). This means that equations (1) and (5) are special cases of the LTB

metric (Ribeiro 1992a), making it possible to compare the results of this paper with the relativistic

fractal cosmologies already known.
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For flat matter dominated universe (p = 0, k = 0), that is, for perturbed EdS cosmology, the

metric

dS2 = −dt2 + R2(r, t)
(

dr2 + r2dΩ2
)

, (6)

produces solutions of the field equations with perturbative terms that represent growth of

inhomogeneities. These, to first order, are

R(r, t) = At2/3 +

(

−9C1

10A2

)

t4/3

r3
, (7)

ρ(r, t) =
1

6πGt2
+

(

−3C1

10πGA3

)

t−4/3

r3
, (8)

where A and C1 are constants. The first terms of the right hand side of equations (7) and (8) are

of unperturbed Friedmann universe and the two additional terms in both equations represent the

first perturbative inhomogeneous corrections which yield growing modes. Terms corresponding

to decaying modes are ignored here. This perturbative solution reproduces standard results,

such as found in Weinberg (1972), and it corresponds to a soft perturbation, which is almost

homogeneous at large values of the coordinate r (see details in Abdalla and Mohayaee 1999).

There are additional perturbative terms which also yield growing modes, but in order to try a

first check of the possible validity of the apparent fractal conjecture, we only need the simplest

perturbative model. Therefore, at this stage we will ignore other terms in the series.

We shall need for later usage the time derivative of equation (7),

∂R

∂t
=

2

3
At−1/3 +

(

−6C1

5A2

)

t1/3

r3
. (9)

As a final remark, while the proposed perturbation is the most convenient for the purposes of

this work, as explained above, it remains to be seen whether or not other types of perturbations

could also be well, or better, suited for checking the validity of the apparent fractal conjecture.

We shall not pursue this investigation here.

3. Observational Relations Along the Past Null Cone

The first step towards obtaining observational relations in the spacetime given by metric

(1) is taken by solving its past radial null geodesic. This astronomically important hypersurface

provides the geometrical locus for light rays that travel towards us. It is obtained when we take

dS2 = dθ2 = dφ2 = 0 in metric (1). In this way we obtain the following expression,

dt

dr
= −

R

f
. (10)

Note that it is just a matter of convenience to write the past radial null geodesic above as having

the radial coordinate r as its parameter. In fact, both r and t coordinates are functions of the null
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cone affine parameter λ, which means that the equation above may also be alternatively written as

dt

dλ
= −

R

f

dr

dλ
. (11)

It is rather a difficult task to obtain an analytical solution for the null geodesic (10) in the

flat matter dominated case (f2 = 1), or equivalently, to derive analytical expressions for the

observational relations along the past light cone for the perturbative solutions (7) and (8). Thus,

we choose an alternative approach. We first derive all the necessary observational relations for

metric (1), and then solve the problem numerically to obtain solutions corresponding to the

perturbation of the metric (6), as given by equations (7) and (8). Such a procedure will eventually

allow us to obtain the desired observational relations, although in numerical form. To pursue this

path, we should start by deriving the redshift in the geometry given by equation (1).

The general expression for the redshift, in any spacetime, is given by (see, e.g., Ellis 1971)

1 + z =
(uaka)source

(uaka)observer

, (12)

where ua is the 4-velocity of source and observer and ka is the tangent vector of the null geodesic

joining them. If source and observer are comoving, then ua = δa
0 , and equation (12) becomes

1 + z =
(dt/dλ)source

(dt/dλ)observer

, (13)

since, g00 = −1, and, by definition, k0 = dt/dλ.

Finding (dt/dλ) at both source and observer requires the use of an indirect method, which

will be described as follows. We start with the Lagrangian for the radial metric,

L = −

(

dt

dλ

)2

+
R2(r, t)

f2(r)

(

dr

dλ

)2

. (14)

The Euler-Lagrange equations of motion

d

dλ

∂L

∂q̇
−

∂L

∂q
= 0, (15)

can be applied to equation (14), yielding

dṫ

dλ
+

(

R

f2

∂R

∂t

)

ṙ2 = 0, (16)

dṙ

dλ
+

1

R

(

∂R

∂r
−

R

f

df

dr

)

ṙ2 +

(

2

R

∂R

∂t

)

ṙṫ = 0, (17)

where the dot means derivative with respect to the affine parameter λ. If we use the null geodesic

(11) in equations (16) and (17), they can both be integrated once. The results may be respectively

written as

ṫ =

[
∫

(

1

R

∂R

∂t

)

dλ + b1

]−1

, (18)
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ṙ =

[
∫

(

1

R

∂R

∂r
−

1

f

df

dr
−

2

f

∂R

∂t

)

dλ + b2

]−1

, (19)

where b1 and b2 are integrations constants.

To find those constants, let us now write a 2-surface displacement, with t and φ constants, of

metric (1),

dS2 =
R2

f2

(

dr2 + f2r2dθ2
)

. (20)

We shall now require the metric to be regular at the spatial origin, that is, as r → 0 the metric

must be Euclidean. Therefore, f2 → 1, R2/f2 → constant, as r → 0. In other words, we are

requiring that metric (1) should obey the central regularity condition (Bonnor 1974; Ribeiro 1993;

Humphreys, Matravers and Marteens 1998),

lim
r→0

R = 1. (21)

Now, if we re-substitute solutions (18) and (19) back into the null geodesic (11) we obtain,

[
∫

(

1

R

∂R

∂r
−

1

f

df

dr
−

2

f

∂R

∂t

)

dλ + b2

]

= −
R

f

[
∫

(

1

R

∂R

∂t

)

dλ + b1

]

. (22)

This equation is valid for any λ, including at the origin, where the observer is located. From

now on we will be labelling the event of observation as r = λ = 0. So, considering the regularity

condition (21), equation (22) may be written as,

b2 = −b1 (23)

If we now consider the same regularity conditions, then equation (18) becomes,

[

dt

dλ

]

λ=0

=
1

b1

. (24)

Inasmuch as, we are interested in incoming light rays, i.e., our model deals with photons along the

past light cone, it is natural to choose b1 = −1 as the value for this constant. Therefore,

b1 = −1, ⇒ b2 = 1, (25)

and we may write equations (18) and (24) as,

dt

dλ
=

[
∫

(

1

R

∂R

∂t

)

dλ − 1

]−1

, (26)

[

dt

dλ

]

λ=0

= −1. (27)

If we now define an auxiliary term, named as I-term, as being given by,

I ≡

∫
(

1

R

∂R

∂t

)

dλ, (28)
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equations (26) and (27) allow us to re-write the redshift (13) as follows,

z =
I

1 − I
. (29)

We still have to calculate the I-term in order to evaluate the redshift, and this can be done as

follows. Considering equations (25) and (28) we may re-write equation (22) as,

{
∫

[

1

R

∂R

∂r
−

1

f

df

dr
−

2

f

∂R

∂t

]

dλ + 1

}

= −
R

f
(I − 1) . (30)

Thus, considering equations (28) and (30), equations (18) and (19) may be re-written as,

dt

dλ
=

1

I − 1
, (31)

dr

dλ
=

f

(1 − I) R
. (32)

From equation (28) it is easy to see that,

dI

dr
=

d

dr

∫

1

R

∂R

∂t

dλ

dr
dr, (33)

and, by substituting equation (32) in the expression above, we finally obtain,

dI

dr
=

(

1 − I

f

)

∂R

∂t
. (34)

The solution of the first order ordinary differential equation (34) allows us to calculate the

I-term and, as a consequence, the redshift, as given by equation (29). When r → 0, f = 1, R = 1

and I = 0, (dI/dr) = 0. Remembering the perturbed solution (7), we are facing again a differential

equation whose analytical solution is difficult, if not impossible, to find.

The other observational relations relevant to the problem under consideration can be

straightforwardly calculated now. The observer area distance, or simply area distance,3 as defined

by Ellis (1971) for any spacetime, is given by

(dA)2 =
dA0

dΩ0

, (35)

where dΩ0 is the solid angle element for constant r, and dA0 is the cross sectional area for this

solid angle (see Ellis 1971). For metric (6) we have,

dΩ0 = dθ sin θdφ, dA0 = R2r2 sin θdθdφ. (36)

3 This definition of distance is the same as Weinberg’s (1972) angular diameter distance, and Kristian and Sachs’

(1966) corrected luminosity distance.
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Therefore, the area distance is given by the following expression,

dA = rR. (37)

The luminosity distance is obtained from the area distance by means of Etherington’s

reciprocity theorem (1933; see also Ellis 1971; Schneider, Ehlers and Falco 1992), which relates

both distance definitions through the expression

(dℓ)
2 = (dA)2(1 + z)4. (38)

So, for the spacetime (6) we have

dℓ = rR (1 + z)2 =
rR

(1 − I)2
. (39)

The general expression for number counting in any cosmological model at a point P down the

null cone is given by (Ellis 1971),

dN = (dA)2dΩ0[n (−kaua)]P dλ. (40)

Here n is the number density of radiating sources per unit proper volume. Considering equation

(11) and that k0 = dt/dλ for comoving source, equation (40) becomes,

dN = 4πnr2R3dr, (41)

where we have performed an integration over all solid angles. If we now make the assumption that

all sources are galaxies, with approximately the same average mass, then

n =
ρ

Mg
, (42)

with Mg ≈ 1011M⊙ being the rest mass of an average galaxy, and ρ comes from equation (8), we

obtain another differential equation to be solved numerically,

dN

dr
=

4π

Mg
ρ r2R3. (43)

Finally, to discuss fractality we also need the observed volume, here defined as

V =
4

3
π(dℓ)

3, (44)

and the observed average density,

〈ρ〉 =
MgN

V
. (45)

These two quantities are fundamental in the characterization of a single fractal structure (see

Ribeiro and Miguelote 1998). Notice that Ribeiro (1995) showed that

Γ∗ =
〈ρ〉

Mg
= 〈n〉, (46)

that is, in an unperturbed EdS model, Pietronero’s (1987) conditional average density Γ∗ is equal

to the observed average number density.
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4. Numerical Problem

We have seen in the previous section that in order to obtain observational relations for flat

matter dominated universe, we need to solve three differential equations: the past radial null

geodesic (10), the I-term (34) and the cumulative source number count (43). However, in obtaining

the I-term and source count we need first to solve the null geodesic, as both depend on the scale

factor R(r, t). In other words, integrating the null cone produces a solution given by the function

t = t(r), which is necessary for integrating the I-term and source count along the null cone.

The integration procedure outlined above can be algorithmically expressed as follows. We

start with the initial conditions r1, t1, I1, N1, use the first two to find R1, ρ1, [∂R/∂t]1, by means

of expressions (7) and (8), use some numerical code for solving ordinary differential equations

to advance one step and finally find t2, then I2, N2. As r2 is known in advance, since it is the

independent variable, the newly found values t2, I2,N2 are used to repeat the cycle until we finish

the integration, in rn. Although that amounts to a simple numerical procedure, some care is

needed in order to make sure we will be using the values obtained in the integration of the null

geodesic to feed the evaluation of functions (7) and (8). In other words, if ti is an intermediary

value (i = 1, . . . , n), obtained numerically, of the null geodesic t = t(r), then ti must be used to

find Ri, ρi, [∂R/∂t]i, which are then used to find ti+1, Ii+1, and Ni+1, and so on.

The initial values pose a problem: if we start the integration at r = 0, according to equations

(5) we will face a singularity at the origin. To avoid this difficulty we will assume a flat and

Euclidean spacetime from r = 0 up to r = ε, where ε will be as small as necessary. It is reasonable

to assume a Euclidean spacetime at ∼ 100 Mpc, which means taking

ε = 0.1 (47)

as the initial integration value. Here we will be taking distances in Gpc and units such that

c = G = 1. In these units Mg = 1011M⊙ = 4.787591 × 10−12 and H0 = 0.250173 for the value of

the Hubble constant of 75 km s−1 Mpc−1 in the usual units.

The assumption above is completely coherent with the central regularity condition (21), but

in fact introduces the notion that there is a Euclidean to non-Euclidean interface at r = ε. This

means that we need to find initial values at r = ε to start the integration. Then, at this interface,

the null geodesic reduces to

t = −r + t0, (48)

which implies the following initial values,











R = 1,

t = −ε + t0,

r = ε,

(49)

where t0 is the label given by the time coordinate at the present epoch. Therefore, equation (48)

implies that the event of observation, that is, the “here and now”, is labeled by r = λ = 0, and
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t = t0. Since the time elapsed since the big bang singularity hypersurface is the same for all

observers in the standard cosmologies, we may take t0 to be the same as in the unperturbed EdS

model, that is,

t0 =
2

3H0

. (50)

The initial values (49), once applied to equation (7), allows us to find an expression linking

the two constants C1 and A,

C1 =
10

9
A2ε3

[

A

(

2

3H0

− ε

)2/3

− 1

]

(

2

3H0

− ε

)−4/3

. (51)

In the flat and Euclidean region close to the origin, the universal density is assumed to be

constant, whose value should be the critical density for Friedmann universe, that is, the value of

the local density for a EdS universe at present time. By using this requirement in equation (8),

we get,

ρ0 =
3H0

2

8π
=

1

6π

(

2

3H0

− ε

)−2

−
3C1

10πA3ε3

(

2

3H0

− ε

)−4/3

, (52)

or, putting C1 in evidence,

C1 =
15A3H0

3ε4

4 (2 − 3εH0)

(

2

3H0

− ε

)4/3

. (53)

Equations (51) and (53) provide conditions for the two unknown constants C1 and A to be

expressed in terms of the Hubble constant. We thus obtain,

A =
8

[8 − 3εH0 (2 − 3εH0)]

(

2

3H0

− ε

)−2/3

, (54)

C1 =
1920H0

3ε4

(2 − 3εH0) [8 − 3εH0 (2 − 3εH0)]
3

(

2

3H0

− ε

)−2/3

. (55)

A power series expansion for ε in equation (54) yields

A =

(

3H0

2

)2/3

+ O(ε), (56)

while in equation (55), a similar expansion produces,

C1 =
15

8

(

3H0

2

)2/3

H0
3ε4 + O(ε5). (57)

Thus, if ε is too small, meaning a too small flat region, then A remains a nonzero constant, and

C1 becomes negligibly small. In such a case the perturbative terms in equations (7) and (8) will

vanish.

Finally, for number count (43), up to r = ε we have

dN

dr
=

4π

Mg
ρ0r

2, =⇒ N(ε) =
H0

2ε3

2Mg
. (58)
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This last equation implies that,

〈ρ〉|r=ε = ρ0, (59)

as it should.

5. Numerical Solutions

The previously defined procedure for computing observational relations in a perturbed model

was carried out by means of a fortran 77 code, which can be found appended at the LATEX

source code of this paper’s preprint in astro-ph/9910003 v2.

The results are better or worse depending on the size of the flat region, i.e., depending on the

value of ε. For very small values (ε ≤ 0.01) due to the fourth power for ε as seen in equation (57),

the perturbation tends to vanish and the results are similar to those found years ago by Ribeiro

(1992b, 1993, 1994, 1995). For larger values of ε the form of the curve showing the average density

〈ρ〉 as plotted against the luminosity distance dℓ does approach a linear behaviour in a log log

scale, meaning a power law decay for the observed average density along the past null cone. Such

a behaviour means that our perturbed EdS cosmological model can be approximately described

by a fractal-like distribution, a result which validates, in an approximate manner, the apparent

fractal conjecture, at least by means of the perturbation scheme used here.

Figure 1 shows the best numerical result obtained, and there one can see that the property of

a fractal system of exhibiting a linear decay of its average density, due to its power law feature,

appears approximately. If we consider that astronomical data usually have large error margins,

and that spatially flat LTB models are known at providing not so good fractal modelling (Ribeiro

1993), the results shown in figure 1 can be considered as quite good. Therefore, in spite of the

simplicity of the model we have succeeded in finding an observational scaling behaviour in the

EdS cosmology, and with a fractal dimension not too different from the expected value foreseen

by observations (see, e.g., Sylos-Labini et al. 1998).

Previous studies with this kind of fractal modelling in LTB spacetimes showed that spatially

flat models do not provide very good results, while open models provide the best ones (Ribeiro

1993, 1994; see also Humphreys, Matravers and Marteens 1998). Therefore, in view of this it is

reasonable to assume that the best results regarding the validity of the apparent fractal conjecture

should come from perturbed open Friedmann cosmologies.

The situation can certainly be improved by either modifying the type of perturbation, and

also (possibly more important) if we better accommodate the observed nearby matter distribution,

seen here as just flat geometry.

http://arxiv.org/abs/astro-ph/9910003
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dℓ vs. z
z−0.8

Fig. 1.— This figure shows a plot with numerical results of the observational quantities of interest,

namely, the observed average density 〈ρ〉, the luminosity distance dℓ, and the redshift z. These

observables were calculated along the past null cone, and by using numerical solutions of the

differential equations (10), (34), and (43). The value used to limit the inner flat region was ε = 0.1,

meaning that its range is of 100 Mpc. One can clearly see above that the decay of 〈ρ〉 against an

increasing z is approximately linear (open circles), as expected for an observed fractal system. The

straight line fitted to the points has power −0.8, which means that the decay of the average density

has fractal dimension D = 2.2, a value close to what is observed. The figure also presents a plot for

dℓ vs. z (dots), showing that the linearity of the Hubble law, i.e., the distance-redshift relation, is

well retained within the integration range. This proves that the apparent fractal conjecture allows

for a fractal like power-law decay of the average density to co-exist with the Hubble law, this being

no “paradox”.
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6. Conclusion

In this paper, we have used a perturbative model of the Einstein-de Sitter cosmology to test

the validity of the hypothesis known as “the apparent fractal conjecture” (Ribeiro 1999), which

states that the observed fractality of large-scale distribution of galaxies appears when observational

quantities relevant for fractal characterization are calculated along the past light cone. These are

the quantities which should be directly compared to astronomical observations. We have started

with the perturbative method proposed by Abdalla and Mohayaee (1999), where the scale factor

is expanded in power series to yield perturbative terms, and then derived observational relations

necessary for checking the validity of this conjecture in a perturbed spacetime, which is almost

homogeneous at large values of the radial coordinate. The observational quantities derived, namely

the redshift, area distance, luminosity distance, number counting, observed volume and average

density, are all dependent on the solution of three ordinary first-order differential equations,

which cannot be integrated analytically. Consequently, we have produced a numerical scheme for

integrating these equations, namely the past radial null geodesic, the I-term, necessary for redshift

evaluations, and the integrated source number count. We have found numerical solutions which

show that the observed dust distribution in this perturbed Einstein-de Sitter cosmological model

can be approximately described by a single fractal system. This result proves that the apparent

fractal conjecture is correct, at least under the perturbative approach adopted here.

As consequences of our results, it is important to point out that it remains to be seen whether

or not the conjecture is also valid in different, or more general, small scales perturbations to

standard cosmologies. However, even if we only consider our simple perturbative approach to the

problem, as described above, it is clear that the “fractal debate” currently underway (see §1) does

not necessarily need to continue developing in antagonistic viewpoints. Our results suggest that

the observed fractal pattern may be understood from within the theoretical context of standard

cosmology, and the apparent fractal conjecture may provide a starting point for developing the

conceptual framework aimed at including fractal ideas, and fractal related data, into main stream

cosmological research. In such a case the cosmological principle and the possibility of an infinity

fractal system could, perhaps, be reconciled into a single theoretical framework. In addition, if

the observed fractality does appear with perturbative solutions of Friedmann cosmologies, then

we may speculate that the observed fractal distribution of galaxies may be considered as direct

observational evidence of primordial density fluctuations in the Universe, perhaps in a similar way

as anisotropies of the cosmic microwave background radiation.
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