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Abstract

K

We study a system of N Bose atoms trapped by a symmetnc harmonic po-

e describe a broad dlass of the inters.ctidtis'f‘-for whlch these results are valid.
g "-Thls umversahty class is defined by snnpie mtegra] condltmn on the potential.
. The most the potentials of practical interest Wlnch have pronounced repulsive

: component belong to this ‘universality class




1. INTRODUCTION

Recent progress in creation of magnetlc traps for cold atoms made possible the study of
the effects of quantum degeneracy in systems of finite numbers of interacting identical par-
ticles [1}. One of the most mter%tmg phenomena is the Bose-Einstein condense,tlon which

can be studied in different coupling regimes in such dilute atomic gas systems. Theoretical
studies of such systems of weakly interacting bosons, confined by parabolic potential, have
become very active [2-6].

Response of such -system ‘to rotation and the onset of vorticity in t_l,l_e_._condensate are
among the most interseting questions attracting attention of both experimentalists and
theorists [2-8]. In this connection, it is very important to study the structure and the
spectrum of the ground states of rotating condensates at a g;iven anglﬂax momentum, called
the yrast states [2—5], see Flg 1. The notion of yrast states is borrowed ﬁ‘om nuclear phymcs,

. Where the states of man

'-body system ha,vmg hlghest spms et a glve;l exmtatlon energy play

'_a.lso a specw.l role [9].- o

A pa,rticular problem of w1de recent mterest [3"—5] anses in the';so-called weak couphng

hm1t when the repulswe interactions between bosom e.toms can' be con31dered weak as

- compared to the spacing between different oscﬂla.torﬂlevels in the ha.rmomc trap. This limit
is expected [24] to be reached in future experments In pa.rtleula:, an interesting possibility
to study different coupling regimes is related to usmgthe;«\Feshbach resonance [10} to vary
the strength of the effective interatomic interactions. From the theoretical viewpoint, the
~ advantage of the weak coupling limit is that it allows analytical treatment of the problem.
We will consider here N spinless Bose atoms in a spherically symmetric harmonic trap,
assuming the interactions weak. It is sufficient to consider the two-dimensional case, because
the three-dimensional case can be reduced to the former in the weak coupling limit, as was
 shown in Refs. [4,5]. It is expedient to start with the case of noninteracting particles.
The noninteracting system has equidistant spectrum fuvn where w is the trapping oscillator

frequency and n an integer. Each level is degenerate, and the degeneracy grows exponentially
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“with n at n — N > 1 {4]. This degeneracy is related to the number of ways to distribute
‘the total energy hwn among the Bose particles. The short-range interactions V(r) between
the atoms are assumed weak in the sense that hoppings between different hwn levels can be

neglected,
N(V) < i, | o

where (V) is the typical matrix element of the interaction |4]. The problem is therefore to
ﬁn& nonperturbative solution for the highly degenerate states at a single level fiwn, which is
similar in spirit to the problem of the lowest Landau level for the electrons in high magnetic
field, which arises in the theory of the fractional quantum Hall effect [11,12] or to the problem

of compound states in an atomic nucleus. The yrast states are those with minimal energy

* at given anglar momentum, L. This is llustrated in;Fig. .2; where the spectrum patterns . - - -,

dre shown for the cases of zero and finite interaction. ;.. it n: . - o

RE ‘-{*‘~:VAs-,:isg"us"ﬁa:]ly;{:&thé}' case for interacting many-body -:'sysfﬁ,émsj-&‘.l;he_;';emluation_- of the exact . . ...
e s‘-=-g'ro'11*;1_d':a_s1jatéef.«i‘s*ia‘a-:’pirohibitive task, even with :the.simplification: introduced by. the weak .. ..ol

" -cotplingdimit:[3-5], {13-23]. The yrast..statés;-m;;uh@;ga__sg_,-_:,f_,-: attractive 6-forces have been

: foundanalytlcaﬂyby Wilkin et ol [3]. Latei;;;f;%’bhesé?-sresults‘ have been shown valid for-,

;"a;"bro‘é;d ‘class of attractive interactions in-Ref. [23}: The case of repulsive intefaction s :;._;i:-;. -

more difficult to analyze [3-5,13-19]. One of the first important results obtained for the
.repu.lzsivé forces was that of Bertsch and Papenbrock [5]:- these authors diagonalized the
repulsive d-interaction numerically and suggested analytical formulae for the wave functions
and energies of the yrast states. Later, it was shown analytically by several authors using
various methods [16,14,15,13,17], that the states of the form of Bertsch and Papenbrock are
indeed eigenstates of the Hamiltonian. Only recently, it was shown that these states indeed
 correspond to minimum energy [20], [21].

In this work, we provide rigorous analytical solution for the yrast states. In fact, we

consider a more general problem [20], of finding the ground state as a function of. two

quantum numbers, the total angular momentum, I, and the angular momentum of internal
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excitations (we discuss this quantity in the following sections). Such “generalized yrast
- states” include the usual yrast states as a limiting case. These solutions are valid in the
region L < N. Physical interpretation of the results is qﬁite transparent. In fact, the form
of the yrast wave functions which was drawn from numerics [5] for the case of d-interaction,
turns out to be valid for a broad class of repulsive interactions. The universality class of
-such interactions [which includes, but is not limited to, delta-forces, Gaussian forces with
arbitrary range, Coulomb (1/7) and log-Coulomb [log(r)] forces] is descfibed by an explicit
sufficiency condition. '
The structure of the paper'is the following. In section II, we present detailed formulation
_of the problem in the weak coupling limit, introducing the relevant “partition subspace” and .
the basic ingredients of the following consideration. In section III, we derive the operator
expansion for the Hamiltonian projected onto the partition space: In section IV, we discuss
- the additional conserved quantum number, “senjority”_, which can be.interpreted as a collec-
tive contribution:to-the:angular momentum, and introduce- the notion:ofigeneralized yrast
- states. The method:of supersymmetric decomposition of the: Hamiltonian-is'introduced and -
discussed inseétion: V. Its application to the present problem:is:developed in section VI.
Section VII'is dévoted to study the property of non-negative définiteness of the “supersym-
metrie perturbation”. The results for the generalized yrast states are presented, in general
form, in section VIIL. In section IV, we consider various examples of the interaction poten-
- tials and discuss the results. Section X is devoted to detailed discussion of the applicability
condition and of the corresponding universality class of attré,ctive potentials. Section XI

summarizes the work.

II. THE PARTITION SUBSPACE

In the weak coupling limit discussed in the previous section, the problem splits onto
series of independent problems for each value of the total angular momentum L. At given

angular momentum L, the Hamiltonian (k = m = 1) is the sum



A

H= wHy +V, (2)

where the first term (the c-number equal to the energy of degenerate level) comes from the

noninteracting Hamiltonian in the parabelic trap,

N 2 _
wHy = Z (%2 %—f?) — wHp, ‘ (3)

with 7; and 7; denoting the momentum and coordinate of the i-th particle. Hereafter, we

set w = 1 for brevity. The second, nontrivial, term V stems from the two-body interaction

V=3 V) -V, | @
i>j
projected onto the single-level problem, which is worked out below.

In two dimensional problems involving harmonic potential, it is convenient to use the -

“complex variable z:= z + iy and the conjugated z* = x —iy-instead of vector ¥ = (z,¥).

Introducing the notations:Z =4(Z — =) and 52 = H(Z +i 2); itiis-convenient-to employ

the tetrad of ladder-operators:a*; a, b+ and b

B9 %9
. ‘ 2 gz a 2. a9z’ -
- ; ; Al r3) -
= (a+)1 — _2__ + a, (b+)'i‘ _. ‘32*’ Lo (5)

for each particle. For brevity, the particle markers are suppressed in Eqgs.(5), dagger denotes
Hermitean-conjugation. The role of these operator is to raise. (lower) the powers of z; and
z; in the preexponentials of many-body wave functions, which are all polynomials times the
Gaussian factor [0) = exp(—1/2F |2x|*). Thus, we have

#zil0) = af|0),  #}]0) = bF|0),

a:{0) = 0, 5|0} =0, etc. (6)
The only nonzero commutators between (5) are given by

la:, af] = [b;, b7 ] = 6. (7

k3] il
In two dimensions, the total angular momentum is the difference
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L=L,—L_ (8)

of numbers of “up” and “down” quanta, L, = Y% afay and L_ = ¥ b by, respectively.

At the same time, the noninteracting Hamiltonian in the left hand side of (3) is given by

By definition, the yrast states have minimum energy at given L. They must therefore belong

to the subspace with
L_=0, L,=L. T (10)
The first term in (3) is therefore reduced to a constant given by
Hy=N+L. @

The subspace:defined by (10 is spanned by the homogeneousisymmetric polynomials of -

- degree-L, polyg{z;) which do not involve conjugated:z*’s at all; ;'

¥(L) = polyEal0) - 12)

';i-FI-»‘.h@ﬂbrﬁhogona,l basis of these symmetric polyﬂoﬁﬁalée'can be constructed as follows [24]. i

Consider the monomials
m={ly, by, .. Iy} = 2122 2 | (13)

corresponding to partition of integer L, 31, = L. The states m|0) with different sets
{l1, Iz, ..., In} are mutually orthogonal. The basis symmetric polynomials {24] are given by

-symmetrized linear combinations of (13)
[lly I2J meey lN] = PSm: (14)

denoted by corresponding ordered partition [l1,la, ..., In] with {; > I > ... > Iy. Here, the
operator of symmetrization Pg is the standard sum over all the permutations. In the case

L < N which we are interested here, the number of the basis states (14) is given by “the
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number of unrestricted partitions” [I, /s, ..., {n] of positive integer L [25). At I < N, this
number does not depend on N; hereafter, it is denoted by p(L). For example, at N = L = 3

. the complete basis (14) of the partition space (12) is spanned by the following states

[1, 1, 1} = 2Rk = IO, 3, 0,0),

[2,1,0] = 222 + 2125 + 2325 + 222 + 2221 + 2922 = [1,1,1,0..),

[3,0,0] = 23 + 23 + 25 = 16,0, 3,0...), _ - (15)

which correspoﬁd'zto the number of partitions p(3) = 3 (normalization factors are suppressed
for brevity). In Eqs.(15), the right hand side of each line gives interprei;a.tidn of many-body
state In terms of the single-particle occupation numbers of the oscillator states {rig, 71, M2, )
_with n; the number of Bose particles in the state with ¢ oscillator quanta.

The number-of partitions can be found from the generating. function -

1

ZP(L)tL = H 1 — ¢k
L=0 k=1

An explicit (however involved) expression for p{L) is given in'[25]:: For small L, the values.

of p(L) are . -

p(2)=2, p(3)=3, p(4=5 = p(6)="T1,

p(6) =11, p(7)=15,  p(8) =22, (16)
At L large, the number of partitions grows exponentially [25]
p(L > 1) o et (17)

as is typical for many-body systems [9].
The problem of finding the spectrum consists of diagonalization of the interaction, the

second term in (2), in the “partition subspace” (12,14); the eigenvalues of (2) have the form
E=N+L+F, (18)

where F is the interaction contribution.



In this paper, we restrict ourselves to the case L < N only. At L > N, the whole situation '
is changed drastically. First, the number of basis states is not given by p(L) anymore and it
depends on both L and N. For example, the simplest states with partition [1, 1, 1...1], which
play the role of generating functions for the ground states at L < N (see section V), can not
be constructed at L > N. It is therefore reasonably to expect something similar to “phase
transition” at L = N. In the earlier studies [5], the signatures of fhis phase transition have

been observed in numerical simulations.

CIIT. THE-INTERACTION WITHIN THE PARTITION SUBSPACE. “OPERATOR

EXPANSION”

‘- .. In this section, we work out a convenient répi‘esentation for the V, CF. (4), the interaction -« .. .

sV projected onto the “partition space” which:was described in the previous section.. Using:: i

""--51."'-,{;:'f'f‘icdndition,Eq.(10), the projected interaction: V:in Eq.(2) can be written [13,20] as

V=X RPVEER, Ay e
. . L=—0co . ) e e
=27 where we use the standard number-of-quanta projector Sy '~=.‘;_:*'%-;"‘.‘.-f-"’1-""1:'*:'1-‘:‘-11 ST
N ; + o
Pr=f m(L_E-'“i “") B {9
L 27‘_ 0—. dae H Lo ( U)

- and the similar expression for.P; with substitutions a}” — &} and a; — b;. Due to.construc-
tion, the transitions between different L~sectors are suppressed in (19), and the resulting
effective interaction (19) applies equally to every L-sector.

With the help of (20), Eq.(19) can be cast in the form
- 1 F ) )
Vo= P f c1l¢:1ulT3(‘)‘e““Z:i"5F sygiay el %Py . (21)

In order to evaluate (21), we use the Fourier representation of the interaction in the right

hand side of (21),

i 0o
sz f dqz f dqyei[q_(a?:i'l'b"j)+q+(b$+“ij)]V('I : | (22)

i 0 oo




where

V,= él}-fow rdrJy (r\/q§+ g2) V(r)

is the two-dimensional Fourier transform of the central potential V(r). Here, Jy is the

Bessel function [25] and notation ¢+=(gz%ig,)/v/2 is introduced. The two-particle operator

combinations
+ — 1 + + bt = 1 bF — bt
a'-ij:—"'z"(a'i '_a'j): ijzﬁ(i”" j): _
af; = (a;?)f, b = (bj“;)Jr Ny (23)

came from resolving x;,y; and x;,y; from (5). Substituting (22} in (19), we make use of

Baker-Hausdorf relation

e ot o .
e P =¢ et e

-which is valid-for. any pair of boson operators a*. and . Expa.ndmg (22) to powers of ¢? and- -

"-7,_-“.;i;.-evaluatiﬁg'_integrals term by term, we use the:-relation o .o 0y

L dqe_42/2q2n+1.‘]0(qr) 2nn'M(n 4 1, 1’ _._7-2/2)

- where M (¢, v, z) is the Kummer confluent hypergeometric function [25]. Proceeding in this -

- ..nanner, we obtain expansion of V'

AL N(N —1)

V=3 (-1)fsB*= 5 — s B 4+ ..+ (24)
k=0 ' |

in terms of the fwo-particle normal-ordered operators defined as

. BE =alfak (25)

(5 Y

N
B* =YY" Bt

- - T'j,

i
In Eq.(24), [g] denotes integer part of real number gq. The “strength parameters”, si, are
related to the potential, V(r), via the integrals

o = % |7 dsnatk 11,1, ~0v (3D, | (26)




| - whith M the Kummer function [25]. For k integer, the Kummer function can be expressed -

in terms of the Laguerre polynomials L2
M(k+1,1,—t) = e L2 (1).

-In the expansion (24), the highest possible order k of the operators B* is L for L even,
and I — 1 for L odd. In the lowest order term, no operators are involved, and we have
BY= N(N —1)/2.

N Eq(24) can be written in another convenient form

[L/2]

ZVk,

’. Vk = 32k(32k - B‘% 1) + (82k+2 - 32k+l)sz+1 o | (27)

Here, B~! = 0. 'Fhis second form of the expansion contains operator structures collected in

the way convenient to apply the method of “supersymmetric decomposition™ described in

the following sections.™"

The “operator-éxpansion: (24,27) is quite universal, while the:-particular shape of the ..

. potential V(r) 18 descrlbed by the integrals with Kummer functlon M. [25] We should stress

. that expansmn (27) is e:xact for any interaction V{r) Whose moments s are finite [13,22].

IV. THE QUANTUM NUMBER “SENIORITY”, GENERALIZED YRAST STAES

AND CORRESPONDENCE RULE

In this section, we discuss an extra conserved quantum number the system enjoys, in
addition to the energy and the total angular momentum. [3,4]. This quantity, which is very
important for classification of states, is reminiscent to the “center-of mass” mode in nuclear
problems [9]. Here, it can be interpreted as collective contribution to the ‘total angular

momentum L. Indeed, the pair of the mutually conjugated collective ladder operators

[A, A =1, (28)




-

‘ _' states in the same. (L v)-sector

~ commute with any two-body combinations in (27) as well as with the angular momentum,

LA, a;';] =0, [4, L] =0, [A,L_}=0, (29)

and they therefore commute with the both terms in the Hamiltonian A (2), thus we have

[4, H} = 0. The number of collective quanta, 4™ A, is therefore a conserved quantity. The

‘mutual eigenfunctions of the triad of operators H, L and .A*A = v can be found in following

factorized form
W(Lov)=  Z° polyi(m) e 2, (30)
where z; = z; — Z and

-.is.the. collective va,rla.ble The additional index k stands to d1st1ngush between the different_ . =

In the sta.te (30) ‘the degree of the pre-exponentl.a,l polynomlal L w}uch is the total, s
angula,r momentum, is redistributed between mternal exmtatlons J= ~—L—-'u and the contn— | Caat o

"~bution due to the collective motion, v, which wercall sendority for brevity.

The energies of the states (30), i.e., the eigenavlues of (2) have the form
Ex(L,v) = N + L + Ey(L,v) (32

where Ei(L,v), the interaction energy, comes from diagonalization of V. It is therefore
meaningful fo consider the ground state as a function of both L and v, as illustracted Fig.

3. We call these -states,
- oL, v), Eo(L,v) = ming{Ex(L,v)} (33)

with minimum energy at fixed values of L and v the “generalized yrast states” [20], [21].
The usual yrast states are those among the (33), which minimize the energy £o(L,v) with

respect to the seniority,
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Eprast(D) = min {&(L,v)}. (34)
At given L, one has exactly L allowed values of the seniority, they -are
v=0,1,2..,L—2L. ' (35)

The value v = L—1 is excluded because the symmetric degree J = 1 polynomial in variables

— Z is evidently reduced to zero,

N
polys(z: — Z) =3 (zi— Z) = 0.

=1
The states with definite seniority of type (30), can be obtained by applying the seniority
projector [Cf. Eq.(20)] | |

1 2 ; ’
-1 (- AT A) |
217./1; dpe’™ : (36) .

to the states of type (14).

The qua,ntum number semonty helps to estabhsh very useful correspondmg rules” be—

"":j_‘ftween the sta.tes in dﬁferent (L "v) sectors a.nd to relate the1r spectra Indeed by vn'tue Off;-*-;"--r‘:‘-.‘ i

_' (19) (36) and 29) we can wnte o o n i

VO (L+1,v+ 1 = VAL, v) =

= AV (L,v) = Bi(L, v) A ¥ (L, v). (37) .

“Eq.(37) means the following: let {¥4(L,v)} be:the p(L) normalized eigenstates the Hamil-::" . -

tonian (2) in the sector L. Then exactly p{L) eigenstates in the sector L+ 1 (having nonzero
v!) can be obtained simply applying the collective ladder operator to the states in L sector,

v
v+ 1

1/2
(L4 1u+1) = ( ) AT T(L,v), (38)

while their interaction energies will be the same,
Ex(L+1,v+1) = E(L,v). (39)

Similar relationships appear in the fermion problem of the fractional quantum Hall effect

[12].
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As the total angular momentum grows from L — 1 to L, the only new structures in the
‘wave functions uppear in the seniority zero sector, where we have new states of total

number equal to

ao(L) = p(L) ~ p(L - 1), | (40)

They must be obtained by diagonalization of V in the sector v = 0.
Using (40) recursively from v to v + 1, we calculate the total numbers of states, g,(L),

in the sectors,

g (L) =p(L—v)—p(L—v—1) for '.vgi,;z

and " go_r(L) = 1. (41)

- 'These important results will be very usefull inthe analysis given in the following sections. - *%: .+ -

o '-"-'VL""-SU‘PERSYMMETRIC DECOMPO’SITION:‘OF" THE HAMILTONIAN

o0 Suppose that the Hamlltoman can be written:as a sum,

such that
(a) the first term, Vg, is simple, and one can find out its ground state |0} with eigenvalue
& min, Possibly degenerate. If the second term, Vi, has the two “supersymmetric” properties:
(b) V5 annihilates the state |0), so V5|0) = 0,
(c) Vs is non-negative definite, Vg > 0, (it does not have negative eigenvalues),
then the state |0) will still be the ground state for the full Hamiltonian V5 + Vs, with the
same eigenvalue Eqin. Indeed, (b) implies that .|0) is an eigenstate for the sum Vp + Vs

with its eigenvalue intact. As one knows form linear algebra, if an Hermitean operator Vj

13

Regula.r methods to obta.m exact ground. state mthout solvmg the whole spectrum are o sk

not-available. We use the a,pproach {22] which'we loosely mcknamed “Supersymmetry” [26] il



is perturbed by @ non-negative definite Hermitean operator Vg, the eigenvalues can only
increase (see, e.g. [27]). This means that the states other than [0) can gain energy [Cf. (b)].
As |0) is already the ground state for Vo, it will be the same for ¥, + Vs [28].

A trivial but helpful example is the one-dimensional linear oscillator with the Hamiltonian
V = 1/2+ ata. The state |0}, which obeys a|0) = 0, is “the ground state” for Vo = 1/2
because any other state |n) has the same eigenvalue 1/2. The non-negative definite operator
Vs =a'a, Vs > 0 can be considered as the “supersymmetric perturbation”. It removes this
R &egeneracy and leaves |0) with lowest eigenvalue of the total Hamiltonian V [28].

The same arguments apply to the case with additional cqnserved quantum number v,
such as [v, Vo] = [v, V5] = 0. In the above scheme, the single sfate I0) is replaced by the set
of states |L,v), each having the property (a) a.nd (b) in their y-sectors. This is illustrated .

1. in Fig. ‘4; where the spectrum of V5 is taken degeiierate in each v-sector.

VI. SUPERSYMM_ETB;C TRIAD

;.._-c.:fshown to be non-negative deﬁmte operator In our cage, the supersymmetric trlad Vo
and |0) can be established by inspecting a.ctmn_of terms Vi in (27) on selected: sstat% of -

partition basis (14). We observe first, that using the algebraic identity
N N 1 N N N
NZ afa; = 52(@2‘ — af){(a; - a;) +Za§*2a,-,
£ %] i i
one can cast the first term, V4, of the operator expansion (27) in the following form,
N +
Vo= —é-u[(N —1}sg — (L — At A)(s1 — 52)}. (43)

We recall now that the operator A1 A is diagonal in the seniority basis (30). In this basis, the
operator Vj is therefore reduced to a combination of quantum numbers, (43), with AT A = v.

- Next, one can see that the simplest basis state, |L), [Cf. Eq. (14)] with partition {1,1,...1] 1

1An example of such states is given by the first line of (15).

14
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IL) = Pataf...a3), o w
is annihilated by the remainder of the Hamiltonian (27),
(V- Wl =0, @)
In order to prove (45), we use Eqs.(7,23) to evaluate the commutator
(a0 af] = —2(ahorz + 1) N
Fromthas e_quat_;jon, ifs follows that |
af0f o af a3 ...afl0) =0
for any k > 2, by virtue of (6). Therefore, we have
Biy=o N
for any'k=>'2. From the same commutator-(46), wehave SRR

. [a,ﬁ,za,fz, al as ”0) [0'12012: 01 0,2 ]|0) —0'1 2IO)1

Sand thus (B2 Bl)|L) == (). This relation together wﬁ:h (47) results in (45)

j"”-Ei’:]ﬁ:?affijidns (43) and (45) hint that the" sta;te-‘I-L) “and’the operator V, may constititte "

PR itaportant ingredients of the supersymrﬁet-fié decomposition, Cf. Eq.(42) described in the ~
- previous section. However, the state {L) does not have definite seniority and it can not be

' “eigenstate of the Hamiltonian. Nevertheless, a5 we will see, the IL) turns to be a generat-
ing function for states with definite seniority. Indeed, substitution z; = 2 + Z fsee (30)]

transforms |L) to a sum

|L) = | PsZ1Zp...20 + ... + ZF 2 Poih 3 + ZL] |0) =

v=L(v£L—1) '
= X Pl - (48)
o=0
of exactly L states of the form (30), each being the eigenvector of A*.A and therefore of Vo, :

with the eigenvalue (43). We notice that each v-sector is represented by a single term in

(48), identified with P,|L).
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The spectrum of Vj is very simple. A schematic example is shown in Fig.4, left hand side.
It consists of L equidistant (except v£L—1), g,(L)-fold degenerate levels with energies given
by (43). The degeneracies are given by Eq.(41). Each v-level contains one and only one
state |L,v) = P,|L) from the sum (48). Therefore, the set of states |L, v) obey the criterion
(a) with the operator V5. The property (b) with Vs=V—V, holds by virtue of (45). In
particular, (a) together with (b) mean that |L,v) are the eigenvectors of V=V¢1Vs with
eigenvalues (43). This holds for any interaction V (r).

The supersynﬁnetrk iepresentatibn for the triad V4, Vs and {L,v) = P,|L} would be
.complete if we succeeded to prove non-negative definiteness Vs>0 of the remainder of the -
Hamiltonian V —Vj, criterion (c). So far, we did not specify form of the interaction V(r) in

(27). We will study now general case and specify the class of potent1als which have V,g > 0.

VII. NON-NEGATIVE DEFINITENESS OF THE SUPERSYMMETRIC ® -
PERTURBATION -

WehavetocheCk signs of all the eigenvalues of Vsmthﬂpaxtltlonspa.ce {14). To avoid .-
“solving the:wholé spectrum, in the space of symmetrized states, we use.the following trick. .
| By definition; the nonzero eigenvalues of Vs in the'space (14) coincide:with the noﬁzero
eigenvalues of PsVsPFs in.the full space of monomials m in (14). This latter space
has dimensionality much higher than p(L) and it includes wave functions of all possible
symmetries, including boson sector (fully symmetric), fermion sector (fully antisymmetric)
etc. In this extended space, the analysis of signs of eigenvalues is however crucially simplified,
while the contributions from the symmetric sector can be accurately separated. Using the
symmetry of Vg under permutations of particles, we can write |

N(N -1}

5 FsVs12Fs (49)

PsVeFPg = Pg Z ‘/S,ijPS =

i>j
where Vg ;; is the contribution from pair of particles 4, § to Vs [CL.(27,26,42)]. In order to
see that
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The triad T is diagqnglj;gd_.;s{yl_l_qlpgnegugly in the basis.of monomia,lg;_,[m_i-_

PsVgPs >0 (50)

for a given interaction potential V(r), it is sufficient to show that Vs 1220, because applica-
tion of any projector Ps from both sides in (49) can add new zero eigenvalues, but can not
add negative eigenvalues. This follows from the known “inertia theorem” of linear algebra
[27]. Now, we study the eigenvalues of Vs 1,. Let 712 be the operator of permutation of |

variables 1 and 2. The triad
T: {7r12r .lai-l'-2a’]..27 VS'.,lZ}

forms a set of mutually commuting operators. Indeed, V12 is expressed in terms of B, =
ajyak, [see (27)]. For fixed pair of particle indices, the operators a; and a3, commute like

Bose operators, [a12, af] = 1. Consequently, any operator BY, can be expressed in terms of

- afam, using the standard boson calculus formula, :

“atfaky = afis(athais — 1)...(615-'(112 —k+1). (s -

da Is

Lo (1) wﬂ:_h the only substitutions -‘71_7"]%(3_1_7@)" 22+>%(z1+22), Al g

_”[%(zl-zz)]h [%(m#-zz)rzzg“‘...zﬁ@’ T sy

In this basis, the eigenvalues of the triad 7 depend only on I; through the subfactor

[713 (zl—zg)] i of the eigenvector (52). These eigenvalues are given by
T={-D" h N}, (53)

respectively, where )\, is the eigenvalue of Vg5 which can be readily calculated. Using
Eqs.(27) and (26) and the summation formula

N (~1)FEN i
2w — Mk L L) = =

we obtain the expression for the eigenvalue of Vs 5 in the form of the integral
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Ny = [rdrV(r)(r) (54

with f the functions defined as

21 4
P 1 L o |
Sn(r)=e {2”' 1+ — 1 (2 4)] (55)

* The eigenvalue (—1)1 of 712 helps now to separate out the states with wrong symmetry: the

eigenvectors with I; odd are antisymmetric in 21, 23, and the projector Ps in (49) eliminates
their contributions. All even values of I; (<L) can contribute to the bosonic sector, and
the corresponding A’s must be checked. Therefore, the set of inequalities for the conirol

eigenvalues
don = 0 . (56)

for all values of integer n‘f'bb’eyi‘_x'lg 2n< L forms the sufficient condit'iori'-'-for :-(;50), ie., for
the supersymmetric opera.tor V_g to be non—nega,tlve definite, criterion- (c) A Under these
conditions, the triad V5, Vs = V Vg and {P,|L)} obeys the supersymmetrm ‘Tepresentation
with properties (a);{(b): a,nd {(c);*with P,|L) being the ground state i its sector L,v with

the energy & equal to elgenva.lue of Va. ‘ Lo et G
The conditions (56) can be used to describe the universality class of the interactions

V{r). They are analyzed explicitly in the following sections.

VIII. GENERALIZED YRAST STATES AND THEIR SPECTRA

With the criterion (56) and Egs.(48) and (43) at hand, we can formulate very general

result: For any bone fide two-body potential V() which satisfies the integral condition

]OV(\/Q_t)e‘t [(2—“)—'—-1+ (1 t;)] >0
’ for any m<I'/2, 7

2Note that fo(r) = 0 and fa(r) = 0, therefore Mg = Ay = 0 anyway.
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the eigenstates of the Hamiltonian H with minimal energies at given pair of v and

L{< min{Z/, N}) have universal form, as follows from (48),
N-Litv N

\L,v) = et Slail 7o (_5%) T~ 2),

k=1

Z —Zz.a (58)

1—1

Their energies are given by (43) and they can be expressed through the simple moments of
V(r),

N(N—l) Sp — 81
2 50+ 5

s0= /0 T dteV(VE), 5 = /0 " dtet (% + 2—2) V (V)

Emin(L,¥) = L+ N + N(v—L) 59

which are equal to expectation values of interaction between two bosons both in the -ground

8= (%1/)0]1/]%%) and the ﬁrst exmted state of oscillator s; = (¢I¢1|V|¢1¢1) respectlvely :

_. ; Here, ('gbfz,bﬂlf]qbz,b) denote the usual two—body matrix element and vy == |0) and 1, = zl()) It_,

e  ‘}' - an expectation value over a snnple state, sa,y, w11;h the two lowest oscillator levels occupied;-in - .

fact, the eigenstates (58) are much more comphcated when written in the second qua.ntlzatmn. |
representation. NI S |

At fixed L, we have exactly L such equidistant generalized yrast states,_"mé;r'k_ed by v =
0,1,2,..., L (v # L —1), Cf. Fig, 3., right hand part. Each such state is the “ground state”
in the sector L, v (of course, there are other states in each sector with higher energies).

Example of the spectrum of a real system for N = L = 6 and the §-interaction is shown
in Fig. 5.

"The usual yrast states are those of (58) that minimize &£,;,,(L, v) with respect to v, Cf.
Eq.(34). As Epin(L,v) in (59) depend linearly on v, it is immediately seen that there is only
two options 3 |

3 The rare case of exact eqality in (61) corresponds to complete degeneracy of the generalized

yrast states with different values of v, having the same N and I, see, e.g. Ref. [22]).
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(I) v =0, if D=gy—5 >0, (60)

M) wv=L if D=s—s<0. | (61)
where the “spectral discriminant”, D, is given by
. oo 1 t2

= = - — | V{v2). 62

Dfodte (2 4) (V2i) (62)

For the bona fide potentials obeying (57), the first option is usually realized, as is assumed

in Figs. 3 and 4, see also Figs. 5 and 7 for particular interaction potentials. For example,

integrating by parts in (62), the spectral discriminant D is seen positive for any decreasing

potential
| av (r)
o <0 -~ (63)
| 'whlch allows the representatmn (27). The condition (63) can be replaced by
o 4
dr <0 e (64)

- if strict-inequality in. (63) ]:Lolds for at least single value of 7.

The mequallty Vo Vl)(v L) < 0 corresponding to: (I) means that mtema,l rotational
exmtatlons w1th hlgher J = L — v are energetically fa.vorable, once the interaction energy
between two bosons in the state z|0} is smaller than tha.t in/ the state |0}.

Physma_lly,, the yrast wave functions (58) with v = 0 correspond to condensation to a
vortex, rotating around the “center-of-mass”, as discussed, for example, in [3].

In contrast, the maximum seniority states with v = L, which correspond to purely col-
lective rotation [4] with no internal excitations, were shown [3} to be energetically favorable
for attractive d-forces. It is curios that there exists a broad class of predominantly attractive
interactions, for which the yrast states have the same form as for the attractive é-function
interaction [23].

The results desribed in this section are very general [20]. The condition (57) defines the
class of the potentials for which the results (58,59) are valid. In the next section, we show
that (57) holds for many potentials of physical interest and consider few explicit examples.

Discusston of general properties of (57) will be given in section 10.
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IX. THE RESULTS FOR PARTICULAR INTERACTIONS
* We consider now few applications of the results obtained in general form in the previous
section to particular cases of various potentials of interaction between the bosonic atoms.

Gaussion forces with variable range and §-interaction.

We start with considering the case of repulsive Gaussian interaction,

153

Vir) = R e B U >0, (65)
with. Uy a nonnegative strength and R the radius which can be varied from zero to infinity.
We obtain from Eq. (57) the control eigenvalues

| Uo R? 2n 1+R2 _
Aan = w2+ R?) [(2+Rz) f1+4 (2+R2)2 (66)"

: 'From thls equa,tlon it can be easily seen that the non-negatlve definiteness condition'(57) R

A =20 is fulﬁﬂed for any n urespectlvely to the va.lue of ,R see Flg 6. This can be easily -« oo

o 'proved by mductlon in n Indeed we ha.ve from (66) taht )\0 = /\2 =0 a.nd

AU, (1 + R?
, .*ﬂ"“) N A

" therefore Ag},' > 0' for any n > 2. The résults given by Eqs.(58,59) are therefore valid for -
any L < N, and the spectrum of the generalized yrast states for the case of the Gaussian

potential is given by

gmin(L: 'U) =L+ N+

One can see that the usual yrast states correspond to v = 0.
Taking the zero range limit, R — 0, in Egs. (65,66,67), we pass to the case of the

d-function repulsive interaction

V = Upd(#) = an(r). | - (68)
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In this case, we obtain instead of (66)

U |
Ny = 21': [5;1 o+ — — 1] : | (69)

It is seen that while A;=—1/2, for any l;=2n even the condition A3, > 0 (57) holds, Cf. Fig.

6. The energies of the generalized yrast states (59) are now given by

Uy

Emin(Lav) =L+ N+ 22N@N — L+v -2). (70) -

- Yrast states have v = 0, and &, (L, 0) agrees with. that obtained numerically [5], see also- - -

[14] [15] [16]
It is expedxent to look at the full spectrum of the systern At low N and L, the problem

) -ca.n be dlagona,hzed analytically. Below, we prasent the results for the total angular momen—

: “ tum L = 6 in the system of six partmles mteractmg via repulswe ‘-function interaction. The} R

| "‘tota.l number of states ( dlmensmnahty of the part‘»ltlon :basis ) is p(6) = 11. The interaction

.'VI'I:Q.fienergles Ek (L v) of the states are gwen by

:-.f:‘on(e, 6) — 15%, Eo(ﬁ 4) ~ 12% Ea(ﬁ 3) = -%21%9
| Eg(ﬁ 2) = 9%‘:’,’- Ey(6,2) = %%
Eof6.1) = 1253—;, Fa(6,1) — %g—;’
Ey(6,0) = ggﬁ, E1(6 0) Yo [—n+ 68—9 + C] ; _
Fs(6,0) = g‘; [—n + 98— -~ c] , (6 0) = (21;- + %9 (71)

with

&2 3v3 7
"=pte Tty (48 éz)

= (324 + 126V/32199)'/%

Here, the index & marks degree of excitation of the state within the same L, v-sector: so

Eo(L,v) = Emin(L, v) correspond to the generalized yrast states (59,70). There are no excited
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states in the sectors v = 6,4 and 3, the sectors v = 4 and 5 have one excited state each. The
sector v = 0 has three excited states, their energies are found by solving a cubic equation.
The spectrum is shown in Fig. 5.
- Two- and three dimensional Coulomb forces
Of special physical interest are the long-range forces of Coulomb type. For the conven-

tional Coulomb interaction

A
IS

Ve 20 (72)
- we obtain in (57) R T o
~ sn 1 T(2n-+1/2) |
Aan = Usv2z (E Rl o ) : | (73)_.
. It is easily seen, using 1nduc1:10n in n, that the inequalities g, > 0 (57) hold (Cf. Flg 6), . -

and the wave functmns of the genera.hzed yrast states are therefore given by (58). Thelr"'-'.-{':;

ol jenergles are given by

\/2
mi.n(L 'U) L + N+ Uﬂ i

‘_The yrast states correspond to = 0 o

Similar formulas car_l be obta,med_ for the two-dimensional dbulbmb ldg-mteractién
V= Uplog_(;) , Us 20, .. (75)

which corresponds to repulsion at small distances. We have

Aom = % [Bn - % +29(1) — 2¢(2n)] >0 - (76)

where 1 is digamma function {25}, the inequality in A2, > 0 for (76) can again be easily
proven by ihduction, Cf. Fig. 6, so condition (57) holds. The energies of the generalized

yrast states are given by

Emin (L, ’U) =

2 oo -y -n-20-n] @
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with «y = —(1) = 0.57721... the Euler constant. The yrast states correspond to v = 0.
The results very similar to the above can be obtained for the screened Coulomb {(Yukawa)
forces V' oc exp(r/ro)/r.
The results for the genearlized yrast states in the cases considered in this section are

- Hllustrated in Fig. 7 for N = L = 6.

X. THE SUFFICIENCY CONDITION AND THE UNIVERSALITY CLASS OF

BONA FIDE REPULSIVE POTENTIALS

The simple sufliciency condition (57) can be checked straightforwardly for any interaction
potential V(r) as was done in the previous section. In this section, we show that the
* . applicability condition (57) imposes in fact only weak restrictions on the class of repulsive

- forces V(r) to-which the results (58,59),;_33;)13;.. We will discuss ithe condition (57) in more .

(e deta.ils and deﬁne some subclasses of -the, hf_j,na‘-ﬁde potentials of interest.
. Short-range mtemctwns

Indeed, at small ror O the factor—ﬁmctlon fg.,,,(r) in fo rdr fg,,,(r)U (r) m (57)a.pproa,ch

pos1t1ve constant values. w1th €10, derlva,tlves

dfn
dr

TN S

while the first node of the functions -fo.(r) occurs at -

2/12 — 2v/30 ~~ 1.43 (79)

which is of order of the oscillator length, in our units (h = m = w = 1). The factor
functions are plotted in Fig. 8. From Eqs.(78), it follows therefore that for any short range
(as compared to the characteristic length of the trap) interaction, the condition (57) reduces

to

f EFV(r) > 0, .(80)
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Thus, the results (58,59) hold for short-range interactions, which are repulsive on average.

I is seen also that inequality (80) gives v=0 for the usual yrast states, according to (60).

It is interesting that the sort-range potentials do not have to be purely repulsive to match
the condition (57), (80). Instead, the condition (57) implies that V(r) has strong repulsive

component. For example, consider the two-parameter family of the potentials in the form
ve) = -5l /Ry | (&)

These potentials can be regarded as attractive in the usual sense, having the potential well

art short distance. Examples are shown on Fig. 9. In fact, if the well is deep enough, it can

even support bound state. Indeed, considering the Schroedinger equation of relative motion

(s;wave) of the pai} of barticle with unit mass eé.ch, int.era.ctiovn‘x:rié, (é]),

— (a@*) bot Virdo = sodo,

- ,for'the wave lfunc'i:'iroh of the ground state, ¢o, we: obtain rigo'roﬁé %Té.rié.t'iéna'.l' upper bound

" on the ground sta,te energy, eo, using the trlal wave: functon qbo = exp( \/_ r? /R"’)

T e 720V2 + 1—8(61’6)5’2/3 46‘/" -2 (6%)3/2}
s T REve-r

It is seen that we have negative energy of the ground-state, o < 0, if

| e Vo>
1 241 2
— (3763 -+ 18v/502)1/3 13
216 [( " YU Grea T svEonis
~ 8.99 (82)

in such cases the potential well indeed supports the bound state(s). On the other hand, the
potential (81) satisfies the basic condition (§7) if

R< %\/5 + 5v/41 ~ 0.608, (83)

with all its control Az, nonnegative, irrespectively of the magnitude of V5, Cf. Fig. 9,
lower panel. Therefore, the family of the potentials (81) satifying (82) and (83) will be
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“predominantly repulsive” in the sense of the condition (57), having the solutions for the
generalized yrast states in the form (58) and (59), while having strong attractive component
sufficient for the bound state. In the sense of three-dimensional scattering theory, the
- seattering length can be negative.

Long-range forces

The condition (57) holds even for many long-range interactions. This is seen from be-

havior of function f4(r) (n = 0 and n =1 give f = 0) which is positive at r < ro and

Cr> =\ 2V12 + 2v/30 ~ 3.10, (89

and f, is negative only in the interval ro < r < ry (fo(r) for higher n behave 'simila.rly). By
direct calcmatidn, it is easy to see that the integrals of the functions rfo, [Cf. Fig. 8, lower

~ panel| over r vanish,

BT = s

’

.f.""d’-‘”.fzn(’-'”) =51+ 8 +8=0,
1] . .

R

. 31”] :“?’@Tfén.(r), S = / "d?"fzn(f), S =f ’"d"f%(f”) e (89)
S B . J R .

- 50 the net areas commg form the regions where f >0 and..f f§<'?.('];_-:ebl"m_'3ide, .

St Sy=ISl
as is shown in Fig. 10, upper panel, for the case ‘f4. From this geometry, which is also
illustrated:-in-Fig. 10, lower panel, it is clear that (57) holds, if V (r) decreases monotonically
and fast enough, as is the case for the long range Gaussian and Coulomb forces. Example
_of the potentials of such type are shown in Fig. 10, lower panel.
Integrating by parts, one sees that (57) holds for any monotonically decressing and

convex, interaction V(r),

W) oo V)

>
dr — drz — 0,

not necessarily repulsive everywhere.
One can therefore summarize that the condition holds for any physically meaningful

repulsive interaction.
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X1. CONCLUSION

To coﬁclude, We éonsideréd the problem of weé,kiy ini:efa;éting .Bose atoms 1n synimetric
harmonic trap. Our main purpose was to study the yrast states of the system. In order
to treat the problem of the ground state of the system at a given angular momentum, we
developed an expansion of the interaction in powers of ladder operators. This universal
operator expansion is exact and it provides a very convenient way to study the eigenvalue
problem in the coordinate reépresentation.

Taking into a.ccount the a.ddltlonal conserved quantity, associated wﬁ;h the collectwe
contribution to the tota.l angular momentum, we considered a more general problem, na.mely,
the ground state of the system as a function of two conserved quantum numbers: the total
angular momentum and the angular momentum of internal excitations. ‘We-called this series - -
of states “generalized yrast sta.tes

A supersymmetnc representatlon for the interaction has been developed to’ derive an-

alytically the states with memum energy at a given angular momentum and: semorlty o

__(ggnerahzed yras_‘!:_ s}:a_{i;gg;).:} The xjesults apply, in particular; to theusual yrast 'stat&e. The
wave functions of. th_el::.lge.nera,]jzed j.rr.ast_sta.te have the form ;O.f.':j_.‘“(:(“).l‘l(‘i:el_ised‘: vortex states”.
Their energies ar'é'“expi'essed through their quantum numbers and Siﬁlple integrals of the
interaction potential. ’

We studied the condition on the interaction potential which allows.the use of our solution.,
Analysis shows that there exists a broad universality class of the repulsive interactions for
which these results are valid. We described this universality class by simple integral condition
on the interaction potential.

The results of the work allow further generalizations and developments. The three- |
dimensional case can be done using the same method. It is also interesting to study region
of higher angular momenta L > N, where the structure of the basis polynomials will be
changed [24], while the numerical studies indicate signs of phase transition {3]. The method of

“supersymmetric decomposition” developed here is not restricted to this particular problem
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and can be applied to fermions and even to the particles with parastatistics.

 The work was supported by FAPESP.
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Figure Captions

' Fig. 1. Definition of the yrast states. The spectrum of a system (circles) is shown versus
the angular momentum, L. The lowest energy states at each value of L, connected by the

curve, compose the “yrast line” of the system.

Fig. 2. Fragment of the spectrum of the system (schematic plot) within approximation
of the weak coupling limit. The left hand side is the spectrum of the system without
| interactions. The levels are equidiste.nt w1th the spacing fiw, each level is p-fold deé;enefa.te.
H Central part is the spectrum of interacting system: Each L-level splits onto p levels. The.

sequence of the states with minimum energy at given L is the yrast-line (right hand part).

Fig. 3. Ilustration to the deﬁmtmn of the generalized yrast states. The. left-hand side -

is the part of the spectrum of the 1ntera.ctmg system with definite angular: momentum L

| .. {corresponding to a bunch of levels in. the central part of Fig.. -1.). These states can beigf. .

| grouped onto “bands” w1t;h deﬁmte values of the seniority, v, as is shown on the rlght hand
."51de The sequence of lowest energy sta,tes in thelr v-sector composes t‘he genera.hzed yrast
states (they are marked ‘with asterisks). One of those, with absolute minimum of energy, is

the usuval ground state.

- Fig. 4. Ilustration of supersymmetric decomposition. The spectrum: of ¥, (left) is
sequence of degenerate levels, labeled by the conserved quantum number v. Supersymmetric
perturbation Vs>0 splits each level, pushing the states up and leaving the lowest energy in

each v-sector intact. The resulting spectrum of ¥, + Vs is shown on the right.

~ Fig. 5. The spectrum of the system with repulsive é-interaction calculated analytically
for the case of six particles in the sector with total angular momentum I = 6. The total
number of states is p(6) = 11. The energy of the levels e(L,v) = ?—,’;’-[S(L, v) - L — N},
Eq.(70), are plotted against the internal angular momentum, J = L — v. The generalized
yrast states drop on the straight line described by Eq.(70), they are connected by dashed
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line.

Fig. 6. “Redge trajectories” for A;, (54). Upper panel: the values of a = %,%)\; are plotted
versus [ {circles connected by curves) for two different interaction potentials. The curves
correspond to [ considered as contionuos variable. Solid curve - repulsive Gaussian potential
with B = 1 and dashed curve - repulsive é-function interaction. The double circles denote
the control eigenvalues with even [ == 2n, Eqgs.(57,66).

Lower panel: the same but for the Coulomb interaction (solid curve) and log-Coulomb

interaction (dashed curve), Cf. Eqs..(73,7_6). :

Fig. 7. The specta of the ggnera,lized yrast states e = %,—’5 min{L, V) are plqtted against
J = L—v (N = L = 6) for the Gaussian interaction with R = 1 (small circles connected by

solid line) é-mtera,ctmn (small cucles dashed line), Coulomb interaction (b1g clrcles, solid

| line) a.nd the log-Coulomb mteractlon (blg circles, dashed lme)

Fig. 8. Upper panel: Factor-funétioné fan(r) for n.= 2,3,4,5 are plotted: a,gamstr f1 -
(curve 1), fe (curve 2), f3 (curve 3) and fro {curve d)." |

Lower panel: the same as above but for the rfou(r). T g

Fig. 9. Upper panel: thé potentials [Eq.(81)] supporting the bound state with Vg = 10
obeing Eq.(81) are plotted against r for three values of R: ‘R = 0.3 - solid curve, R = 0.6 -
dashed curve, and R = 1.0 - dashed-dotted curve.

Lower panel: the “Redge trajectories” for A;, (54). The eigenvalues A; in combinations
a= Ulo)u are plotted as function of ! {circles) for the potentials shown on the upper panel.
The curves connecting the symbols correspond to eigenvalues as continucus functigi of L

R = 0.3 - solid curve, R = 0.6 - dashed curve, and R = 1.0 - dashed-dotted curve. The

double circles denote the control eigenvalues with even [ = 2n.

" Fig. 10. Upper panel: areas under curve 7 fa(r) (illustration to Eq. (85).

Lower panel: the function r f4(r) (thin curve) is plotted against r together with potentials
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matching condition (57).. The latter are shown by thick curves: 1 - Gaussian potential

| Vir) = _;‘%é:cp(—rz/Rz) with R = Up = 1.5, 2 - Coulomb potential Vir) = -L—:ﬂ with

Up = 1/5 and 3 - log-Coulomb potential V(r) = Uplog(1/r} with Up = 1/3.
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