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ABSTRACT

The equilibrium and stability properties of a coupled two-component BEC is studied us-
ing a variational method and the one-dimensional model of Williams and collaborators. The
variational parameters are the population fraction, translation and scaling transformation of
the condensate densities, assumed to have a Gaussian shape. We study the equilibrium and
stability properties as a function of the strength of the laser field and the traps displacement.
We find many branches of equilibrium configurations, with a host of critical points. In all
cases, the signature of the onset of criticality is the collapse of a normal mode which is a

. linear combination of the out of phase translation and an in phase breathing oscillation of

the condensate densities. Our calculations also indicate that we have symmetry breaking

effects when the traps are not displaced.
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L. INTRODUCTION

- One of the most interesting achievements in the field of boson condensation was the
experimental observation of binary mixture of trapped condensates [1-4]. The species in the
mixture can be atoms with different F spin orientations [3-4] or simply different hyperfine
states of the same atom [1-2]. In the last case we can have inter-conversion between the
components through the coupling of the atoms with an external laser field [5].

In the case of uncoupled components many effects have been predicted theoretically
and determined experimentally such as spatial phase separation [6], stability properties of
the equilibrium states [6-7] and symmetry breaking effects [6,8]. These aspects of binary

condensate mixtures have been treated in the literature using various methods such as the
Thomas-Fermi (TF) approximation [8-9] and numerical solutions of the appropriate coupled
Gross-Pitaevskii (GP) equations {10].

In this paper we use the variational method [11-13] to study the equilibrium properties of

a coupled two-component BEC. In our exploratory calculation we use.the one-dimensional
- ‘model of reference [14] and take as variational parameters the population fraction, translation
- and scaling transformation of the equilibrium state densities, all assumed to have a Gaussian
shape. We consider the intensity of the interaction between the condensates equal and the
detuning is put equal to zero, leading to equal equilibrinm population fraction. In our
_ calculation we investigate the behavior of the spatial phase separation as a function of the
trap displacement and the strength of the laser field. The coupling with the laser field have a
stabilizer effect in the process of phase separation, opposite to the one coming from the trap
displacement.Qur paper is organized as follows:In section 2 we show briefly how to use the
- variational method to study the equilibrium and stability properties of a binary mixture of
condensates.Specifically,we derive the general form of the equations of motion and develop a
scheme to find the normal modes.In section 3 we present our numerical results and discuss

its physical significance.A summary of our numerical results is presented in section 4.

II. VARIATIONAL STUDY OF THE EQUILIBRIUM AND STABILITY

PROPERTIES OF A BINARY MIXTURE OF CONDENSATES.
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A. The variational approach
The starting point of our discussion is the action [15]
= [ dzat | z?‘up_? (2 0)5(zt) — £(2,1) | | (1)

where 9;(2,t), j = a, b are the condensate wave function of each component in the mixture

‘and £(z,t) is the energy density,

' Be o2
_E(z,t) = Z¢;{M%EZ§ mp]% 2 ZAthbjl |¢k|2 + Q[w (e %'ﬁba] t (2)
J

In the above expression thlap(z), J = a, b are the trapping potential of each component -

; m
v;':'ap = Ewi(z + 7j20)2 (3)

. where 7, = —1 and Y = 1, zg is the trap displacement, A\sy = Ap and Ay are the strength
... of the intraspecies and interspecies interactions, respectively, and the last term comes from
 .the coupling with the laser field responsible by the interspecies tunnelling, with 2 the Rabi.

- frequency.

Imposing that the action (1) is stationary with respect to a variation of 1;(z,t) subject
only to the normalization constrain 3, |1;(2,t)]* = N, leads to the coupled time-dependent

Gross-Pitaevskii equations for the condensate wave functions {15],

. 6".ba A’ & {a) 2 2
2 = (- 2 Vi, b+ Nl + ®
Bt - (... 2m 022 + Vtrap + )\ﬂbhbﬂlz + Abblwbiz)wb + e (5)

To get the equations for the stationary states, we look for solutions of equations (4) and (5)

of the form ,{z,¢) = e‘i%tbj(z) ,which gives rise to the time-independent GP equations:

N
e = (=5 + Vi + Naaltl? + Dol ) + s ©)
B & ‘
Haby = (*%d—f + Vivap + Aabltel® + Aol g + e (7)

We can view the two condensate wave functions as components of a spinor of “quasi-spin”
P P

equal to % 5 [16] which leads immediately to the property that the stationary equations are
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invariant under a transformation which is the product of a space reflection, FP;, and an atom
exchange, Py, where Py, = 1exp —i50,. Therefore, as (P, P)? = _Psz, we can classify the
* stationary states as even (gerade) and odd (umgerade) under this transformation. In the
even class 19(z) = ¥§(—=z), whereas in the odd class ¥%(2) = —¥¥(~2). The next step is to
solve numerically the coupled stationary equations for the condensate wave functions to map
the solutions as a function of Q2 and 2. However, before embarking on this task, we found it
worthwhile to adopt a simpler approach, the variational method. In the variational method
the search for stationary states reduces to finding the stationary points in a finite dimensional
e'nergy surface which is much simpler than the corresponding search in an infinite dimensional
space, when we solve exactly the coupled GP equations. Besides, the variational solutions.
can be used as an initial guess in the numerical solution of the coupled GP equations [10].
In the variational approach we parametrize the time dependence of the condensate wave

function through a set of 2d parameters [12-13} which we denote by w = (w, wa,...,Way),

iz, 1) = iz, w(?)) , (8)

'When we replace the condensate wave functions parametrized as in equation (8), in equa-
“tion (1), the action reduces to a “classical” action, whose variation leads to Hamilton-type

equations of motion in terms of these parameters|[18]

Zﬂ:r‘kl(W_) Wy = gw—i(w) ) (9)

where E(w) is the spatial integral of the energy demsity (2), with the condensate wave

functions parametrized as in equation (8)

B(w) = f d2E(2, W) (10)
and the antisymmetric matrix I'y(w) is given by
. oy O,
Cp{w)= -2 Im?falzavwc (z, W)éw‘;-r;(z, w) {11)
It follows from equation {9) that the equilibrium configurations are determined by the equa-
tions
oF | 4
— = k = 1 2 “a . 2 - '
aWk(w) 0, ,2,...,2d (12)



B. Normal Modes

To investigate the stability of the equilibrium configurations, we calculate the energies of

the normal modes. They are stable if the energies are real and positive and unstable if one

of the energies is complex. To find the normal modes, we linearize the equations of motion

in the neighborhood of an equilibrium configuration, leading to:
Z Pklﬁ'q(t) = Z Hiiw; . (13)
] !

In this equation W are the displacements from equilibrium w = w° + W and Hy, T, are,

respectively, the Hessian and the matrix I'(w) evaluated at the equilibrium configuration,

that is
O*E
Hy = 0y — 0 ' 14
w = Hg(w") - (w") (14)
Cand
Fk; = sz (WO) (15)
To proceed, we divide the

2d parameters into two groups, w = (¢1,¢e,.-.,44, D1, P2, - -,P4) = (Q, P), of coordinates

q and momenta p. Schematically, the reasoning behind this splitting is that the amplitude

of the condensate wave function, whose square is the condensate density, depends only on

the coordinates while its phase, whose gradient is the velocity field, depends on the momenta
and the coordinates.

In terms of the coordinates and the momenta the equations of motion (13), read

el q

r; = H X (16)

p p

where I' and H are, respectively, antisymmetric and symmetric matrices which can be written

in terms of four d x d blocks '

H, H,

r, r
T — 9¢ ‘tap CH =

k (17)
FPQ PPP HPQ‘ HPP



. where, for example, T'y; and Hg, are d x d matrices whose elements are given by equations
(11) and (14), where the derivatives are with respect to the coordinates, with an analogous
definition for the other d x d matrices. | ' | o :

In our method to find the normal modes, we try lto st.ay as close as possible to the one
adopted in the standard case [17]. To begin with, we should find a transformation to a set

- of new coordinates and momenta

fle]]

= T . (18)

e}
pU‘

" such that

O A
r'art = 7! (19)
-A O
where A is a diagonal d x d matrix whose diagonal elements are the normal mode energies.

In terms of the new coordinates and momenta, the equations of motion, (16), reduce to

: 0 A
(_Q = Q . . (20)
P -A 0 P '
leading to
Qr = AxBy, , Py = —AkQx -2y

The equations (18)-(19) define the transformation to the normal modes and our scheme
to find the matrix T™! is a straightforward generalization of. the standard case [17]. The

starting point is to solve the eigenvalue problem
ETTHV® = A V® , (22)

where E is the hermitian and antisymmetric matrix 2 = —iT

As in the standard case, this eigenvalue problem has two properties: (i) if V® is an
eigenvector with eigenvalue Ay, then V®* is also an eigenvector with eigenvalue —A%. (ii)
The eigenvectors with different eigenvalues are = orthogonal, that is VOTEV® = ¢, if
Ay F# AL



If one of the eigenvalues of equation (22) is complex, the system is unstable. If all the
eigenvalues are real it is stable and we can find the transformation to the normal modes
as follows. We define a matrix S, whose first d columns are the 2d components of the d
eigenvectors with real positive eigenvalues and the next d columns, the 2d components of
the corresponding eigenvectors with real negative energies.

In terms of 871, the eigenvalue equations (22) reads

A DO

ETIHS! = §7 (23)
0 -A

and the orthogonality of the eigenvectors gives that

10
S~HES! = - (24)
0 -1
The matrix T~ is related to S~* by
T!'=5"'U (25)
where U is the unitary matrix
g L[ (26)
v2i1

- To summarize, we state the main steps in our procedure: (i) First we determine the
equilibrium configurations by solving the 2d equations {12). (ii) Next, for each equilibrium
configuration, we solve the eigenvalue equation (22). (iii) When the configuration is stable,
we construct the matrix 8~ from the eigenvectors as indicated above and T~! as shown
in equation (25). When the system oscillates in a normal mode only one pair (Qg, P;) is

different from zero and equation (18) gives the time evolution of the system in this case.

C. Gaussian ansatz

Now that we have established the general framework of our calculations, we turn to our

specific application where the variational parameters are related to the population fraction,
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translation and breathing shape oscillation of the condensate densities. Thus, the condensate

wave functions are written as [18]
iz, w) = B Az, w) | o ._ (27)

where the amplitude of the condensate wave function is parametrized as =~

__(2—911')2
Aj(z,w) = 1/Nnj———112—e 2025 (28)
: VT g4
" and the phase as -
Fi(z,w) = p1(z ~ quz) + %(2 — qiy)* + 6 (29
¥

'The parameters introduced in the above expression have the following physical interpretation:

n; is the population fraction of each condensate,
Noy = [ (2, w)dz, | - (30)

gi; is the ce.nter of mass of the spatial distribution of each condensate,
Nnsar; = [ 2hps(z, widz, . (31)

and @2/ V2 is the width of the spatial distribution of each condensate

2 .
Nnj%i = f(z - qu)2|¢j(z,w)|2dz , (32)

The momenta py;, po; and é; appear in the phase of the condensate wave functions. The

p1; is the center of mass moment of each condensate

o OY; ' '
Nnpy; = —z/@bj (z,w)—ggi(z,w)dz : (33)
and py; is connected to the.expectation value of the dilatation operator in the center of mass

frame of each condensate

; . A '
SN npnstny = = [ (9520 9 e, w) = T e wigs (e w)) e~ addz, (34)

showing that gi;,p1; is related to the translational degrees of freedom and gg;, pa; to the

breathing shape oscillation.



Since E(w) depends only on the phase difference between the two condensates, the
equations of motion (9) give that the total number of particles is conserved, n,(¢) +ns(t) = 1.
This reduces the number of degrees of freedom to ten, which we take as the relative phase ¢ =
6, — 0, and the relative population fraction n = 3" in addition to the ¢y, goy, P1j, P2j, J =

a, b.

III. NUMERICAL RESULTS

To perform the calculations we specify the model parameters . Following reference [14],
“we consider our system to be ¥ Rb and take N = 2.3 x 10%, v, = 60Hz which gives Zg, =
\/h/Twz = 1.4pm and we put all the interaction strength equal to Age = Ay = Agp = 17.5
pm sec™ ', in order to reproduce qualitatively the spatial distribution of the condensates
shown in FIG.2 of reference [14].

Our first task is to solve the ten equilibrium equations (12). Six of the equations lead .
immediately to p?j = pgj = 0,j = a,b, equal equilibrium population fraction n® = 0, and
6° = 0 or m. The solution with #° = 0 belongs to the even class under P,P,, and the ones
with 8% = 7, to the odd class. We restrict the calculations to the odd class since, as £ > 0,
the lowest energy configuration necessarily belongs to this class. Besides, to be an eigenstate
of P,F.; the equilibrium parameters should obey the conditions ¢?, = —¢¥; and ¢3, = g3,
Therefore, to find the equilibrium configurations we calculate the zeros of four functions
%(WO) = 0 with £ = 1,2 and j = a,b and the parameters restricted as indicated in the
above discussion. _

We characterize the equilibrium configurations (eqc) by the localization of the center of
mass of each component and in Fig.1 we have a graph of the relative distance between the
centers of mass as a function of {2, for appropriately chosen values of z;. As shown in Fig.1,
for zo = 0.232,5, we have only one branch of eqe. For small values of £2/fiw, the condensates
are well separated and when the intensity of the laser field increases the overlap between the
condensates increases very slowly up to a value of §) when there is a sharp transition to a
mixed phase.

When we diminish the value of zy, Fig.1, the behavior of eqc changes qualitatively. When

Q/hw, is small the system behaves as in the previous case. However, when {2/fw, increases



there is a critical value of €2, €., where two branches of eqc appear, one stable, the other
unstable. The two stable eqc distinguished by the separation of the centers of mass are
called, respectively, distant and near stable eqc. When we further increase the value of Q,
the relative distance of the centers of mass in the unstable egc increases and merges with
the stable distant eqc at a critical value of Q, Q.., such that at @ > .. one is left with
only the near stable eqc, where the condensates are mixed. For smaller values of zg we have
the same pattern, the values of {2, where we have three branches of eqc and of €2, where
we have the merger of the unstable and distant stable eqc diminishing, this effect being less
pronounced for the latter.

‘Also shown in Fig.1 is the graph of the branches of eqc for 2o = 0. We see that already
at {1 near zero we have three branches of eqc, where now in the near stable eqc there is
complete overlap between the condensates (to(2) = Yop(2)). When (2 increases, the totally
mixed eqc remains, with a density profile independent of (2, whereas the distant stable and
the unstable eqc approach each other and merge at €., such that, at 2 > Q.. one is left
with only the totally mixed eqe. Our results also show that we have spontaneous symmetry
breaking effects at z = 0 [6,8]. Indeed, at zp = 0, our equations are separately invariant by
space reflection, P, and atom exchange P.,. The totally mixed eqc obey these symmetries
separately, whereas the distant stable eqc do not, being invariant only by the product of
these transformations.

To find the signature of the onset of criticality, we calculate the normal modes along the
branches of eqc. We can group the five normal modes into two sets. In one set there are two
normal modes which are a linear combination of an out-of-phase oscillation of the centers
of mass of each condensate and an in-phase breathing oscillation of the condensate densities
- with the center of mass of the mixture and the population fraction at its equilibrium values. -
In the second set we have three normal modes which are a linear combination of an in-
phase oscillation of the centers of mass, out-of-phase breathing oscillation of the condensate
densities-and particle exchange between the condensates. The splitting of the normal modes
into these two groups is a general result since it follows from the invariance of the equations
{(4-5) under P, P,;, the normal modes of the first group being even under this transformation
and the one of the second, odd.

We found that the signature of criticality in all cases is the collapse of a normal mode
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which is an out-of-phase oscillation of center of mass (dipole oscillation) of the condensates
and an in-phase breathing oscillation of the condensate densities. In fig.2 we have a graph of
the energies of the two normal modes of the first group, which involves the dipole oscillation
of the condensates, for zg = 0.082,4,, which is a case where we found the existence of critical
points (see Fig.1).

In Fig.2a and Fig.2b we present a graph of the energies of the two normal modes along
the distant and near stable eqc. In the distant eqc we see that there is one normal mode
with an almost constant energy, Fig.2a, and other whose energy increases beginning from
2 = 0, reaches a maximum value and starts to decrease,Fig.2b. When {2 approaches the
critical value €., where the distant stable eqc disappears, the energies of the two normal
modes approaches each other and at 2 = 2., one of the energies goes very abruptly to zero.
- We have a similar behavior in the graph of the normal mode energies along the near stable
eqe, Figs.2a-2b. Approaching from above the point where the near stable eqc disappears,

the two energies approaches each other and again one the of them goes abruptly to zero at

£ = Qee. This behavior is completely general near a critical point.:

A “scar” of this critical behavior is also present for a value of 2 at the interface between
values where we have and we do not have critical points, such as zp = 0.232,, (see Fig.1).
 We see in Figs.2c-2d that, corresponding to the very narrow range of values where the eqc
© change from separated to mixed, we have also an abrupt change in the values of the two
normal modes energies. In Fig.3a we detached the region of the sharp change and we see
that it occurs in a very narrow range of values of 2 and it is a consequence of a strong level
repulsion between the two approaching even normal mode energies. _

In Fig.3b we illustrate a generic phenomenon that occurs when £2 — 0, the appearance of
a Goldstone zero energy mode. Indeed, when 2 ~+ 0, the particle number of each component
of the mixture is a conserved quantity and since our thedry conserves only the total number
of atoms, this violation is translated into the appearance of a zero energy mode. Fig.3b
shows how the energy of one of odd normal mode goeé to zero for zg = 0.232,5.

One question left untouched up to now is the identification of the lowest energy config-
uration when we have many branches. In our model the answer is that, for small §2, the
distant eqc is always the lowest energy configuration, changing to the near eqc at a higher

value of §2, smaller than §2... However, the energy differences are very small, the equilibrium
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configurations are almost degenerate.

Our conclusions are based in calculations where we took Age = A = Ag. It is well known
‘that for homogeneous condensate mixtures, the parameters that controls the mechanism of
phase separation is Azq Aws —)\ﬁb [6]. In coupled mixtures, we add two additional factors which
have opposite effects in the mechanism of spatial separation, the trap displacement and the
laser coupling field and a point that deserves investigation is how robust are our conclusions

when we relax the equal interaction strength condition.

IV. SUMMARY

To summarize, we have studied the equilibrium and stability properties of a coupled
two-component BEC, as function of the laser field strength and trap displacement, using
' the variational method and the one-dimensional model of reference [14]. The laser field
has a stabilizer effect in the mechanism of spatial separation of components in the mixture,
opposite to the effect of the trap displacement. We found many branches of eqc, with a host
-of critical points. In all cases the signature of the onset of criticality is the collapse of a
normal mode, which is a linear combination of an out-of-phase translation and an in-phase
breathing oscillation of the condensate densities.

When the traps are not displaced, we found eqc which exhibits symmetry breaking effects.
In principle these eqc with broken symmetry can be reached by, starting at a sufficiently high
value of §2 and zp, adiabatically take the limit £2 — 0 and 25 — 0. Taking the limit in the
lopposite order, we end up in the symmetric eqc (see Fig.1).

Undoubtedly our calculations are simple. However, it unveils a very rich structure in
systems of coupled condensates, which should be explored experimentally and theoretically

by more complete calculations.
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Figure 1. The plot shows the relative distance of the centers of mass of the two condensates in
the eqc, 2g14, as function of the laser strength 2, for fixed values of z5. Curves from the top
correspond to zp = 0.3,0.23,0.08,0 z5,. The dotted and dashed curves indicate, respectively,
the distant and near stable eqc. For zp = 0 the straight line 2¢;, = 0 correspond to one branch
of eqc. The laser strength is expressed in units of fiw, and the distance in units of zg,,. See text
for more details. ' ' ' '
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