.rfx,-_:;‘.;..":' i o

Instltuto de F1s1ca
| Un1vers1dade de Sao Paulo

Attmuatmn of the mteusxty thhm
a supardﬁfarmed band

Sargeant, AJ.; Hussein, M.S.! Pato, M P Tak;gawa, N.2
' and Ueda, M.

Y Nuclear Theory and Elementary Particle Phenomenology Group, Instituto de Fisica,

Eniversidade de Sdo Paulo, CP 66318, 05315-970 Sido Paulo, SP, Brazil

2 Department of Physics, Tohoku University, Sendai, 980-8578, Japan

Publicagdo IF - 1539/2002



UNIVERSIDADE DE SAQ PAULO
Instituto de Fisica
Cidade Universitaria
Caixa Postal 66,318
05315-970 - Sao Paulo - Brasil




Attenuation of the intensity within a superdeformed band

A.J. Sargeant', M. S. Hussein!, M. P. Pato!, N. Takigawa? and M. Ueda!
! Nuclear Theory and Elementary Particle Phenomenology Group, Instituto de Fisica,
Universidede de Sio Paulo, Caiza Postal 66318, 05315-970 Sdo Paulo, SP, Brazil
2 Department of Physics, Tohoku University, Sendai, 980-8578, Japan
(August 29, 2001)

| “Abstract

"The attenuation of the intra-band mtensﬂ:y of a superdeformed band which
' .results from mixing with normally deformed conﬁguratmns is calculated using
reaction theory It is found that the sharp increase of the attenuation is mostly .
' due to the tunnelling through a spin dependent barrier and not to the chaotic L
nature of the normally deformed states.
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formed.(SD) rotational band show cascades down.to low angular momentum [1-7]. . These:
cascades exhibit the distinct feature that the 1nten51ty remains constant until a certain spin
siréached where-after the intensity draps:to zeroswithin.a few transitions. The Sha.rpﬁ dxop"'
nten51ty is commonly 'referred to.as the decay, out.of a superdeformed band and.is: beheved
“to arisefrom mixing of the SD states with: normally-deformed (ND)} states of identicil spin:
« ‘The earliest theoretical work te. 1mplement such an interpretation [8- 11] used:a:statistical -
“model of the coupling between the- -SD: and:ND states. More recently, Refs:t{1
a framework originally developed for the study of compound nuclear reactionsito ‘derive
formulae for the intensity in ‘& niore rigorous fashion (the expressions for the’ 1nten51ty in
‘Refs. [8-11] are deduced from probability arguments). Ref. [13] concluded that Refs. [8-11]
are valid in the non-overlapping resonance region. Refs. [8-11] further calculate the spin
dependence of the relevant parameters: (the electromagnetic widths of the SD and:ND-states,
the level density of the ND states and spin dependence of the barrier separating the SD and
ND wells) which Refs. {12,13] do not. Two features common to Refs. [8-13] are (i} the use
of the Gaussian Orthogonal Ensemble (GOE) to simulate the ND states (ii) the use of the
“golden rule” to extract a width for the the SD states due to mixing with the ND states.
Here, as in Refs. [12,13] we exploit the similarity between the decay out of superdeformed
bands and compound nuclear reactions to write the intensity as the sum of average and
fluctuation contributions. However we use an energy average in place of the ensemble average
used in Refs. [12,13].- The energy average approach allows the inclusion of the following
teatures which are more difficult to incorporate into an ensemble average.
(1) A hierarchy of complexity in the ND spectrum may be introduced.
(ii) A statistical model different from the GOE may be used to simulate the ND states, as
was proposed in Refs. [14,15].
(iii) A width for the SD states due to mixing with the NI states arises naturally without
appealing to the “golden rule” whose range of validity has been found to be restricted [16,17).
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‘It is niow well established that the: intensitiés of E2 gamma tran51t10ns wzthm a. superde—'_f ST

2.93] used " -



In Figure 1 we show a schematic plot of the energy of ND and SD bands as a function
of spin. The observable in which attenuation is seen is the total intensity of two consecutive
E2 photons in the cascade down the SD band. Let |J) denote an SD configuration with spin
J. The relative intensity of the two step transition |J 4 2) 3 |.J) B |J —2) (relative to the
intensity of the same two step transition in the absence of mixing with other configurations)
is given by

Fy= Qmef dEﬁf dE, |(J — 2|T(E;- 2+E72)|J+2)| §(E — Ey_y— E,m)
1 _ | |
27rPJ+2f BT -2ATEW B | (1)

where F = Ej 9 ~ E; = E; takes account of the Hamiltonian of the electromagnetic field,
E; being the energy of-|J) and E,, and E,, the energies of the two consecutive photons.
The electromagnetic width of |J + 2) is '}, , making 22T}, the intensity when there is no
- mixing with the ND states and thus no flux loss from:the SD band. Note that in Eq. (1).
we ignore the widths of the initial and final states for the purpose of calculating the relative '
mtens1ty _ '
' The tran51t10n amphtude is given by

= ATENT +2) = VHﬂﬂﬂENWw j_f 'g~'-(m 

-';‘-.‘funcm@n ig gwen by

- : _he,. otal nuclear Hamﬂtoman which takes the couplmg to the electromagnetlc field 1nt0;'l

L account is denoted by H.

The projected Green’s function (J|G (E)]J) may be expressed in terms of its Lorentzm,n= |

[ energy average (J|G™(E)|J) = (J|G(E + i1)|Jy (energy averaging interval I) plus a fluc- "y

‘tuation part [18,19}:
(JIGIT} = (JIG=|T) + {J|G™<|T), (4)

where by definition the energy average of {J|G%¢|J) is zero. Thus Eq. (1) for the relative
intensity may be written

Fy=F3" + F™, (5)
where
Fy =2 [ agiie - ©)
27 J-
and
Fpe = T [ a (|16t )p)™. )
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In this paper we focus our discussion on F7*. It can be shown that

1
FE— EJ+3FT/2—WJJ(E)

(TG (E)T) = (8)
The derivation of Eq. (8) for {J]|G*"|.J) and an expression for (J|G%|J) using projection
operator techniques will be reported in a subsequent paper.

The form of W;;(E) depends on the specific model for the Hamiltonian which is em-
ployed. It is our aim to study whether or not the chaotic nature (as classified by random
matrix theory [RMT]) of the ND states is decisive in explaining the observed attenuation.

- In order to isolate the statistical aspects of the calculation we use two different models dis-

~ .+ tinguished by whether the tunnelling interaction mixes |J) randomly:with the ND states =

“(model A) or whether it couples more strongly to certain ND states than others (model-B). -

In the latter we shall make the most extreme assumptlon that |J) Couples to only one ND :

- state.

Model A is Iepresented by the matrix ¢

EJ VJn F,Y 0 _ , :.. -.
i (0 8) 4 (F ) v @

~where E, denotes. the energles of the N ND states with. which ]J ) mlxesi%due to, the real
~tunnelling interaction Vi, . Here. I}y is an electromagnetic width which we.as§ume to. be-
common to the ND sta.tes With. these definitions W, J(E) becoines . s

. [Vin]
E E, +1(I‘7 +I)/2

The energiés B 'é;}é';c.onstructed using the deformed ‘Gau‘s‘siaﬁ; ‘b'rthogo'nal ensemble
(DGOE) [20]. The DGOE allows-a smooth interpolation from Poigson to GOE statistics by

| varying a mixing parameter A from 0 to 1. Thus the E, are -the.eigenvalues of a random

Hamiltonian A which is real symmetric and whose matrix elements are taken to be Gaussian
distributed random numbers with zero mean and variances

2

The random tunnelling interaction is taken to have zero mean and {rariance

(Viu) = v5. (12)
We assume that E; lies in the middle of the N ND states, that is, £y = 0. Following Refs.
8,9,12,13] we introduce a spreading width Pf, through the golden rule

I = 2mu?. - (13)

We maintain doubts about the meaningfulness of Eq. (13) regarding its interpretation
as a width {17]. For practical purposes, however, it is a change of variable from v, to I'}.
All quantities of dimensions energy are to be understood to have units of D, where Dy
denotes the mean spacing of the ND states around E;. Thus the £, (and the E, and V,, in
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Eq. (15)) which are generated from the DGOE are to be understood to have been unfolded
such that the E, and E, have mean spacing equal to unity. Thus we may write W i(E) as

FJ g
Was(B) =52 ZE E,+i(Th+1)/2 (14)

where the g,, n = 1, .., N, are Gaussian dlstrlbuted random numbers Wlth zero mean and
unit variance.
Model B is represented by the matrix

E; Vg 0 A N 0 | o o ‘
3 J _ ;

0 Vig Eibge 0 0 PNaqq

© ‘We.assume here that |J) couples to only one: state of normal deformation; |d) Wthh has PR
- energy -Ey; with strength V. This special state is: subsequently mixed with other ND - -

configurations with energies F, by a residual interaction Vy,. Now Wy s(E) becomes

17 (E tV }_E_: lea(r)) SR .-:"?-"(16)
T Jd E En +z(1“"f +1)/2 R R

2 where cg{n) denotes component d of the nth, elgenvector of the sub-matrix of the ﬁrst term, o

~-are taken to be Gaussian' distributed: random numbers with zero mean:and variances =~ 7.

2 A2

- <h’gq)= N (hg’q> =N g #q (17)
The residual interactiéﬁ-is-al‘-s:b taken to have zero mean and varianée'f_"".' Rt
oA |
AR )
We put By = Ey = 0. Introducing
| [V,M]
T = 27 1
= o2 (19)
we can write Eq. (16) as
Tl - N [ca(n)])”
Ww.
s(E Z E—E,+i(IL+1)/2 (20)

Thus comparing Eq. (14) with Eq. (20) we see that, although the meaning of I'}, is different
for the two models, the difference between model A and model B boils down how much the
distribution [cg(n)]® differs from that of g2. This difference is not trivial as [ce(n)]® has a
dramatic A dependence (see Fig. (1) in Ref. [15]). The inclusion of the factor & in Eq. (19)
makes clear that model A and model B are only comparable when V2 is of the order Nv3.

4

+ ofEq. (15) obtained by excludingithe:first xow and ‘the first column.:Now the ik are
v -elgenvalues-of & random Hamiltonian.h which is:real symmetric and w}iose.:_rﬂatrix;:,e.le'nien__ﬁ's--52 i



Model A is precisely equivalent to that of Refs. [12,13] when A\ = 1. The real part of Eq.
(15) used in model B is equivalent to what is used in Refs. [14,15], however, we calculate
the average intensity integrated over the energy: F3%", whereas Refs. [14,15] calculate a
tunnelling probability which is more closely related to Wy (E). '

.Note that F'¥" can be written as

= ;/m 4k 1 72 T o (21)
T (B - Es - AYE) + (14 42
where " - '
| CAME)=ReW(E), @)
and C ‘. ST | .. | _
TY(B) = —2ImW,,(E). -~ @

- Ignoring théflishi_ft*A 7(E) a.ltogether and assuming that the width I'y(E) has the energy
independent value T') one obtains the principal result of Ref./[12] that :

.?-V. ~ FI} E
I} + T

(24)

L ‘We:now present iumerical calculations of F3¥with /N =:50; I'L.=0.01D,. An ensemble. "/ .5 75
. average was performed over 100 realisations in'Fig.- {2):and over 1000 fealisations in Fig (3).
n The effect-of ‘increasing 1"]},, identical to that obtaifiedsby increasing the energy averaging .
" interval:I s to broaden T'j(E) (Eq. (23)) and thius. push: F$¥+closer to the approximation .
given by: Eq (24). This is in line with what it 1ereported in {21] who obtain Eq. (24) in + -
the hmlt — oo for their two level model. "

- In our calculatlons we put I'Y, + I = 3D,;. With th1s chmce one may describe what Ref
[13) calls the overlapping'resonance region. Ref: [13].gives the impression that the relatlve e g e

intensity is independent of I'}. Whilst we agree with [13] that the ratios by == -% and —"i

are of principal importance in understanding the decay out, it can be seen from Eq (21)
that F§" is only independent of I'} if A4(E) and I',(E) are constant.

Fig. 2 shows the dependence of F§- on A, the strength of the mixing amongst the ND
states, for several values of b, for both model A and model B. For model A the variation of
F'% with A is rather slight compared to model B. This is because the A dependence of model

- A is contained in the eigenvalues B, which are unfolded to have unit mean spacing. Model
B has a further and more significant A dependence contained in the eigenvectors cq(n). For
model B, F7" decreases with decreasing A to a value which is limited by the value of I'}, + 1.
Note that F'?": can change at most by a factor of about 5 by varying A.

Fig. 3 shows F7" as function of b; for some values of X, calculated using model B.
The calculations for model A are not shown as they can barely be distinguished from the
calculation for A = 1 using model B. The effect of changing ) is to move the value of b; (and
hence .J) at which the decay out occurs. Thus from Fig. 3 we conclude that the decay out
is slightly hindered by increasing . '




Regarding Refs. [14,15] which report an increase in the tunnelling probability of several
orders of magnitude with increasing A we do not consider ourselves at odds with this work
since, as already mentioned above, we do not calculate the same quantity. A further differ-
ence between model B of this paper and Refs. [14,15] is that their author places [d) at the
position & thus making the distribution c4(n) asymmetric. This would correspond in our
calculation to making the difference E; — E4 non-zero (we see no reason not to set £ = Ey).

An investigation of the roles of I'y and I we postpone to a subsequent paper. The
results of Ref [13] indicate that F§"*, Eq. (7), is important when I} is a small fraction of
Dj; (non-overlapping resonance reglon)

- It was already found from phenomenological analysis some years ago [8 9,3] that F3"- falls
exponentlally with decreasing spin. ‘We conclude here that the chaotic nature of the ND
states, as classified by X, carnot account for such behaviour. The exponential.drop.in the. .
intra-band intensity must be due to the spin dependence of the tunnelling matrix:element
contained in b;. The calculation of b; is not trivial and we refer the reader to [22 23] which
continue the work of Refs. [8-11], for some recent calculations. _

-A.J.S. thanks J.A. Tostevin for his comments on an early. version of thlS paper. This . .
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FIG. 1. Schematic diagram illustrating the decay out of a‘superdeformed band.
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thin lines where calculated using model A and the thick lines using model B.
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