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Abstract

A system is in a self-organized critical state if the distribution of
some measured events obeys a power law. The finite-size scaling of
this distribution with the lattice size is usually enough to assume that
the system displays SOC. This approach, however, can be mislead-
ing. In this work we analyze the behavior of the branching rate σ

of the events to establish whether a system is in a critical state. We
apply this method to the Olami-Feder-Christensen model to obtain
evidences that, in contrast to previous results, the model is critical in
the conservative regime only.
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modynamics.

In spite of many efforts and more than a decade of studies, the presence of
self-organized critical behavior in nature (and in some computer models) is
a matter of controversy. The concept of self-organized criticality (SOC) was
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originally proposed by Bak, Tang and Wiesenfeld to describe the appearance
of scale invariance in nature. The idea was presented through the study
of the behavior of avalanches in a sandpile ‘toy’ model [1]. This simple
model displayed the fundamental properties associated with self-organized
criticality. Under a slow driven perturbation the system evolves to a critical
state, with no characteristic time and length scales. Once in this state, the
response of the system to the slow perturbation has no typical length, and
even a small perturbation (as the addition of a single grain of sand) can start
a big avalanche.

Avalanching behavior as well as scale invariance have been experimentally
observed in a variety of situations in nature, ranging from such different
phenomena as earthquakes[2] or magnetic systems (the Barkhausen effect)[3],
to biological problems such as evolution of species[4] or lung inflation[5], just
to give some examples. Although by now the initial attempt to explain the
appearance of all linear scaling in nature through the concept of SOC may
seem a little naive, the ubiquity of its presence is still a strong suggestion that
some kind of ‘robust’ and general mechanism may be behind many of these
phenomena. The concept of SOC has become polemic, and, up to now, there
is no general agreement about the ingredients necessary to create the self-
organized critical state. Particularly, there are discussions about the need
of some kind of local conservation as an essential ingredient of the system
to display SOC. The existence of SOC in non-conservative models would be
highly desirable in this context, since, in practice, some kind of dissipation
is always present in nature.

One of the best successful applications of the ideas of SOC for non-
conservative systems are the investigations of the Olami-Feder-Christensen
on a model for the dynamic of earthquakes (hereafter called OFC model[6]).
In this model there is a parameter α that controls the level of conservation.
Based on strong numerical evidences [8] it has been taken as an example of
a system that has self-organized criticality in the non-conservative regime,
that is, for α < 0.25.

In this paper we revisited the OFC model, but with a different technique.
Instead of looking for power laws in distribution functions of avalanche sizes
versus lattice sizes, we looked at the behavior of the average branching rate,
both in the conservative and in the non-conservative regime. In contrast
to previous evidences, we concluded that the OFC model is critical only
for α ≈ 0.25 (that is, in the conservative regime). For values of α close
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to but smaller than 0.25, this model could be classified as ‘almost critical’.
That means that, although being critical only for α = 0.25, for all practical
purposes the system behaves as if it were critical for a wide range of values
of α , with well-defined power laws over many decades.

In a recent paper, Kinouchi and Prado[9] showed that some models that
exhibit numerical evidences of self-organized criticality in a wide range of the
coupling parameters were indeed what they called ‘almost critical’. Through
the analysis of the branching rate σ as a function of the dissipation parameter
α, they have shown that, although those systems are critical only for α = αc,
there are a rather large region around this point where approximate scale
invariance holds. They called this behavior ‘almost critical’ since, in prac-
tice, it can hardly be distinguished from ‘true’ criticality based on the usual
numerical evidences only. By usual numerical evidences we mean power-law
behavior and scale invariance in distribution functions (the avalanche size
distribution function, for instance). They also suggested that the analysis of
the branching rate σ (where 0 ≤ σ ≤ 1) as a function of the coupling con-
stant α could be a more efficient way to determine whether a model is critical
or not. To look for power-laws in lattices of increasing sizes is not a very
efficient way to determine if a system is in fact critical, and this approach
has already lead to mistakes[10]. If the analyzed lattices are not big enough,
the distribution functions of avalanche sizes F (s) are power laws, even if the
model does not display SOC. Because the computational cost of simulating
the OFC model (and many others) in big lattices is prohibitive and there
is no way to know, beforehand, if the considered lattices are big enough to
show the real characteristics of the dynamical behavior of the system, such
approach is hardly conclusive.

It has been shown that some SOC models, with no spatial correlations
and in the thermodynamic limit, can be mapped into a branching process[12].
A branching process is a Markovian process and can be characterized by a
sequence of random variables {P (n)}∞n=0

, n ∈ N , where P (n) represents the
total number of individuals of the nth generation. Consider a group of indi-
viduals (ancestors) that can replicate, giving birth to some descendants, and
let pi (i = 0, 1, ...,∞) be the probability of an ancestor to give birth to i de-
scendants. Each of its descendant in turn can give birth to other descendants
with the same probability pi so that pi does not depend on the previous gen-
erations and on the number of descendants of other individuals in the same
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generation. The branching rate, σ =
∞∑

i=0

i pi, is then defined as the average

number of descendants per ancestor. It is a well known result that, in order
to have a critical branching process, one must have σ = 1. Then the total
number of descendants P (n) in each generation (the size of the ‘colony’) be-
haves as a power law P (n) ∝ n−3/2[11] . On the basis of these considerations
about the branching rate, and using different approaches, several authors [15]
were able to show that the random version of the OFC model was critical in
the conservative regime only.

Therefore, we decided to use this same approach to revisit the original
Olami-Feder-Christensen model[6]. This coupled-map lattice model is in-
spired on the spring block model developed by Burridge and Knopoff [13].
Each site ( i, j ) of a square lattice is associated with a continuous ‘energy’
Fi j, initially set to a random value in the interval (0, Fc). The system is
driven by a global perturbation that increases the energy of all sites uni-
formly and simultaneously. This process goes on until eventually one site
becomes supercritical, that is, Fi j ≥ Fc . This site becomes unstable and the
system then relaxes according to the rules

Fi j → 0,

and

Fn n → Fn n + α Fi j,

where Fn n are the four nearest neighbors of site ( i, j ). The parameter α
controls the level of conservation of the model. If α = 0.25, the system is
said to be ‘conservative’, that is, all the energy (or strength) lost by the
site ( i, j ) is distributed to its neighbors. This relaxation rule can possibly
produce a chain reaction that only ends when all sites are stable again (Fi j <
Fc, ∀ i, j ). As in the original work, we assume open boundaries. Also, as
shown in reference[6], one must have α < 0.25 to mimic the dynamic of a real
earthquake (some ‘energy’ or ‘strength’ is always lost to the upper moving
tectonic plate). This model is believed to display self-organized criticality
even when the dynamic is non-conservative (0 < α < 0.25). This is a result
not yet fully understood, and it has been a matter of controversy the value
of the lower bound for α (if it exists), under which the system has a localized
behavior (note that we know that α = 0 ⇒ σ = 0, and, for α = 0.25, we

4



should have σ = 1). Because it is a model defined on a lattice, analytical
approaches are difficult and most of the results have been obtained from
computer simulations.

As the existence of a lattice introduces spatial correlations, it is not pos-
sible to define the probability pi analytically. We estimate the branching rate
σ numerically (σ =< nd >, where < nd > is the average number of supercrit-
ical sites (descendants) originated by an unstable site). Just for comparison,
we also study the random neighbor version of the OFC model (R-OFC)[14],
for which there are some analytical results[15] showing that the model is
critical for α = 0.25 only.

Our results are presented in Tables 1 and 2 and in Figures 1 to 3. We
checked the dependence of σ on the lattice size (see Figures 2 and 3), and a
special care has been taken to guarantee that the long transients were elimi-
nated. We also checked the effects of the boundaries. In the OFC model we
considered open boundaries to calculate σ, taking into account that the aver-
age number of descendants for a boundary site is the number of unstable sites
it gives birth divided by the real number of neighbors of the ‘ancestor’ site (3
for a border site and 2 for a corner site). The R-OFC model was simulated
without borders. In most of the cases, we first generated different stationary
configurations from different random initial configurations. The errors were
estimated by averaging results obtained for different initial configurations of
the lattice (the errors so obtained are usually bigger than the ones obtained
by averaging σ during many generations, except when the system is conser-
vative). The number of iterations needed to reach the stationary state is
very big, and grows with the lattice size. In the OFC model the transient is
bigger for smaller values of α, while in the R-OFC the transient grows as α
grows, making it impossible to simulate the case α = 0.25 (the point in the
graph in this case was obtained from theoretical results).

Once we were sure to have a stationary configuration, we analyzed the
statistics of 100 000 to 5 000 000 avalanches in the stationary state, to obtain
(a) the average avalanche size < s >, (b) the branching rate σ (weighting
border sites), (c) the branching rate in the bulk σb (taking into account
only sites in the bulk), and (d) the average number of generations in an
avalanching process < n >. Table 1 shows the results for the OFC model
and Table 2 shows the results for the R-OFC model.

There are no relevant differences between the behaviors of the OFC and
the R-OFC models. For both of them, σ(α) → 1 smoothly from below as
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α σ σb < s > Lmax

0.15 0.7052 ± 0.0002 0.7151 ± 0.0002 3.40 ± 0.02 100
0.18 0.8361 ± 0.0003 0.8430 ± 0.0003 6.08 ± 0.08 150
0.21 0.9125 ± 0.0002 0.9205 ± 0.0002 11.0 ± 0.6 100
0.22 0.9546 ± 0.0009 0.9581 ± 0.0009 21.4 ± 0.4 200
0.23 0.982 ± 0.001 0.983 ± 0.001 53 ± 3 400
0.24 0.9938 ± 0.0004 0.9946 ± 0.0004 148 ± 9 400
0.25 1.000003± 0.000009 1.000068 ± 0.000009 39839 ± 68 400

Table 1:

α σ < s > Lmax

0.15 0.6006 ± 0.0003 2.083 ± 0.001 100
0.18 0.7140 ± 0.0003 3.497 ± 0.004 100
0.21 0.8595 ± 0.0002 7.12 ± 0.01 400
0.22 0.9297 ± 0.0002 14.22 ± 0.04 500
0.23 0.9876 ± 0.0002 81 ± 1 800
0.24 0.99923 ± 0.00008 1306 ± 80 1000

Table 2:
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α → 0.25 , with no sign of any kind of discontinuity in its behavior. Also,
as can be seen in Figure 1, σOFC < σR−OFC , for 0.22 ≤ α < 0.25. From
theoretical considerations[15], we know that σR−OFC < 1 for α < 0.25.

In Figures 2 and 3 we present the dependence of σ on the lattice size for
the OFC and the R-OFC models. These figures show that σ grows almost
linearly with 1/L with no suggestion that σ → 1 as 1/L → 0. The behavior of
the system seems to be qualitatively different only if α = 0.25 (conservative
case).

We also checked the dependence of σ on the generation n within an
avalanching process. We see that σ(n) converges relatively fast to an asymp-
totic value [7]. None of our conclusions were affected if we considered these
asymptotic values of σ(n) instead of the average value.

The existence of SOC in the non-conservative regime of the OFC model
has been accepted based mainly on numerical results of a work done by Mid-
dleton and Tang [8] in 1995. In this paper, the authors showed how the nat-
ural tendency of this model to synchronize is destroyed by inhomogeneities
introduced by the asymmetries of the boundaries, creating long-range corre-
lations and leading to a power-law behavior in the distribution of avalanche
sizes. The apparent contradiction between this result and ours can be un-
derstood from the conclusions of Kinouchi and Prado [9]. In this paper, the
study of two different models with an analytical solution (the extremal Feder
and Feder model, EFF, with and without noise), shows that the effect of
noise is to enlarge the region where the system displays an apparent critical
behavior, leading to what was called ‘almost criticality’. The EFF model
with noise displays a power law behavior (although it is not critical). In con-
trast, in the noiseless model, large avalanches occur in the conservative limit
only. This also seems to be the case of the OFC model. The randomness
introduced by the asymmetries of the boundaries creates correlations that
enlarge the critical region leading to an ‘almost critical’ behavior, although
it is not enough to ensure true criticality.

In conclusion, we showed that the analysis of σ(α) is a complementary
approach to define if a model is or is not critical. This new method revealed
that the behavior of the OFC model is qualitatively identical to the behavior
of the R-OFC. In contrast to previous results, the Olami-Feder-Christensen
model seems to be critical only in the conservative regime, that is for α =
0.25. Both models are ‘almost’ critical in the sense defined in reference [9]:
σ ≈ 1 when α ≈ 0.25, leading to a power law behavior of the avalanche
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sizes for many decades, and making it (almost) impossible to distinguish
this behavior from ‘true’ self-organized criticality based on the observation
of power-laws and finite-size scaling fits.

The authors acknowledge Dr. Osame Kinouchi for helpful discussions and
suggestions. J. X. Carvalho acknowledges the Brazilian agency CAPES for
financial support.
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FIGURE CAPTIONS
Table 1:Values of σ, σb and < s > for different values of the conser-

vative parameter α in the Olami-Feder-Christensen (OFC) model. Results
presented are those obtained with the biggest lattice (Lmax) we were able to
simulate. They represent the average of results obtained for different initial
configurations and the errors are the errors associated with those averages.

Table 2:Values of σ, σb and < s > for different values of the conservative
parameter α in the random version of the Olami-Feder-Christensen (R-OFC)
model. Results presented are those obtained with the biggest lattice (Lmax)
we were able to simulate. They represent the average of results obtained for
different initial configurations and the errors are the errors associated with
those averages.

Figure 1: Branching rate as a function of the conservation parameter
α. Squares refer to the Olami-Feder-Christensen model (OFC) and circles to
the Random version of the OFC model (R-OFC). In all cases the lattice size
is L = 100.

Figure 2: Branching rate as a function of the inverse of lattice size (1/L)
for the Random version of Olami-Feder-Christensen model. Different curves
refer to different levels of conservation (α = 0.22, 0.23 and 0.24 ). We can
see that even for α = 0.24, if we let L → ∞, the branching rate σ tends to
a value smaller than 1. The system shows a qualitatively different behavior
only if α = 0.25.

Figure 3: Branching rate as a function of the inverse of lattice size (1/L)
for the Olami-Feder-Christensen model. Different curves refer to different
levels of conservation (α = 0.23, 0.24 and 0.25 ). We can see that even for
α = 0.24, if we let L → ∞, the branching rate σ tends to a value smaller
than 1. Note that in the conservative case (α = 0.25) σ is almost 1.00 even
to very small lattices.
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