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Abstract

We clarify the relationship between the microscopic current fluctu-
ations and the macroscopic concept of radiation resistance Ryqq. The
fluctuations are generated by absorptions and emissions of radiation
within the solenoid coils, which exchange energy with the surrounding
vacuum. This fact is explained by a detaile_d calculation of the Poynt-
ing vector generated by the solenoid of a simple RLC circuit without
batteries. Our study also includes the Nyquist current fluctuations,
associated with the chmic resistance Bgpmie of the circuit. We show
that the average value of the Poynting vector is zero, in any direction
and at any frequency of the electromagnetic spectrum, provided that
total resistance R of the circuit is Rypeq + Ronmie- Consequently, as
is expected physically, the vacuum radiation pattern is stable and no
radiation energy can be detected above the zero-point and thermal

background.
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1 Introduction

In a recent paper Blanco, Franga, Santos and Sponchiado [1] have
studied the magnetic noise generated by the vacuum in the coils of
the solencid of a simple RLC circuit without batteries. It is well
known from the work of Nyquist [2], Johnson [3] and others (see C. W.
Gardiner [4]) that the spectrum of the voltage fluctuations (Nyquist

noise) is given by

Sn(w, T) = -—T-;———coth( fuw ) . (1)

Here Ry = Ropmic(w, T) is simply the ohmic resistance of the circuit,
“which is a function of frequency w and temperature T. Blanco et al.
[1] have shown that this expression has to be modified if the circuit
has a large enough solenoid. The resistance in (1) has to be replaced

by

R=Ry+ 2N (aw)a, 2)

c
where a is the radius of the solencid and N is the number of coils.
The last term in (2) was called radiation resistance R,.q4 in complete
anaiogy with the resistance which appears in circuits with an external

source of power.



The dynamical equation of the circuit can be written as

LIi(#) + RI(t) + -é f I(#)dt = e(t), (3)

where

g(t) = en(t) +ep(t). 4)

Here en(t) is the familiar Nyquist e.m.f. and eg(t) is the new

prediction of reference [1]

_WazN 8B,(t)

€B (t) = ot ! (5)

c
where B,(t) is the component of vacuum magnectic field By g(t) in
the direction of the axis of the solenoid. The long wavelength approx-
imation was considered by Blanco et al. [1].

The immediate consequence of (5) is that the spectral distribution

of the noise will be such that

S(w,T) = [RN + zwzi\’r i (%)4] %“’com (%) ()
and
(£(£)(0)) = fo ” e cos(wt) S.(w, T) (1)

is the correlation function of the random e.m.f..
An important point of the above approach, which we shall address

here, is the detailed justification of the real existence of the radiation
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resistance Rrqq in the case of microscopic fluctuations of the voltage.
In other words, we want to justify why the solenoid presents a radia-
tion resistance despite the fact that we do not observe any radiation
coming from the inductance. Notice that the circuit has no batteries,
only noise.

We shall show that the associated Poynting vector is zero on av-
erage. However, it will be clear from our analysis, that the solenoid
of the circuit is continuously absorbing and emitting radiation from
the surrounding vacuum, which acts as an energy reservoir. This
fact keeps the circuit in dynamical equilibrium with its environment.
Moreover, an striking consequence of this processes is that the spec-
trum of the thermal and zero-point vacuum electromagnetic fields is
stable, that is, the electromagnetic vacuum remains isotropic and ho-
mogeneous with the same pattern in despife of the presence of the
RLC circuit. A similar conclusion was achieved by T. H. Boyer [5] by
considering the charged harmonic oscillator in dynamical equilibrium
with the vacuum fields.

Our paper is organized as follows. We shall present within section
2 the calculation of the electric and magnectic fields generated by
solenoid in the radiation zone. The calculation of the average value of
the Poynting vector will be given within section 3. The discussion of
our conclusions will be presented in the last part of our paper. As in
references [1], [5], [6] and [7] our approach will be based on Stochastic

Electrodynamics.



2 Calculations of electric and magnetic

fields generated by the solenoid

The magnetic dipole p of the solenoid (with radius a and N coils) is

given by

B r x Jd°r (8)

T2

where J is the current density in the coils. From (8) we get

_ wNa?

Up(t) + In(}a, (9)

where [ is the unit vector in the direction of the solenoid axis (z
direction).

The random currents Iy (¢) and Ig(t) are given by

fN(w)Z(w) = En(w)

- (10)
Ip(w)Z{w) = £p(w),
where £x(w) is the Fourier transform of the Nyquist e.m.f.
o .
en(t) = f dwén{w)e . (11)
-0

A similar notation is valid for the magnetic e.m.f. &g(w), In{w) and

Ig{w). The impedance of the circuit is

Z(w) = R—i (Lw - %) . (12)



Notice that the currents Iy (%) and I'g(t) are assumed to be statis-

tically independent, that is

(13)

(In(w)Ip(w)) =0
(En{w)Ep(wh)) = 0.

The electric field generated by Iv(t} is given by (see Boyer [5])

[s]
2 -— .
EN(I‘, t) = wzfdwﬂl\;a IN(w)e_“"tH, (14)
0
where
H=ke*nxp [_1_ - (15)
- kr o (kr)2]’

Here k = % and 7 = © is the unit vector of the direction of observation.

The corresponding magnetic field is given by

wNa?
c

By(r,t) =2 / dw In(w)e™ G, (16)
0

where

G = ket {(ﬁ X D) X 7 (El;) + [37(A - ) — 4] [(k11~)3 - (k_:»)"i’] }
(17)

Notice that £x{w) 1s random so that Ex(r,t) and By(r,t) are also

random fields.




The electromagnetic fields generated by &p(w) (see [5]) will be
given by

- 3 nNa® ﬁ(k T) —wt+18(ka) €
Es(r,t) = ~%e) /dk ( ) o) (- e(k,0))H

a=1

(18)

where e(k,a) are the polarization vectors, H is the same function _
defined in (14) and f(k, o) are the random phases characteristics of

the vacuum fields (see Boyer [5]). The function h(k,T) is such that

Fuw Fuw Fw huw
2.2 Lol L
mh*(k, T} = 5 +e:—'é%_1 5 coth(2KT). (19)
The corresponding magnetic field is
Bj ERE /d3 (TrNa ) b(Zk(:j)ﬂ) e—iwt+z‘9(k,a) (ﬁ . E(k, a))G
(20)

These fluctuating electromagnetic fields are statistically indepen-
dent of the fields Ex(r, ) and By(r,t). However, Ep(r,t) and Bp(r,t)
are not statistically independent of the vacuum fields, namely Eyp(r, t)

and By r(r,t}. The expressions for these fields are [5]

2
Bup(e,t) = 9y [ k(i )etrikrsioten X L0d) gy

and

2
Byp(r,t) =%ey f dPrh(k, T)e witikrtiblkea) (p o), (22)



Therefore the total fields at a distance r from the center of the

solenoid are such

E(I‘, t) = EVF(r= t) + EN(r) t) +Eg (I‘, t)

(23)
B(r,t) = Byp(r,t) + By(r,t) + Bg(r, t)
'The Poynting vector is given by
S = — (E(r, ) x B(r,t)). (24)

A

This Poynting vector is fluctuating for obvious reasons. The aver-

age over the fluctuating variables will explained in what follows.

3 Summary of the calculation of the

average value of the Poynting vector

The vector S has an average denoted by symbol (S) and we shall take

(S) = ér-mem* x B), (25)

where the time average is also being considered [5].
Since E and B are given by (23) the above expression has several

terms. Some of the results are trivial as, for instance,

(ET/'F x BN) =0 (EFV X BVF> =90
(E*BXBN>=0 <E;\,XBB)EO.

(26)




This happens because the fluctuations associated with the vacuum
fields are statistically independent from the Nyquist luctuations. We

also have

<E{r’F X BVF) = 0. (27)

There are, however, several terms present in (25) which are nonzero.
We shall give their expressions bellow, the details of the calculation
are explained in reference [5].

One can show that the following results are obtained

* _ 28?1'(412 ‘.rrNaz)4 [j2 £
(B} x Bp) ——/dkk 3 ( . |Z(w)|2H x G, (28)

2y 2 2 -
(Elp x Bg) = — f dkk2iw ('”Acr a ) I z?w)|2(_z*(“’)G) v (%%aﬂ),

(29)

2 9 .
(B x Byp) = — f dkk?iw (T“tr “2) [Z?M)P(Z(M)H*) X (i—sjmc;)
(30)

and

00 mNa?\” 4rRyh?
E% x B =—f dw( ) H*xG. (31
( N N) 0 e |Z(w)|2 ( )

Collecting these expressions we get



¢ (wNa? 2 poo b2 272N? rawy\4
(8)=—3 (T) /0 d“’|Z(w)|2[ 5 (o) + By —%ez(w))

(ReH x ReG + ImH x ImG).(32)
One can see that the first term inside the square brackets in (32) is
related to the contribution of (28), the second term is the contribution
of (31) and the last term is the contribution of (29) and (30).

The result (S) = 0 follows immediately, because

ReZ(w) =

2m2N? faw\4
e (T) 4+ Ry = Rpoa + Ri. (33)

4 Discussion

‘The magnetic e.m.f. acting within the solenoid coils, namely

d

ep(t) = e SBVF-ﬂdS
7alN 2 —
= — Re) f 3k dwh(k, T)e @) 5 ek oY34)
o=1

have definite statistical properties and may be detected experimen-
tally. Inductances with toroidal shape give eg(t) = 0, so that the
effect discovered by Blanco et al. [1} can be easely tested experimen-
tally.

It was shown in reference [1] that the spectral distribution of the

total voltage fluctuation, namely

som = [N ey g (B e ), ey

exT — 1
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