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Abstract

We consider a special class of Lagrangian theories where part of the coordinates does not have any time
derivatives in the Lagrange function (we call such coordinates degenerate). We advocate it is reasonable to
reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the
conventional Hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete

" the degenerate coordinates with the corresponding conjugate mormenta.

1 Introduction

The Hamiltonization of Lagrangian theories is an important preliminary step towards their canonical guantiza-
tion {1, 2, 3]. The procedure is quite different for nonsingular and singular theories. Whereas for nonsingular
theories such a procedure is, in fact, the well-known Legendre transformation, the Hamiltonization of singular
theories is sometimes a difficult task. The singularity property of a theory is usually defined by the correspond-
ing Hessian, which is zero in the singular case. The Hamiltonization procedure also depends essentially on
theory structure. In particular, it depends on the highest orders of time derivatives in the Lagrange function.
In principle, the Hamiltonization procedure is quite well developed for theories of arbitraiy orders N > 1 of
time derivatives [5]. However, as we are going to demonstrate, for a special class of theories where part of the
coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate)
it is reasonable to reconsider the conventional definition of singularity and, moreover, to simplify the conven-
tional Hamiltonization procedure. In particular, in such a procedure (we call it the generalized Hamiltonization
procedure) we do not complete the degenerate coordinates with the corresponding conjugate momenta. In-
deed, it seems exaggerate to introduce a momentum for the variable p in a theory whose Lagrange function is
L = p¢ — V (q,p) {the corresponding action already has Hamiltonian form) and then to struggle with irrele-
vant constraints, see relevant remarks in [4]. We show that the degenerate coordinates may be treated on the
same footing as usual velocities (or highest order time derivatives in the Lagrangian function). In fact, some
observations about the possibility of a special treatment of the degenerate coordinates were already implicitly
presented in literature. In this regard one can recall that sometimes, in the course of the Hamiltonization of
the Maxwell theory, Ag is considered a Lagrange multiplier to a constraint and no conjugate momentum to Agp
is introduced, see for example [1}. For theories with degenerate coordinates, the generalized Hamiltonization
procedure contains less stages than the usual Hamiltonization procedure and needs less suppositions about the
theory structure. There exist some models to which only the generalized Hamiltonization procedure is applica-
ble. In this relation one ought to say that almost all modern physical gauge models are theories with degenerate
coordinates.
The present paper is organized as follows: in Sect.II, using a simple but instructive example, we advocate
a new definition of singularity and consider the possibility of simplifying Hamiltonization for theories with
-degenerate coordinates. Then in Sect.Ill we formulate the generalized Hamiltonization procedure and new
criteria for singularity in the general case of a Lagrangian theory with degenerate coordinates. In Sect.IV we
consider some relevant examples. In the Appendix we discuss an useful notion and properties of auxiliary
variables, the latter being often used in the main text.
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2 Theories with degenerate coordinates

2.1  Which theories are conventionally called singular?

We first recall the conventional definition of singularity of a theory through the example of a theory without
higher order time derivatives for which the action reads S = [ Ld¢, and the Lagrange function has the form
L =L(g,q), where ¢ = (¢%a = 1,2,...,n) is the set of generalized coordinates and § = (¢* = dg¢®/dt). In such
a case, the Hessian M is used for the clasmﬁcatlon Namely:

&L || {75 0, nonsingular theory 1)
0ged¢® || | =0, singular theory

Whenever a theory is nonsingular according to the above definition, the corresponding Euler-Lagrange equations
of motion (EM} can be solved with respect to the h1ghest time derivatives (here with respect to second-order
derivatives) of all the coordinates. Indeed,

M = det
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thus,-g?=>q =M5K5,MabmW,M”Mbc=6§. (2)
Which in turn means that the EM of a nonsingular theory of the above type always have a unique solution
whenever 2n initial data are given. Hamiltonization of nonsingular theories leads to the Hamilton EM without
any constraints on the phase-space variables ¢, p. Recall that the conventional Hamiltonization procedure may
be formulated as follows: we pass to the first-order formalism introducing additional variables v, called velocities,
and imposing the relation v = g. Then an equivalent first-order action 5% reads:

57 = [0 +patit —vdt = [ pu® — B a2,
= Lijey = Llgv), HY=pu*—L°. (3)

The Lagrange multipliers p to the EM v = ¢ are considered conjugate momenta to the coordinates g. The pairs
g,p form the phase-space and all the variables ¢, »,v form the extended phase-space. The first-order EM have
the form: '
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Here {, } are usual Poisson brackets in the phase space. Due to Egs. (6), there exist two possibilities of treating
the velocities v inside the Poisson brackets: as quantities independent of the ¢,p variables or as quantities
dependent on the g, p variables. The set v,p can be expressed with the help of Egs. (6,4) via the set ¢, ¢ (this
is possible both in nonsingular and in singular theories). Thus, the variables v, p can be treated as auxiliary
variables for the action §V (see Appendix). Substituting v, p as functions of ¢, ¢ in the action S¥ and in the EM
(5), we reproduce both the initial action § and the Lagrangian EM. The theory with action $ is equivalent
to the theory with initial action S. Performing the Hamiltonization, we try to eliminate the velocities v from
the action 8% and from the first-order EM. For nonsingular theories, due to the condition M # 0, we can
solve the equations (6) with respect to all the velocities, v = U {g,p) . Thus, all the velocities v are auxiliary
variables in the first-order formulation of nonsingular theories and can be excluded from the action. One can
easily verify that after such an exclusion, we get the usual Hamilton action Sy, and usual Hamilton EM for the
unconstrained phase-space variables: '
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Hamiltonization of singular theories is more complicated, see for example, [1, 2, 3]. In particular, there appear
constraints both in the Lagrangian and the Hamiltonian formulations, and sometimes not all the velocities can
be excluded from the first-order action. They remain in the Hamiltonian formulation as Lagrange multipliers
to primary constraints.

In the general case (theories with higher derivatives), the action reads:

S = [Ldt, LmL(t,q(”) ,

= ( olla) — gla “/dtla) ca=1,..n,la=0,1,..,N,. (1)

Here L depends on the coordinates ¢* = ¢*© and their time derivatives g*%=) up to some finite orders N, .
Bearing in mind the same Lagrange function (7), it is sometimes convenient to assume it to be a function of
the coordinates and their time derivatives up to some finite order N, > N, , where N, are the sbove mentioned
orders of the time derivatives that actually enter in L. Thus, we introduce a set of theories with the same
Lagrange function L but with different orders {V,}. From the point of view of the Lagrangian formulation
it is obvious that all theories with the same L and different orders {N,} are equivalent. Even though their
Hamiltonization involves different extended phase spaces, we end up with equivalent formulations (5, 2].

A generalization of the definition (1) for theories with Lagrange function I and orders {N,} was proposed
in [5, 2]. Such a definition is based on a simple generalization of the Hessian, '

M = det , Na2 1. (8)

2L
aqﬂ'(Na)aqb(Nb)

_ [0, nonsingular theory
== (J, singular theory

- When we effected the conventional Hamiltonization, we proceeded from a system of first-order equations. To this
end, we introduce new variables ¢ , v® and impose the relations ¢, = gsa=l), vo = qolNe) 5, =1, N,
The variables v® are called velocities. The variational principle for the initial action S = [ Ldt is equivalent to
the one for the first-order action 57,

No—1
5= [ 224 3 mtr (0, — o) 2" (i ") |
sg=1

N,
- [[E e

Sa=1
No—1
v v IV, v
LY = Liq“(-?a—l):qga, qﬂ-(Na)=Uﬂ- ] H* = Z p Q.sa-I-l +p av L . (9)
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As before, the momenta p appear as Lagrange multipliers to the new imposed equations. The pairs g, p form
the phase space and all the variables g, p, v form the extended phase space. The corresponding Euler-Lagrange
EM read:
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When performing the Hamiltonization, we try to eliminate the velocities v from the set (10). In nonsingular
theories, according to the definition {8), it is possible to express all the velocities by means of the last set of

q. (10) as v = ¥ (g, p)=) . Thus, in such a case all the velocities are auxiliary variables (see Appendix). They
can be excluded from the action (9}. Thus, we arrive at the Hamilton action Sy and at the Hamilton EM for
unconstrained phase-space variables ¢2, pl:
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First, the Hamiltonization of nonsingular theories with higher-order time derivatives was presented in [6]. -
Hamiltonization of singular theories with higher-order time derivatives, on the base of the equations (10), is
. completely analogous to the case of theories without higher time derivatives, see {5, 2].

2.2 Degenerate coordinates. An instructive example

Let us now suppose that some of the generalized coordinates do not have any time derivatives in the Lagrange
function. In the general case (7), that means that N, are zero for some of that coordinates. We shall call
the coordinates with N, = O degenerate. According to the conventional definitions (1) or (8) any theory
with degenerate coordinates is singular. However, here we are going to discuss the following question: is it
-always reasonable to treat theories with degenerate coordinates as singular and to follow the above described
conventional Hamiltonization scheme? To answer this question it is instructive to first consider a class of theories
with two coordinates =, v and with Lagrange functions of the form

L =1Lz &u). | (11)

Here the Hessian (1) is zero, M = 0, therefore we are formally dealing with the singular case. Nevertheless, we
can demonstrate that the corresponding Euler-Lagrange EM

8§ 8L &L . L. &L

Se " e 930z Baeul deaal O (12)
85 6L
il vl (13)

~ have a unique solution {thus the theory is not a gauge theory) whenever the determinant M (we call it further
the generalized Ilessian)

~ &L &L 52.L 8L 82L \* ~
— a2 8g0u = - (= — t. U 14

is not zero and two initial data are given. Indeed, the condition M # 0 necessarily implies either case (a) or
case (b):

%L

a) 35 #0, (1)
2
b) % £0. (16)

First consider case (a). In this case the equation (13) can be solved with respect to u ,

oL
_ =T I {1
B0 0=wu=1=%(z,&), _ (17

and the equation
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can be solved with respect to i,
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Substituting (19) into (12), we arrive at the following equation

M (z,&,4) % = Fy (z,&,u)
SLO?L [ 8L 6°L 8L 8°L] .

Filedw) = 558t | 500t 5u0s 9005 02 | ©

Since M # 0, the Euler-Lagrange EM can be reduced to the form

£=F1($=iaﬁ)/ﬂ($:i:ﬁ)}u:ﬁ(mai')' (20)

They have a unique solution whenever two initial data are given, for example, z and # at the initial time instant.
Let us turn to the case (b). Here, due to (16), the equation (13) can be solved with respect to &,

& =7 (z,u), (21)
and the equation .

4oL _ L. 9L, ¥L
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We may substitute (23) into (5a) to get

G=0 (22)

can be solved with respect to &,

M(w,i,u}ﬂ = Fy (z,%,u) ,
8L 8L [621& 2L 2L 32L] .
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Since M £ 0, the Euler-Lagrange EM can be reduced to the form

4= Fp (z,0u) /M (2,0,u) , £ =0 (z,u) (24)
They again have a unique solution whenever two initial data are given, for instance, z and v at the initial time
instant. One ought to remark that provided both conditions a) and b} are satisfied, the EM can be written in
both forms (20) and (24).

Let us turn to the Hamiltonization of theories under consideration. First we consider the conventional
Hamiltonization procedure [1, 2, 3|, that is, we choose N, = N, = 1. In the first-order formalism, the phase
space is formed by the pairs =, p; u,p’, and the extended phase space is formed by the variables z;p; u,p’; v, v'.
The first-order formalism action reads:

Sm:u' — / [Lvur —1—p(£i’: —’U) _I_p! (’l:l.—'t}’)] dt = / |:_’p.i' +p'?.1 _ H»u,ur .dt,
' = L(z,v,u), H" =pv+pv' —L*", (25)

When performing the Hamiltonization, we have to try to eliminate the velocities v, v’ from the action S¥¥" and
from the Euler-Lagrange EM

531.11)" . o’ 631,1,’ _ . v’
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generated by the action S¥¥, The Hessian is zero, the theory is singular and we cannot exclude both velocities
v,v’ using Egs. (27). [As is known, in this case there appear primary constraints and further Hamiltonization
is related to the Dirac procedure we are going to demonstrate, for a special class of theories where part of the
coordinates does not have any time derivatives in the Lagrange function (we call such variables degenerate) it
is reasonable to reconsider the conventional definition of singularity and, moreover, to simplify the conventional

. Hamiltonization procedure (one ought to say that almost all modern physical gauge models are theories with

degenerate variables). In particular, in such a procedure (we call it the generalized Hamiltonization scheme) we
do not complete the degenerate coordinates with the corresponding conjugate ngomenta.[l, 2, 3]. :
Let us suppose, however, that the generalized Hessian (14) is not zero (M (z,v,u) # 0). Consider the

" following two possible cases:

a) 82L¥' /ou? = 0. Then L% = vfy (z,u) — fo(z,u), and M = —(8f1/8u)* # 0 = 8f1/0u # 0.
Therefore, the equation 8LV /v —p =0 = f; (#,u) —p = 0 can be solved with respect to u as u = @ (z,p) .
Thus, we have two primary second-class constraints,

o) =pf =0, oY) =u—a(z,p) =0, (28)

and both velocities v/, v appear to be Lagrangian multipliers in the total Hamiltonian H{% = f4+ 218 4125
which defines now the Hamilton dynamics of the phase-space variables. No more constraints appear. The
constraints (28) have a special form [2} and can be used to exclude variables p’ and u from thé action and from the
EM. Namely, we can substitute p’ = 0 and u = @ (z, p) directly into H1) to get the Hamiltonian H = f (2, ),
which defines the Hamilton dynamics of the remaining phase-space variables z,p as: z = {x,H} , p={p,H} .

b) 82L¥' /5u? +# 0 (we should suppose that this condition holds in a vicinity of the point z = v = % = 0). In
this case the equation §5%¥ /6u = LYY /&u —p = 0 can be solved with respect to v as v = © (x,u,p) and
one primary constraint appears 1) = p’ = (. The total Hamiltonian that defines now the Hamilton dynamics
of the phase-space variables reads: O 1 = p0 — L (z,D,u) + A®(1) | The consistency condition for the primary

constraint gives a secondary constraint {p’ H (1)} = gL /8u| _ =0, which can be solved with respect to
=g

u as &) =y — @ (x,p) = 0. The variables p’ and u can be excluded as in the previous case, and so we get a
similar result{to the previous case result]. Thus, after the conventional Hamiltonization we are left with the set
of equations

i‘={9§',H} ! ﬁ:{p:H}1 u=ﬁ(m,p) ;
v="0(x,p), H=p0— L(z,v,i) . (29)

We see that whenever the determinant (14) is not zero, the sector z,p of the theory is not singular (no
constraints on x,p), and the coordinate u can be treated as an auxiliary variable. The number of initial data
for the EM is two. This fact matches the aforementioned Lagrangian treatment.

Moreover, in the present case, the conventional Hamiltonization scheme can be simplified (we call new
Hamiltonization scheme the generalized one}. Indeed, we may choose N, = N, = 0. Since the derivative % is
not present in the Lagrange function, we only introduce the z-velocity v and do not introduce the corresponding
Lagrange multiplier. Then the equivalent first-order action reads: '

.S'”=f[L”+p(¢—v)]dt=/{p:i:uH”]dt, |
LY = L(z,v,u), H"=pv—L". (30)

Thus, the only conjugate momentum introduced is the z-momentum p. The phase space is formed by z,p
and the extended phase space can be thought of as x,p;v,u. In the course of Hamiltonization, it is natural
to treat both v and w on equal footing and try to exclude them from the corresponding action and from the
Euler-Lagrange EM

55¥ s5°
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Consider the case M # 0. In this case the equations (32) may be used to express both v and u via
the canonical pair x,p as v = 0(x,p) , v = % (z,p). We see that the variables v, u are auxiliary and can
be eliminated from the action S¥ (see the Appendix) to obtain the action in the Hamiltonian form. The
corresponding Hamiltonian H is obtained by substituting v = o (z,p) , v = @(z,p) directly into H” to
get H = ptv — L(z,0,%) = H (z,p) which determines the Hamilton dynamics of the pair z,p. Thus, after
such generalized Hamiltonization we arrive at the same set of equations (29). Notice that in the generalized
Hamiltonization scheme we did not use the condition: 82L%Y /8u? # 0 in a vicinity of the point = v =u = 0.

What can we learn from the above considerations? First of all, it is not necessary to introduce the momenta
associated to the degenerate coordinates in the course of Hamiltonization. The scheme of Hamiltonization can
be simplified. Moreover, the new generalized Hamiltonization scheme motivates us to change the definition of
singularity (1) in the presence of degenerate coordinates. In this case, it is more reasonable to classify theories
according to the generalized Hessian (14) and to consider them nonsingular whenever M # 0. Indeed, besides the
natural consistency with the generalized Hamiltonization scheme, the generalized-Hessian criterion allows one
to conclude immediately that a theory is not a gauge theory whenever M # 0. Looking upon the conventional
Hessian, we cannot come to such a conclusion without additional analysis of the constraint structure. Below we
present a generalization of the conventional Hamiltonization scheme and a generalized singularity criterion for
a general Lagrangian theory.

3 Hamiltonization of a general Lagrangian theory

As was already said, in the general case the action reads § = [ Ldi, the Lagrange function has the form (7);
and let the orders of the highest derivatives be {N,}. The corresponding Euler-Lagrange EM are

58 & . de [ 8L .

We propose to classify Lagrangian theories as singular or nonsingular using the generalized Hessian M in
the following way:

2L

M = det || & ata) ey

, N, >0. (34)

_ [#0, nonsingular theory
| =0, singular theory

We stress that the orders IV, can be zero in the presence of degenerate coordinates. The difference between
definition (34) and definition (8) is related namely to the possibility of N, to be zero. Il we restrict all N, > 1
even in the presence of degenerate coordinates, the generalized Hessian (34) and the Hessian (8) coincide. In what
follows, we consider the Hamiltonization of general theories according to the generalized Hamiltonization scheme.
and present arguments in favour of the definition (34). In particular, we will demonstrate that in the nonsingular
case (according to (34)) the Euler-Lagrange EM always have a unique solution under an appropriate choice of
initial data and the Hamiltonization leads to usual Hamilton EM without any constraints in the appropriate
phase space. Let us turn to the generalized Hamiltonization scheme supposing for simplicity that N, = N,.
In the beginning we pass to the first-order formulation, which differs from the one considered above whenever
some of N, are zero. To this end, we divide all the indices a, numbering the coordinates, into two groups,

a=(i,u), Nj=0, N, >1, ' (35)

introduce new variables mf;'p, v% and impose the relations

.'LJ;“ = q.‘“(ﬂu—l) ) 3” = 1’ ""NF" 'UF' — q,U(N#) ,

Womal s s =1 Ny — 1 dhy =0k, (36)
g = g0 = i) — i (37)

The variables v® will be called velocities. Thus, the degenerate coordinates have the status of velocities in
the first-order formulation. The variational principle for the initial action § is equivalent to the one for the



first-order action Sv,

N,—1
5= [ e 3 n (ot )+ (3, )|
=1 ’
f Z prdh, — HY | dt,
gp=1
LY=L q“(sl‘_1)=wfp,q“(“’a)=uﬂ ) Z PM” w1 +pM“U‘u - L. (38)

8,=1

The variables p.* should be treated as conjugate momenta to the coordinates #f . The corresponding Euler-
Lagrange EM read:

58Y _ _ _
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For T For " Pp = v

It is easy to verify that after eliminating p;*,s, = 1,..., N, o Ty 8u = 2,00 Ny, v# (these variables are auxiliary)
from the action S* and from Egs. (39)-(41) we arrive at the action S and at the Euler-Lagrange EM (33). The
phase space is formed by the variables =¥ . pi* only, and the extended phase space is formed by the variables

ok pi'; v®. By effecting the Hamiltonization, we must try to eliminate the velocities v® from the action S¥.
Consider the nonsingular case according to the definition (34):

821 82 HY
Buadub dvadud
Thus, Eqgs. (41) can be solved with respect to all the velocities v, such that these velocities can be expressed
in the form v =7 {z, pﬂr“ . Now we can eliminate the variables v from the action 5V, since they are auxiliary

variables (see Appendix). Therefore, the action S¥ and Egs. (39)-(40) are transformed into the ordinary
Hamilton action Sy and Hamilton EM for the unconstrained phase-space variables %, pg:

M = det #0

= det’

8u=1
it :{ H} g ={p, HY, s,=1,.,N, | (42)

One can see that the Hamiltonian H is the energy written in the phase-space variables. Eqs. (42) are solved
with respect to the highest (here first order) time derivatives and therefore have a unique solution whenever
2 E N, =23%"_ N, initial data are given. Since these Hamilton EM are equivalent to the Euler-Lagrange EM
(33) we can say that for nonsingular (according to the new definition (34)) theories, the EM have a unique
solution whenever 23", N, initial data are given! '

In the singular case, the equations (41} do not allow expressing all the velocities through 5, pa, so part of
the velocities appear as Lagrange multipliers to primary constraints. Then the Hamiltonization follows literally
the way described in {5, 2.

We see that by performing the Hamiltonization procedure one does not need, in principle, to introduce the
momenta conjugate to the degenerate coordinates. The singularity definition (34) differs from (8) for theories
with degenerate coordinates and seems more reasonable in such cases. As was already remarked, considering




the simple example, besides the natural consistency of the generalized Hamiltonization scheme, the generalized-
Hessian criterion allows one to conclude immediately that the theory is not a gauge theory when A7 # 0.
Examining the Hessian, we cannot come to such a conclusion without additional analysis of the constraint
structure. _

If we select some N, > N,, a wider extended phase space is needed for the Hamiltonization. However, one
can demonstrate, similarly to [5, 2], that the final Hamiltonized theory will be equivalent to the theory with
orders {N, = N,}.

4 Examples and discussion

1. As an example we consider the theory of a massive vector field A* . The theory is described by the Proca
action '

2
S = fcdm, L=— %FWF”” + mTAQ
1/, 2 1 ; 2
== (47+ az-AO) — JFaF® + A% B, = 0,4, - 8,4,. (43)

In this case the velocity A® does not enter the Lagrangian. Thus, A° is a degenerate variable. Below we compare
the conventional and the generalized Hamiltonization schemes.

a) The Hessian is zero, since the matrix 82L/8A*8A” is not invertible, and the theory is singular in the
conventional definition. Consider the conventional Hamiltonization. Here we have to introduce momenta p,, to
all the coordinates A#. The action SV in the first-order formalism reads

SY = f [P A¥ - 'H”] dz,
- . 2 ‘
HY = p,u'uf“" — % l:(’vz + B@AU)Z - % iszk + mTAz] . (44)

Thus, A*, p, form the phase space and A¥, p,;v* form the extended phase space. The equations

v P0=6‘%=0
L 7 .
58" /v Oé{pizgﬁzvz_‘_aﬁo, (45)

do not allow one to express the velocity v° via the other variables. At the same time the velocities v* are
auxiliary variables (see Appendix), so they can be expressed via the other variables by aid of equations (45}
and substituted into (44) to get the reduced equivalent action

S = f [pﬂ v H(n] di
1 1 , 2 -
HY = Ep? —pid A° + ZFﬂcF‘k - %A2 + Apo - (46)

where A = 0. It follows from (46) that in the phase space A%, Py there is a primary constraint @) = py = 0

and the dynamics is governed according to the Hamilton EM with Hamiltonian H( = [ HMdx . Applying

the consistency condition to the primary constraint, we find the secondary constraint &2 = 8;p; — m24°% = 0.

There are no further secondary constraints and @ = (tI){l), ®(2)) is the complete set of second-class constraints.

Moreover, this set of constraints @ is of the special form [2], such that one can use these constraints to eliminate
the variables A® and py from the action (46) to get still one more reduced equivalent Hamilton action

1
2m?2

It follows from (47) that in the phase space A%, p; the dynamics is governed according to or.dina,ry Hamilton EM
with the Hamiltonian density H = [ Hdx and without any constraints.

i 14 2 1 ik m? 2
S = [p,;A —H] de, M= 5p} + o (i) + 7 FuF™ + T 47 (47)




b) In the generalized Hamiltonization scheme we introduce the velocities according to the general prescription
(see Sect.IIT) as v® = A0, v = A'. The theory is not singular with respect to the new definition (34), since the
matrix §2L/8vF8v” is invertible. We introduce the momenta p; conjugate to the coordinates A? only. Thus,
- A%, p; form the phase space and A®, p;;v* form the extended phase space. The action §¥ in the first-order
formalism reads

Sv = f {pi}ii —H‘U} dz,

1, . 1 ) ‘
HY = pv* — 3 [(v‘ + 6i'U0)2 ~3 L F - m? (’U% — A?) . - {48)
Here the equations §5¥/6v* = 0 allow one to express all the velocities via the momenta (all the velocities are
auxiliary variables)

Vo = m‘zc'i‘,,;p,- R b = (51 - m_23¢3j) P, (49)

Substituting the expressions (49) into (48) we arrive immediately at the reduced equivalent Hamilton action
(47). '

2. Consider electrodynamics. The theory is described by the Maxwell action, which follows from the Proca
action (43} at m =0, '

S 1 v_ L7 ay? _1 ik '
= ff,dm, L=—3FuF® =2 (A 1 8A ) — 3 FwF*. (50)
Here both the Hessian and the generalized Hessian are zero, thus the theory is singular in both definitions.
As hefore AY is a degenerate variable. Let us compare the conventional and the generalized Hamiltonization
gchemes.

a) First consider the conventional Hamiltonization. Here we have to introduce momenta p, conjugate to all
the coordinates A . The action S in the first-order formalism reads

S¥ = [ [ppA'”‘ - H”] dz, H” = p,ot — % [('uz +8,40)" - -;' wF| (51)

Thus, A*,p, form the phase space and A*, p,; v* form the extended phase space. As in the Proca case, we can
get the reduced equivalent action

50 = f [pudt = H®| da, HO = %pf ~ i A° + imw*’k +Apo, (52)

where A = 00, It follows from (52) that in the phase space A¥, Py there is a primary constraint W) =py =0
and the dynamics is governed according to the Hamilton EM with the Hamiltonian H(Y) = { HWdx . Applying
the consistency condition to the primary constraint, we find the secondary constraint ®¢4 = &p; = 0. One
can see that & = (@(1), &) = 0 is a set of first-class constraints, so that in this case X is undetermined and
new constraints do not arise. It is a gauge theory. Any rigid gauge needs two additional gauge conditions (in
particular, to fix A), and one can see that A is not a physical variable [2].

b) In the generalized Hamiltonization scheme we introduce the velocities according to the general prescription
(see Sect.IIT) as v® = A°, v¢ = A*. The theory is singular with respect to the new definition (34), since the
matrix 8%L/8u*BvY is not invertible. We do not introduce momenta conjugate to A°, and then the procedure
becomes completely analogous to the generalized Hamiltonization of the Proca case. The action in the first-order
formalism, 5¥, reads

SV = f [pi}ii - H”] dz, H® = pp® — % (v + awo)? + iEkF’“ . {53)

Here the equations §5%/6v# = 0 result in §8V/6vt = 0 —> v' = Jup — p; and in the primary constraint
&1 = §;p; = 0. Only the [The only] velocities v* are auxiliary variables. They can be eliminated from the
action using the corresponding equations. Therefore, we are left with the reduced equivalent Hamilton action

.. 1 1 ;
Sy = f [piA" - H] dz, H= -ép? 7 P+ A%O;p; . {54)
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We see that in the generalized Hamiltonization scheme, the variable A? has naturally the status of a Lagrange
multiplier to the primary constraint. The action (54) is physically equivalent to the one (52), the former
corresponds to a partial gauge, i.e., fixing A = 0 in the latter.

3. Consider the theory with degenerate coordinate » and Lagrange function of the form

L = zu + 5.

The Euler-Lagrange EM give ¢ = ¢ = 0. Here not only the Hessian is zero, but also the Hessian matrix

|| 6 0O
10 0
does not have a constant rank in the vicinity of the zero point £ = & = u = @ = 0, such that we may have addi-
tional difficulties when using the usual Hamiltonization procedure. In contrast to this, the generalized Hessian
M equals —1. Thus, the generalized Hamiltonization procedure can be completed without such difficulties. This

example gives additional arguments in favour of the generalized Hamiltonization procedure for theories with
degenerate coordinates.
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Appendix

Consider a classical system described by a set of generalized coordinates ¢ = {¢%;¢ = 1,2,...,n} and by the
action §'[q] = [ Ldt. Sometimes the EM allow one to uniquely express a part of the variables, which we denote
by y , via the rest of the variables, which we denote by z , such that ¢° = (yi, m“). In such a case, one can
try to eliminate the variables y from the initial action and ask whether the initial and the reduced theories are
equivalent. In what follows, we consider the case in which a positive answer is possible, see in this regard [7, §].

Suppose an action S [g] = Sy, z] is given such that the EM §§/6y = 0 allow us to express uniquely the

 variables y as local functions of the variables z, namely:

68 [y,
by .
Consider the action S[z] = Sig, zl, which we call the reduced action and compare the EM corresponding to

both actions. Consider the variation 65 under arbitrary inner variations §z such that any surface terms vanish
1

?

=0 <=y = §(t, V), - (55)

85z} = f (M 55+ 37 fsm) de— [ 518 eg (56)
6y =g b |,y bx
In virtue of (55), the EM for the reduced theory read:
65z _ 6S{y, =] 0 (57)
bz br |,y .
On the other hand, the EM for the initial theory are:
65 [y, =] _ N L 1S
59 =0=y=7(,%,..); S =0,

They are reduced to (57) in the sector of the z-variables . Thus, the initial action S and the reduced action S
lead to the same EM for the variables = . For this reason, we can treat the y-variables as dependent and call
them auxiliary variables. Thus, the anxiliary variables can be eliminated with the help of the EM derived from
the action. The initial theory and the reduced one are equivalent. One ought to stress that this equivalence is
a consequence of supposition (55), that is, it is important that the y-variables be expressed as functionals of
by means of the equations §5/6y = 0 only. If for this purpose some of the equations §5/6x = 0 are used as
well, then the above equivalence may be untrue. Of course, solutions of the reduced theory, together with the

! To derive the equations of motion it is enough to only consider such inrer variations.
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relation y = , contain all the solutions of the initial theory as it is easily seen from Eq. (56). However, the
reduced theory may have additional solutions. To illustrate this fact, we consider a Lagrange function of the
form ‘ '

L=2%/2+zy. (58)

The corresponding EM are §5/6z =y~ % =0, 85/8y = 2 = 0. They have the unique solution z = y = 0.
Now let us express the variable y via = using the equation §5/8z = 0. The reduced Lagrange function takes the
form

L=3%/2 4. (59)

We see that the EM 65/6z = & = 0 of the reduced theory together with ¥ = # have additional solutions in
comparison with the initial theory. If we use the equation §5/6y = « = 0 for eliminating = from the Lagrange
function, then the reduced theory for the variable y with L = 0 even becomes a gauge theory, whereas the initial
theory was not a gauge theory.
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