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The modified triplectic quantization is applied to several well-known gauge
models: the Freedman-Townsend model of non-abelian antisymmetric tensor
fields, Ws-gravity, and 2D gravity with dynamical torsion. For these models
we obtain explicit solutions of those generating equations that determine the
quantum action and the gauge-fixing functional. Using these solutions, we con-
struct the vacuum functional, determine the Sp(2)-invariant effective actions
and obtain the corresponding transformations of extended BRST symmetry.

1. Introduction

In recent years the development of covariant quantization rules for general gauge theories
on the basis of extended BRST symmetry has become increasingly popular [1] — [11].

The realization of the principle of extended BRST symmetry, combining BRST [12]
and anti-BRST [13] transformations, naturally unifies the treatment of auxiliary variables
that serve to parametrize the gauge in the functional integral and those that enter the
quantum action determined by the corresponding generating equations. Basically, the
above tendency manifests itself in enlarging the configuration space of the quantum ac-
tion with auxiliary gauge-fixing variables (see, e.g., [1, 2, 3]). Recently, however, it has
been strengthened by extending the concept of generating equations also to the case of
introducing the gauge [2, 6].

The method of Sp(2) covariant quantization [1] was one of the first to provide a realiza-
tion of the extended BRST symmetry for general gauge theories, i.e., theories of any stage
of reducibility with a closed or open algebra of gauge transformations. The complete con-
figuration space ¢4 of a gauge theory, considered in this approach, is constructed by the
rules of the BV quantization [14] and consists of the initial classical fields supplemented
by the pyramids of auxiliary variables, i.e., ghosts, antighosts and Lagrange multipliers,
according to the corresponding stage of reducibility. Even though these auxiliary variables
originally [14] play different roles in the construction of the quantum theory, their consid-
eration within the Sp(2) covariant formalism allows to achieve a remarkable uniformity
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of description. Namely, in the framework of the Sp(2) covariant approach, the pyra-
mids of ghosts are combined with the corresponding pyramids of antighosts and Lagrange
multipliers into irreducible representations of the group Sp(2), which form completely
‘symmetric Sp(2) tensors and enter the quantum theory on equal footing in terms of both
the quantum action and the gauge fixing functional. The quantum action of the Sp(2)
covariant formalism depends on an extended set of variables, including, besides the fields
¢*, also the sets of antifields ¢4, and ¢4. Note that in the case of linear dependence of
the quantum action on ¢%, and ¢4 they may be interpreted as sources of extended BRST
transformations and sources of mixed BRST and anti-BRST transformations, respectively.

In [3], a consistent superfield formulation of the Sp(2) covariant rules was proposed.
This approach allows to combine all the variables of the Sp(2) covariant formalism,
namely, the fields and antifields (¢4, ¢%,, ¢4) that enter the quantum action, the aux-
iliary variables (w42, A4) that serve to parametrize the gauge and, finally, the sources J4
to the fields ¢4, into superfields 4 = ¢4 + 7496, + %)\AGGB”‘ and superantifields (super-
sources) Py=cps— %%, — %6’39“ J4 defined on a superspace with two scalar Grassmann
coordinates. The quantum action S(@4,®,) of that theory is defined as a functional of

- superfields and superantifields, which makes it possible to realize the transformations of
extended BRST symmetry in terms of supertranslations along the Grassmann coordinates.

Moreover, in a recent paper [4] the superspace approach has been extended by con-
sidering not only the (sub)group of translations but instead to comsider the full group of
conformal transformations on that superspace of two Grassmann coordinates. The genera-
tors of this conformal group span an algebra being isomorphic to the superalgebra si(1, 2).
In that approach it is possible to consider massive gauge theories by introducing mass-
dependent BRST and antiBRST operators which are related to translations coupled {(with
a factor m?) to special conformal transformations. Furthermore, the Sp(2)-symmetry —
including ghost number conservation — and the symmetry which underlies the “new ghost
number” conservation are realized as (symplectic) rotations and dilatations, respectively.

- In the framework of the triplectic quantization [2] another modification of the Sp(2)
covariant approach was proposed, based on a different extension of the configuration space
of the quantum action. Namely, it was suggested to consider the auxiliary fields 742 as

~variables anticanonically conjugated to the antifields ¢4 with the corresponding redefi- -
nition of the extended antibrackets [1] which appear in the generating equations for the
quantum action. Another feature of the triplectic formalism is that the gauge-fixed part
of the action in the functional integral is determined by generating equations formally
similar to the equations that describe the quantum action. The entire set of variables
necessary for the construction of the vacuum functional in the triplectic formalism co-
incides with the corresponding set of the Sp(2) covariant approach and is composed by
the fields (¢4, ¢%,) and (7% ¢4) anticanonically conjugated to each other in the sense
of modified antibrackets, as well as by the remaining auxiliary fields A\* that serve to
parametrize the gauge-fixing functional.

In the recent paper [6] a modification of the triplectic formalism was proposed whose
parts being essential for the present consideration will be briefly reviewed. While retaining
the space of variables of the triplectic formalism and accepting the idea of imposing
generating equations on both the quantum action and the gauge-fixing functional, it was
suggested to modify the system of these equations, as well as to adjust the definition of
the vacuum functional, in order to ensure the correct boundary conditions for the quantum
action,

S

This allows to take into account in a direct manner the information contained in the
classical action. It also implies that the classical action of a theory satisfies (in the limit

@*=q'5=ﬁ=0 = SD.



i — 0) the generating equations for the quantum action S(¢, ¢*, 7%, @),
| 1
E(S’ S+ VeS8 =1hA°S, (1.1)

in complete analogy with earlier quantization schemes, and in contrast to the original
triplectic formalism {2]. The gauge fixing functional X (¢, ¢%, 7%, ¢; A), of the modified

~ triplectic formalism satisfies similar generating equations, .

S(X,X)* — U°X = ihA%X. (12)

The above systems of generating equations are expressed in terms of the differential op-
erators '

oF &G oF 4G
F a _ ab - _ -1 (e(F)+1)(e(G)+1)
( ’G) (5¢A5¢*Aa +e .5ﬂ.Aa5¢A) (FHG)( ) ’
' & o - 0 0 '
A® = _1N\EA_ -1 eq+1 _ab _—
8 Vg, Y ey
) )
ve — ab g - e — (] ea+l__da i
€ ¢’Ab 5¢'A’ U ( ) ﬂ— . 5¢)A’

where the derivatives with respect to the antifields are taken from the left, and £* is
the antisymmetric tensor with the normalization £'2 = 1. The operators V¢ and U®
are closely related to operators which were introduced earlier in the framework of the
superfield formalism [3|, and which have a clear geometrical meaning as generators of
supertranslations in superspace.

Given the quantum action .S and the gauge-fixing functional X, the vacuum functional
Z = Z(J = 0) in the framework of the modified triplectic quantization [6] is defined by

Z = / do de*dr dp dA exp {% (S+X+ aﬁzaw’*“)} : (1.‘3)

Let us note that the following choice of the gauge fixing functional X = X (¢, 7%, ¢; ),

X = (qBA - %) A — %eabU“UbF, F = F(¢), (1.4)

solves eqs. (1.2) (with AX being identical zero). Then, the integrand of eq. (1.3) is
invariant under the following transformations (cf. Ref. [6])

- qua — _( 65 ,H_Aa) U,

6%,
. 65 82F g al g 8F Ce
5¢Aa = He (6¢A + 5¢A6¢B/\ + (—1) iebcﬂ— Wg’.‘) ,- |
65
(5Tan == Eab (m - AA) Hb, (15)
_ wl 68 . SF
§¢a = pac® (W + ¢Ab) + HaWWB ;

sx = 0.
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Here, p, is a doublet of anticommuting constant parameters. If, in addition, § =
S(¢, ¢*, ¢) is assumed not to depend on =% then, obviously, Eq. (1.1) reduces and the
vacuum functional (1.3) coincides with that of the Sp(2)-covariant formalism.

The aim of this paper is to apply the above reviewed prescriptions of the modified

triplectic formalism for quantizing several gauge theory models.

In Section 2, we consider the model of antisymmetric tensor field suggested by Freed-
man and Townsend [15}. The Freedman-Townsend (FT) model is an abelian gauge theory
of first stage reducibility. The corresponding complete configuration space is constructed
by the rules of the Sp(2) covariant formalism [1] for reducible gauge theories. In the case

.of the FT model, the generating equations (1.1) that determine the quantum action in the-

framework of the modified triplectic formalism can be solved exactly, which allows one to -
obtain the exact form of the vacuum functional in terms of the effective Sp(2)-invariant
action Seg and the transformations of extended BRST symmetry.

In Sections 3 and 4 we consider the gauge models of Wy-gravity [16] and of two-
dimensional gravity with dynamical torsion [17], respectively. Both these models are ex-
amples of irreducible gauge theories with a closed algebra, and their configuration spaces
are constructed by the rules of the Sp(2) covariant quantization for irreducible theories.

-.In order to obtain closed solutions of the above generating equations that determine the : |

quantum action in the case of these gauge models, one has to introduce some regulariza-
tion. Unfortunately, the regularization which reduces all terms containing 4(0) to zero.

(see, e.g., [1] cannot be used here since both models under consideration are strictly two-

dimensional and, therefore, it is not possible to use dimensional regularization which is

equivalent to that procedure. Instead, one could use Pauli-Villars regularization as has

been done in Ref. [18] in the case of Wy-gravity. As an intermediate step we consider here
only the tree approximation, i.e. we determine proper solutions of the classical master .
equations. With them we obtaine a closed form of the vacuum functional and the cor-
responding transformations of extended BRST symmetry as well as the related effective
action which depends on the fields only. :

2. Freedman—Townsend Model

The theory of a non-abelian antisymmetric field Hf, , suggested by Freedman and Townsend
[15], is described (in the first order formalism) by the action 3

So(AL, HE)) = f d'z ( e*PeFE HE + APAP”) (2.1)

where AP is an (auxiliary) gauge field with the strength F?, = 9,A2 — 9, AF 4 frar A7 A7

(the couphng constant is absorbed into the structure coeﬁiaents qu’”) the Lev1~C1v1ta,
tensor £"*#7 is normalized as £*#° = 1. Eliminating the auxiliary field A2 through its field

equations leads to the more complicated action of the second order formalism [15].
The action (2.1} is invariant under the gauge transformations -

0AL =0, oHE, =D — D¢ = REL.E™, (2.2)

where £} are arbitrary parameters, and D5 is the covariant derivative with the gauge field
Ap ('qu 5pqa + fPre Ar)

The gauge transformatlons (2.2) form an abelian algebra with the generators REY .
These gauge transformations are not all independent, i.e. for £ = DPEP they Vanlsh

*We denoted the antisymmetric tensor field contrary to the usual conventions by H in order to avoid
confusion with the auxiliary fields to be introduced below.
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on-shell. Therefore, at the extremals of the action (2.1) the generators RY, have zero
modes ZP? = DI, namely,

550
SHy,'

T rga T
Rm,, RE 2T = g0 fPT

o

(2.3)

which are linearly independent. According to the generally accepted terminology, the

model (2.1), (2.2) and (2.3) is an abelian gauge theory of first stage reducibility.
"~ Note that the gauge structure of the FT model [15] is similar to that of the Witten
string [19]. The FT model also has been proved to be a convenient conceptual laboratory
for the study of the S-matrix upitarity in the framework of covariant quantization [23].
There, it was shown that the application of the BV quantization rules to the model leads to
a physically unitary theory being equivalent to a non-linear o-model in d = 4 dimensions
[15]. Note also that various aspects of the quantization of the FT model in the framework
of standard BRST symmetry have been discussed in Refs. [20, 24].

Now, let us consider the reducible gauge model (2.1}, (2.2) and (2.3) in the framework
of the modified triplectic quantization.

To this end, we first introduce the complete configuration space ¢*, which is con-
structed according to the standard prescriptions of the Sp(2) covariant formalism {1] for
reducible gauge theories. Namely, the space of the variables ¢* consists of the initial
classical fields AP* and HP*, supplemented, firstly, by Sp(2) doublets of Faddeev—Popov
ghosts, (%%, introduced according to the gauge parameters &£ in eq. (2.2), secondly, by
additional sets of first-stage ghost fields, CP*, being symmetric Sp(2) tensors, introduced
~ according to the gauge parameters £P for the generators Rf;, in eq. (2.3), and, finally, by
* sets of auxiliary fields (Lagrange multipliers) B?, corresponding to the gauge parameters
5, and the first-stage Sp(2) doublets BP*, corresponding to the parameters £7.

The fields ¢# of the complete configuration space take values in the adjoint repre-
sentation of a non-abelian gauge group (in the following the index p = 1,..., N will be
omitted)

= (A*, H*; B*, B% C**, C™).
The Grassmann parities of the fields ¢4 are given by
e(A*) = e(H"™) = e(B*) = ¢(C®) = 0, e(B%) = e(C*) = 1.

In accordance with the quantization rules [6], the set of the fields ¢ is supplemented by
corresponding sets of variables ¢%,, 7 and ¢4

qb*Aa = (A:aai ,m/aﬂ B,:a: a}b: C,ua[bic|bc)
Aa  _ ( . alb | _paldb a{bC)

T Tay T () T@)i Tc) > () )
QSA - (A,LUH,(LU) B}.HBCH quacabL
as well as by the auxiliary variables \*
M = (M Ny My Aoy &y M),
with the following Grassmann parities:

e(Paa) = e(m) = e(¢*) + 1, e(da) = () =£(”). (2.4)

The attribution of ghost numbers to the fields and auxiliary variables can be made by
the rule that @ = 1 and a = 2 bears ghost number +1 and -1, respectively, for upper
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indices, as well as —1 and +1, respectively, for lower indices. The “external” index a on
the variables ¢%, and 74 is independent from the (symmetrized) “internal” ones and,
therefore, separated by a vertical stroke ”|".

A proper solution of the generating equations (1.1) for the model in question can be
found in a closed form as follows:

1 1
5 = fd4$ (—ZE“ypaFuvaa'”i‘“ ”'Q”AHA“)

+ [ { H?,o(DFC¥® — DYCP®) - ¢C% 1 BY + H,,(D*B ~ D'BH)
1

+C% DO sabC* B¢ — =B, D*B*+ C,,D*B*
palb 9 He
1 1 _
5 (Hiy N )O — 26 (H}y A B ) B, (25)

where, after having omitted the gauge indices we use the notation A?PB? = AB, D, B =
0B+ A, AB, (AAB)P = fr" A9B". Note, that the antifields related to H also appear
bilinear in that action. This action, after an appropriate renaming of the various variables,
coincides with the corresponding action of 125] (see eq. (31) there).

An minimal admissible solution of the generating equation (1.2} for the gange-fixing
functional X can be represented as

= [dk {Hﬂ,,+ SHuNG + (Cua — BewCl) X2y

ﬁ blid
. +Zsab7r(H)uv7T(H) — Eeabgch(C)”chFCE } . (26)

where F' has been chosen as F(H,,, C',m) = — g, H* 4 By CEC with o and B being
constant parameters. o :

‘Now, substituting the solutions of S, eq. (2.5), and X, eq. (2.6), into eq. (1.3), we
obtain the corresponding vacuum functional Z, with the integrand according to (1.5)
being invariant under the following symmetry transformations

A = B,
SH = nifei, — (DO~ DIC™ e Hy A O — LB A B
5B = i+ 5D B,
6B = W?_lg)ﬂb,
§C% — W?g’)aﬂb _ ( ab ga _I_Dacab)ub,

clab

iCe = 7T(c);chr28‘:{“B"},wc,

1 _
6“4‘;& = Ha (Aa - ieaﬁTJDﬁH‘YJ - QH;,@() A Cﬁb - 2Haﬁ A B'B

1_. =
acib A CCb (2 ab Cab) A Bb) )
. 1 o
OH g, = —la (ZgaﬁvéF75 + _)‘(H)aﬁ);

6Ba, = #a(wﬁffaﬁ—‘f C, clb)



5Ba.[b == (8 C |bd + 2DO:B Dac ab ™ "2“5 'BTJ( ,@b /\ H’TJ))

‘SC*a}b = ‘u,a(Z'D H ﬁb“l”ﬁgbc)\(c;‘)a):

. 1 1 7
50 albe = Ha ( =D C afblc} e 26 by ( a,@{b/\H r5|c}))
0

oniyy = | |
57??5;‘ — _EabA(H)'u,b + % (DaBﬁ —DBBe + %Eaﬁva(ﬂ-;w A Bc)) i,
. 577&6;} = 0 .
by = 0
| 5’”?5{6 = =A%t +£*D*By,,
sl = 0
SAa = pas™ A,

i @ ® a ,
0Hop = Ma(é‘ "H,, b—gfr(H)aﬁ)a
5Ba = ua&.ﬂbBab,
. 6Ba = p’C'ECbBth

. .56_'&“ = 4 (ECbG;Ma + ﬁsab’ﬂ'flc?)a):
‘_._6.6-_101) — Iulc(_,_:e:dcv;imr' . } - (27)

" where symmetrization over Sp(2) indices is taken as A%} = A% 1 Abe Egs. (2.7) realize

- the transformations of extended BRST symmetry of the vacuum functional in terms of

the -anticanonically conjugated pairs of variables {4, gb Aa} and {WA"", dat.

“Integrating in eq. (1.3) over the variables ¢, , ¢4 and A%, we represent the
vacuum functional Z as an integral over the fields ¢4 of the complete conﬁguration space,
7= [apnen {1590)}, (2.8)

where

s© = f do ( I 0 A A‘”‘)
+ f d'z { Ge, MgHctmlbage gsabscd(mcﬂ (D“C""")}
+ [ d* (aB,DH" + fewB D, C" — B,BY)), (2.9)
* 21‘ * a
A = de exp{ﬁfd‘leMM "Hy' } (2.10)
In eq. (2.9) we have used the following notations:

]Cb[.ﬂv} pol __ {66( ,up vo nju.crnvp) _'_acgeyvpo'},
(4

G, = (DuCs - D,C2) — = Cupe B H.
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The matrix M3 in (2.10) is the inverse of M,
Mab = Eab _ aECgcgacd’ MGCM;E} — 63;

here the matrices C} and B® are defined by CfF = £,,C* A E and B°E = B*A E.

The functional Sé?f) in eq. (2.9) is the tree approximation to the gauge-fixed quan-

tum action of the theory, while the functional A in eq. (2.10) can be considered as a
contribution to the integration measure. ‘
The integrand in eq. (2.8) is invariant under the following symmetry transformations:

§A, = 0,
SHB — _EabM;cllcg[ﬂﬁ][’YJ] Gfﬁaﬂm
5B = %D“‘B“pﬂ,
§B® = 0,
s ('Dacab—sabBO‘)ub,
1
5C%® = EB{_%’J}C”C. (2.11)

The transformations (2.11) are the (anti)BRST transformations of the Sp(2) invariant

action SSQ which, together with the integration measure dgA in eq. (2.8), is left invariant:

§(dg) = do 64(0) f dizTr W,

SA = —A5*(0) f d*z Te W,

(o 152)) =0

here the following notations have been used:

_ N
W = =30"e(MyCiBNua, TeW =3 W

p=1

Consequently, egs. (2.11) realize the transformations of extended BRST symmetry for
the vacuum functional (2.8) in terms of the variables ¢ of the complete configuration
space. As a remarkable fact it appears that these BRST transformations essentially
depend on the gauge parameter «. This can be traced back to the fact that the antifields
B:,, and B, occure bilinear in the extended action §.

Note that, taking into account the action (2.9) and the contribution to the integration
measure (2.10), the vacuum functional (2.8) obtained for the Freedman-Townsend model
leads to the unitarity [21] of the physical $ matrix (for discussions of the unitarity problem
in the case of this model, see also [23, 20, 22]). For the first time the covariant quantization
of the Freedman-Townsend model in the framework of extended BRST invariance has been
performed in [25]. However, they used a more complicated, not Sp(2)-invariant gauge
fixing. This might prevented them for explicitly solving their expression for the fields ¢
only.



3. Wy—gravity
The model of Wy—gravity [16] is described by the action

Sulsh) = 5- [ @2 (9pBp ~ h(ae)?). (3.)
where ¢ and h are bosonic classical fields (e(¢) = e(h) = 0) defined on a épace with

- complex coordinates, (z, Z), so that 8 = 8/9z, 0 = 8/0z .
The action (3.1) is invariant under the gauge transformations

dp = (9p)¢,

) (3:2)
dh = O¢ — hO¢ + (Oh)¢
with the gauge function £(z, Z). These transformations form a closed algebra,
ey, den)] = Gery
(3.3)

5_(1,2) = (9¢m))é2) — (92 )éqy-

- Note that the quantum properties of W,-gravity considered within the BV method [14]
‘have been discussed in [26, 27|, where also the 1-loop anomaly has been determined.
Recently, its quantization has been performed within the triplectic formalism [28].

‘Now, we comsider the gauge model (3.1), (3.2) and (3.3) in the framework of the
modlﬁed triplectic quantization. First, let us introduce the complete configuration space
¢, whose structure in the case of the model in question is determined by the rules of
the Sp(2) formalism for irreducible gauge theories. Thus, the space of the variables ¢
is constructed by supplémenting the initial space of the fields (i, h) with the doublet
C?, e(C*) = 1, of Faddeev-Popov ghosts, and the Lagrange multiplier B, ¢(B) = 0,
corresponding to the gauge parameter £ in eq. (3.2).

The fields ¢4 of the complete configuration space

¢* = (o, b; B, C%)
are supplemented by the sets of the variables ¢%,, 74% and ¢4

é:la = (Qf’m alb)

Aa
T4 = (7l Wy Ty T

QEA = ((101 h: B) Ca.))

as well as by the additional variables A#,
M= (Ae), Amy Ady Ay,

with the Grassmann parities given by eq. (2.4).

Now, an action functional is given in closed form that satisfies the generating equations
(1.1) - but reduced to the classical action S — in the case of the gauge model (3.1}, (3.2)
and (3.3):

5 = o [ @2 (00 B — h(ov))



+ f dzz{gp:C“a(p + 1 (8C° — hac® + C°oh)

+ (%B; - Ci,) [(C’“@B — BaC*) + %ebd (c{“(a2cd})cb - o{ﬂ(acd})acb)]

—C‘;']b(E“"B + %C{aacb}) + @(Baso + %eabcaa(cbago)) + 5(53 — hOB + Bah)
—I—%l_zeab (caa (8¢ — haC® + C¥h) + (3C* — hAC® + C*ah) aca) } (3.4)

Obviously, the application of the differential operator A% leads to terms being propor- -
tional to 6(0). However, since the model is restricted to two dimensions only dimensional
. regularization is not applicable. Therefore, it is not surprising that the model has an
anomaly which can not be compensated by some counterterm.

Furthermore, a solution of the generating equations determining the gauge-fixing func-
tional X can be represented as :

X = fd22{(¢> = atp = Bh) M) + (h = Bp — Yh) Ay

o

2

where F' has been chosen now as F(p, h) = fap? + Bph + 3vh? with a, 8 and v being

constant parameters.
The vacuum functional (1.3) corresponding to the solutions (3.4) and (3.5} of the

Y
Eab"r?@)‘ﬁ?(p) - 65411671'&,)77?]1) - EEGbW?h)’JT?h)}, . (35)

-~ ‘generating equations that determine the quantum action .S and the gauge-fixing functional

- .X isinvariant nnder the following transformations of extended BRST symmetry, expressed
(for simplicity) in terms of the derivatives.of S:

i
A Aa __
5¢ - (?T 6@_’)1‘1&)#&0’

405
Sy = fa (@ + ag) + ﬁ)\(h)):

) 58
6ha = Ma (SE + 18)\((,0) + 'Y/\(h))7

. 55
J-Ba - ﬂa@:
. 5
5Ca|b = Juami
o an {05
Omlyy = Eb(g;g—)\(w))#ba
- o (65
57]-(11) = £ b(ﬁ - A(.h,)).‘-l'lzn
5nls = O
35

TR
&8Cy

C0G =  pa(e®y} + anly,) + B ),

§F = pa(e®®h; + By + VY my)s

6B = p,e®B;, _

§C, = ,u,asde;‘b. (3.6)
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Substituting the solutions (3.4) and (3.5) that determine the action S and the gauge-
fixing functional X into eq. (1.3), and integrating out the variables ¢%,, 74, ¢, and
A, we obtain the vacuum functional Z as an integral over the fields ¢ of the complete
conﬁguratlon space,

7= [ b exo {356} | (37)

here Seg is the gauge-fixed tree approximation of the quantum action.

S = % f iz (0pdp — h(8p)?)
+ [ & [(atp + Bh)BOp + (B + vh) (5B — hOB + Boh) ]
+%aa¢, [ [(acb&p + 8 (3C? — haC® + C?aR) )C’“B(p — (ap + BR)CB(CBy)
+(8C0p + (80" — haC* + C9h) ) (3G — hOC™ + C*0h)
~(Bp + 'yh)( (écb — hOC* + C*9h) OC* + C°0 (BC* — hOC* + C*Oh) )] . (38)

The quantum action Seg, eq. (3.8}, and the integration measure dgb'in eq. (3.7) are invariant
under the following (anti) BRST transformations:

Ve = €0
6h = (9C* - hAC" + C"Oh) pa,

5B = 3(C°0B — BOC®) o + 521a( CUPCICH — G000 00 o,

5Ct = (a“bB - %c{aacb}) s (3.9)

Thus we conclude that egs. (3.9) realize the transformations of extended BRST symme-
try for the vacuum functional (3.7) in terms of the variables of the complete configuration
space. In fact, introducing the action of the (anti)BRST operators s® onto the fields ¢4
according to 5¢A (@™, the effective action (3.8) may be rewritten in the following
quite simple form, =

1
St = S0+ Sews"s" f d22F(p, h), (3.10)
i.e., one obtains the usual effective action of the Sp(2)—covariant approach.

4. Two-dimensional Gravity with Dynamical Torsion

‘The theory of two-dimensional gravity with dynamical torsion is described in terms of the
zweibein and Lorentz connection (e}, w¥ = e¥w,) by the action [17]

w Wy
: 1 g
Soley,, wu) = fdza: e(ERW”R“"”- — S-BT“,,”T“”@- — fy), - (41)
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where «, 3 and -y are constant parameters. In eq. (4.1), the Latin indices are lowered
with the help of the Minkowski metric n;; = diag(+1, —1), and the Greek indices, with
the help of the metric tensor g, = n;;e},¢]. Besides, the following notations are used:

e = det ei ,
R = €78,w, — (n ),
Tt = 0ue +ewee; — (uov),
where € is a constant antisymmetric tensor, €® = —1.

Note that the model (4.1) is the most general theory of two-dimensional R?-gravity
with independent dynamical torsion that leads to second-order equations of motion for
the zweibein and Lorentz connection. Thus, supplementing the action eq. (4.1) by the
Einstein-Hilbert term eR would not affect the classical field equations, since in two di-
mensions it reduces to a trivial total divergence. Originally, the action (4.1) was proposed
[29] in the context of bosonic string theory, where it was used to describe the dynam-
ics of string geometry. There, moreover, it was proved that the string with dynamical
geometry has no critical dimension. An attrctive feature of the model (4.1) is its com-
plete integrability. The corresponding equations of motion have been studied in conformal -
[17, 30] as well as in light-cone [31] gauge. It was established that this model also contains
solutions with constant curvature and zero torsion, thus incorporating several other two- -
dimensional gravity models [32] whose actions, however, do not have a purely geometric

-interpretation. ‘ o

The action: (4.1) is invariant under local Lorentz rotations of the zweibein !, which
~infinitesimally imples the gauge transformations
5(€L = Eije,‘jc, ch#-: —,3#@ (42)

‘with the parameter ¢. Similarly, the general coordinate invariance of eq. (4.1) leads to
the gauge transformations '

Ogel, = €58, + (L)€, Sew, = wy0,E" + (B,w,)¢" (4.3)
with the parameters £#. The gauge transformations (4.2) and (4.3} form a closed algebra
ey, den] = 0,
ey de] = Ceaa (44)
[(SC’ 65] = JC' ’

where : ,
a2 = (0.8"0))E @ — (8.8 2))E ), ¢ = (8.0)¢"

Note that in Ref. [33] a gauge model classically equivalent to (4.1}, (4.2), (4.3) and
(4.4) was proposed by means of artificially adding the Einstein-Hilbert term coupled to
an additional scalar field, ceR; however, in this equivalent formulation the algebra of the
corresponding gauge transformations closes only on-shell.

The Hamiltonian structure of the gauge symmetries of the original model was studied
in Ref. [34], and its canonical quantization, in Ref. [35]. Quantum properties of that
theory in the light-cone gauge were discussed in Ref. [36], proving also, despite of the
nonpolynomial structure of the theory, its renormalizability.

Now we consider the gauge model (4.1), (4.2), (4.3) and (4.4) in the framework of the
modified triplectic formalism [6].

The complete configuration space ¢4, constructed by the rules of the Sp(2) covariant
quantization of irreducible theories, consists of the initial classical ﬁelds.(ei,wﬂ), the
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doublets of the Faddeev—Popov ghosts (€%, C**) and the Lagrangian multipliers (B, B#)
introduced according to the number of the gauge parameters in egs. (4.2) and (4.3), i.e.
¢ and &#, respectively. The Grassmann parities of the fields ¢4,

¢* = (e}, wy; B, B*; C°, C*),
is given by

e(el) = e(w,) = &(B) = (B*) = 0, e(C*) =e(C*) =1.

The fields ¢* of the complete configuration space are supplemented by following the
sets of the variables ¢%,, 4%, ¢, and 24

* _ * *[L, * * * *
gbAa - (ez’a’ Wa's Baa Bpav alb? C,ua.lb):

Ao __ ia a . _a pa . _alb palb
= (W Tlyw ey Tay Ty T(e) )

&A = (ééja wh B: B,u; éa: (jua.):

M= Mg MA@y, Mays Moy MGy)-
. Again, we are faced with the problem that the model is strictly two-dimensional and,
therefore, the regularization by setting §(0) = 0 will not be applicable. A functional that

satisfies the generating equations (1.1) for the classical action § in the case of the gauge
model (4.1), (4.2), (4.3) and (4.4) can be found in a closed form as follows:

1 g 1
N ( JIREY .
S / T\ Teatw B~ g5

+ f d2:r:{ezf (Eije#j(?“ + C**Ore;, + 638“0)‘“) +wit (wc‘?#C“ + CM 0w, + w)‘apCA“)

T, )

4 (%Bﬁ - c) [(cmaﬂs _ B*9,C%) + éabd (cMeayom,co - c“ba,;cf‘{aakcd})]
(5B G [ (CF0B - B0,0) 4 pea (€700, 5,09 00,0740, 09) |
~Cyp (2B + %C#{“aﬂcb}) — G (=B + %c*{“a,\c@})
.—I—é‘f [eijBem; + B)‘BAei +¢e49,B* + %sab( (eiC’b +£9CMdye,,; + eijeAjB,,C"b) ce
~C?%9), (aije#jcb + C78,€, + ef,B“C"b) + (Eije)\jcb + (0,€5)C°° + eﬁ,c‘l\C”l’) B#C"“)]
- -+@#[ — 8,8 + B hw, + 0,3, B" — %sab (c*ﬂa)\ (€70, + w,8,C7 — 8,C7)
— (€78, + w,0C — BCY) a#c"ﬂ)] } (4.5)

A solution of the generating equations determining the gauge-fixing functional X can
be chosen as

X = f dzm{ (éi-“ - pn‘“’mjef;) Ny + (Ef“ - qn“”wv) Aw)p

p v __i 1 q
_Esabn'ijn# 7_[‘(3)“7'("{;’)” - "ieabnuyﬂ{aw)#w?w)v}: S (46)
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where F(ez,w#) = 2pn‘“”nme el + 1qn**w,w, has been used with p, ¢ being constant
parameters, and np*¥ = dlag(—l—l —1) is the metric of the two-dimensional Minkowski
space.

Again, the vacuum functional Z is obtained by substituting the explicit solutions for
the quantum action S, eq. (4.5), and the gauge-fixing functional X, eq. (4.6), into the
expression into eq. (1.3). The expressions for the symmetry transformations (1.5) will not
be given explicitly; their determination is straightforward but the result is quite lenghty.

Performing the integration over the variables ¢*,, 74, ¢4 and A%, we obtain Z in the

form (3.7} with the gauge-fixed effective action Seg

1 if v 1 % v
Seﬂ' = /d2$ C(ER}W IR ij — @T#V TH i "Y)
+fd2:r{qn“"(8#w,,)B + 7 [p(e;\éé‘#ei — BA(em:ef,)) + q(w,\ayw,, — 8A(w,jw,,))]B“} '
+=Eab d%c{p(n“"ef)ﬁy](?’\“ + n’“’efﬁ;C‘““) (siijef; — 135 (C7 0, €l + eﬂc?#C“b))

g1 (8,0° ~ w30 — ¥, 00) (8,C° — CT0ys, — w,9,C7) } (47)

The effective action Seg (4.7 ) and the integration measure d¢* in the functlonal mtegral

‘are invariant under the following transformations:

bet = (s“'j s C* + CMOhel, + eic‘?aCA“) la,

Swy = (=8,C%+ C*Ohwy +wr0eC™) pra,

5B — %(C‘)‘“(‘?AB — B*3,C° + %Ebd (C')‘{“E)AC"‘“’}&;C‘I’ B Cnban-(-c,\{aa,\cd}-) ),ua.,
6B = %(C*“&,\BC’ — B*3,0% + %Ebd (CHea, 09,0 — C¥a,(C*198,0°8) )Ma,
5o — (eab B_ %CA{a 8);(?"}) .
507 = (eava - %o*{aa,\cab}) 115 (4.8)

Egs. (4.8) realize the corresponding transformations of extended BRST symmetry for
the vacuum functional in terms of the variables ¢# of the complete configuration space.
Again, the effective action, using the corresponding (antl)BRST operators, can be written

‘more simple as follows:

1 :

St = S0+ 5ears"s" f P2 (e, w,), (4.9)
which, of course, coincides with the usual Sp(2)—invariant action in the Sp(2)-covariant
approach [1].

5. Conclusion
In this paper we have exemplified the method of modified triplectic quantization [6] on
the basis of several gauge theory models. Thus, we have considered the model [15] of

non-abelian antisymmetric tensor field (Freedman—Townsend model), the model [16] of
Wo—gravity, and the model [17] of two-dimensional gravity with dynamical torsion. For
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the models in question we have found manifest solutions of the generating equations that
determine the quantum action S and the gauge-fixing functional X in the framework of
the modified triplectic formalism [6]. In the case of the 2-dimensional models we did not
determine possible anomalies which occure if loop corrections are taken into account.
The above solutions are expressed in terms of the variables ¢4, ¢%_ and 74, ¢, anti-
canonically conjugated in the sense of the extended antibrackets {2, 6], as well as in terms
of the additional variables A4 that serve to parametrize the gauge-fixing functional X.
However, it should be remarked that by the special choice of both the action functional
and the gauge fixing functional triplecticity of the formalism in fact is reduced to the
usual case of the Sp(2)—covariant quantization. Using the solutions for S and X, we have
obtained the vacuum functional and explicitly constructed the corresponding transforma-
tions [6] of extended BRST symmetry in terms of the anticanonically conjugated variables.
Finally, we have obtained manifest Sp(2)-symmetric expressions for the effective action
Se that results from integrating out the variables ¢%,, m¢, ¢4 and A* in the functional
integral, and have constructed the corresponding transformations (1.5) of extended BRST
symmetry in terms of the variables ¢# of the complete configuration space. In any case we
finally obtained a Sp(2)-symmetric action which is invariant under BRST and antiBRST
transformations. In the case of irreducible theories we were able to write down the gauge
fixing part in a very simple manner. In the case of the first stage reducible FT model the
.situation occured much more difficult. Especially the dependence of the corresponding
(anti)BRST transformation for the physical H-field on the gauge parameter o deserves
further study.
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