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Abstract

We present the result of a theoretical study of the quasi free electrofission of
2387, The exclusive differential cross sections for the quasi free scattering re-
action stage have been calculated in PWIA, using a Macroscopic—Microscopic
approach for the description of the proton bound states. The nuclear shape
was parametrized in terms of cassinian ovaloids. The equilibrium deformation
parameters have been calculated by minimizing the total nuclear energy. In
the calculation the axially deformed Woods-Saxon single particle potential
was used. The obtained single particle momentum distributions were aver-
aged over the nuclear symmetry axis direction. The occupation numbers were
calculated in the BCS approach. The fissility for the single hole excited states
of the residual nucleus 27Pa was calculated on the statistical theory grounds
both without taking into account the pre-equilibrium emission of the particle,

and with preequilibrium emission in the framework of the exciton model.



I. INTRODUCTION

Quasi free scattering of high energy electrons (QF) on nuclei is the field of nuclear physics
which is traditionally devoted to the study of the single particle aspects of nuclear structure:
single particle binding energies, momentum distributions, occupation numbers, etc {1].

A new branch of these investigations is the study of decay channels of single hole states
in the residual nucleus, created as a result of the QF process. Especially interesting is to
study a fission decay following a QF process. In this case we have a single particle process in
the first reaction stage, and essentially a collective process in the final reaction stage. The
collective degrees of freedom are excited in the intermediate reaction stage due the residual
interaction.

This is a new sort of nuclear reaction which may allow one to get unique information on
the dissociation of well defined single hole configurations ( which we can select by coincidence
(e,€'p)) into complex nuclear configurations, and its role in nuclear fission. The new and
most important aspect of this reaction is that, after knocking-out a proton, we obtain the
* heavy nucleus %*"Pa, in a single hole doorway state (see discussion below) which could undergo
nuclear fission. Indeed, instead of dealing with collective doorway states, which are coherent
sums of a great number of 1p-1h Cdnﬁgurations { as the well-known giant resonances), these
non-collective doorway states will be represented by only one, well defined, 1h configuration.
The residual interaction in **"Pa mixes these 1h configurations into more complicate 2h-1p
and 3h-2p ones. So, there would be some competing channels for fission. It may occur
either directly from 1h configurations, or, with some delay, from mixed states (or their
-components). In a QF process we have in the initial state only one configuration; thus, the
fission probability F; should be more sensitive to the individual structure of this initial state
as compared with conventional reactions, where the effects of the structure are averaged out

over mary single particle states forming the doorway.

The unambiguous extraction of single hole contributions is possible only in an exclu-




sive experimental scheme (reaction (e, e’ pf)) and involves extremely thin targets (fission
fragments have to leave the target with small energy losses), high energy resolution, and co-
incidence requirement between the final particles in order to separate the single hole states.
The exclusive (e, e'pf)-experiment is very difficult for practical realization, and never has
been so far performed. The integral contribution of the quasi free electron scattering to the
fission process was studied only in inclusive experiments: (e, f) [2] and (e, e’f)) [3]. These
works dealt only with the issue of the QF contribution in electrofission.

The advent.of high energy, CW, electron accelerators combined with the development
of high resolution facilities, opens the possibility of studying the fission channel for quasi
free electron scattering in an exclusive experimental setup. The most suitable accelerator
for this experiment is at the Thomas Jefferson National Accelerator Facility (TINAF).

* Tor excitation of the residual nucleus to an well defined single hole state, the initial and
final state interactions have to be negligible. This situation corresponds to high momentum
transfer and high proton exit energy, when the Plane Wave Impulse Approximation (PWIA)
for the calculation of the quasi free electron scattering cross section is valid.

This work presents the results of a PWIA calculations for the quasi free (e, e'p)-
differential cross section for deformed orbitals of 23U, in the framework of the macroscopic-
microscopic approach, plus an estimate of the fissility for single hole states in the residual
nucleus "Pa, performed on the statistical theory grounds. These calculations could serve

as first order magnitude guide-line for expected cross sections.

II. PWIA CROSS SECTION

In the first order Born approximation the electron with initial four-momentum &y, =
(?1,161) and final kg, = (?2,1’82) , transfers a virtual photon with four-momentum
g = (@,iw) = ki, — kg, , resulting in the final state a knocked-out nucleon with

Py = (Pp,iE,) and a residual nucleus with Py, = (ﬁAﬁl,iEA_l).
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In the impulse approximation a virtual photon interacts with a bound nucleon (proton or
neutron) of four-momentum p,, = (7., 1Em),which exits the nucleus with four-momentum
Py = (Pp,1E,) without further interaction (no FSI). The corresponding mementum diagram
in the impulse approximation is shown in Fig. 1 for the Laboratory system..

In the plane wave impulse approximation (PWIA) 7, = P A-1, and the missing
quantities (momentum and energy of the proton before interaction) can be defined from the

energy and momentum conservation law in the following way:

—

—ﬁ}mzﬁp_q) (1)

E'm =w—Tp_TA--1:

where F,, = M, 1+ my,~ My is the proton missing (or separation) energy, T}, is the kinetic
~ energy of the outgoing proton, and T'4_; is the kinetic energy of the residual nucleus. The
.momentum and energy transfer of the virtual photon can be varied independently.

In the PWIA the six folded differential cross section of the (e, e'p)— reaction in the

~ Laboratory system has the following form [4]:

dSa
= E‘m,: _'n')t, ) 2
i d, degak, ~ PoleoeS(Em Pm) | ()
where
Tep = Omots VeWe + VeWr + ViW; + VsWs) (3)

is the off-shell electron-mucleon cross section, S(Eum., Pm)
is the spectral function which defines the combined probability to find a bound proton with

momentum p,, on the shell with separation energy E,,.

The kinematic functions V in Eq. (3) can be expressed , neglecting the mass of the

electron, as:

4
q
VC - E’i‘) (4)
g 0
2, Ue
Vo = 2—;2 + tan (E), (5)




g g
Vi = E‘é—cosqb —q—% -f—ta.nz(—e), (6)
g 0
Vg == &% cos? ¢ -+ tanz(ge), (7)
and
a?cos? & 2e1 6
mott = 1 ~— sin?-2)"! 8
Tmott 4E%Sin4%ﬁ( +mpsm 2) (8)

is the Mott cross section, ¢ is the angle between the scattering plane and the

plane defined by the vectors 7, and 7

For the structure functions W in Eq.(3) we use the off-shell prescription of de Forest [4]:

1 2 52 2 2 2 ARy
We = g (E+ B (F] + gz 2) — T+ s B, @)
62
Wo = 2EE (Fl-l-ﬁ:sz) )
: ppsm'T 2 q.u (22
. = E E ) F F
: 2 2 2
‘ P, sin” -y
WS: pEEp (Fl 4 2 pF2)

where s, =1.793 is the anomalous magnetic moment of the proton in units of the Bohr

magneton ,

22 (10)

my is the mass of the proton, §, = (7,%w) , W= F, — E,~ is the angle between P, and

7,

Fy and Fy are the on-shell Dirac and Pauli proton form factors, respectively:

1 7
Fi(g?) = 1+_gi_[GE(Qf) + 4mgGM(QE)]= (11)
4m2



5o Fo(g) = — - [Cau(g?) — C(dD)) (12)
1+ 4m2
where
2 1 -2
Gel@) = (——F%)™ (13)
14 o2
Gu(q?) = 1pGe(d)], (14)

pp = 2.793 is the proton magnetic moment in units of the Bohr magneton and qf in
Eq.(13) is in {GeV/c)2.
In the independent particle shell model the spectral function for the spherical orbitals

‘a = nlj with binding energy E, takes the simple form:
S(Brm, ) = 6 (B — Ea) V3 16 (Bm); | (15)

where 12 and n, (p) are the occupation number and momentum distribution of the o orbital,
respectively. The six folded (e, e'p}—cross section could be transformed into a five folded

one:

dBo

— 2 =
sy, de dEp ppEpUep Voo (pm) : (16)

where it is imposed energy and momentum conservation for the kinematics variables in ogp.

III. SINGLE PARTICLE BOUND STATES

The single particle bound state energies and momentum distributions were calculated in
the framework of the macroscopic-microscopic approach by using the BARRIER code {5].

The energy of the nucleus is presented as:
Ett = Erp + 6 Eshen, - (7

where E;p is the macroscopic liquid drop part of the energy and d Fgpep is the shell cor-
| rection, which describes shell and pairing effects. Both shell correction and the macroscopic

part of the energy have been calculated according to [5}.
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A. Nuclear shape parametrization

Only axially symmetric nuclear shapes have been considered in the present work, and
the deformed shape (up to and beyond its separation into two fragments) can be conve-
niently described by the Cassini ovoids {6,7]. The potential-energy surfaces are calculated as
functions of & (elongation) and a4 (hexadecapolar momentum). From these potential energy
surfaces, the equilibrium (ground state) deformation parameters ¢ and oy were calculated

by minimizing the total nuclear energy ( Eq.(17)): & = 0.227 and oy = 0.059.

B. Nuclear Potential

" An Woods- Saxon potential {8], consisting of the central part V, spin-orbit Vgo, and the

~ Coulomb potential Viyo, for protons, was employed:

VWS(’F, z,6,0) = V(r, 2,6, Q) + Vio(r, 2,6, &) + Vooul(r, 2, &, &) (18)

g The real potential V' (r, z, ¢, @) involves the parameters Vg, vy and a , describing the depth

of the central potential, the radius and the diffuseness parameter, respectively, and it is

expressed as:

W
1+ exp f:dist(r,z,s,&)] ?

a

Vir z,e,a) = (19)

where dist(r, z,€, &) is the distance between a point and the nuclear surface, and = and &
are deformation parameters.

The depth of the central potential is parametrized as
Vo = Voll £ (N — Z)/(N + 2], (20)

with the plus sign for protons and the minus sign for nentrons, with the constant x = 0.63.

The spin-orbit interaction is then given by:

h
2Me

: 2
Violr, 2,6, ) = A( ) VV(r,2,,8) - (7 x 7). (21)
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where X denotes the strength of the spin—orbit potential and M is the nucleon mass. The
vector operator & stands for Pauli matrices and g is the linear momentum operator.

The Coulomb potential is assumed to be that corresponding to the nuclear charge (Z —
1)e, taken to be uniformly distributed inside the nucleus. It is computed in cylindrical

coordinates by using the expression given in [6].

C. Single particle potential parameter definitions

For the ground state deformation of ?3®U, small changes in A (spin-orbit potential
strength) and rg_,, (spin-orbit potential radius) of the Chepurnov parameters [9] are in-
troduced in order to reproduce adequately the spin/parity of the levels sequence. Using
single particle states obtained by this procedure, the quasiparticle states can be calculated
for the first minimum region, providing spin, parity, energy and level spacing for the ground
~ and some low-lying states. The quasiparticle spectrum was obtained by using the semi-
microscopic combined method [10].

The potential parameters were chosen to give the best fit to the spectrum of single-

- quasiparticle excitations of the Z-odd neighboring nuclei 23°Np.

D. Single particle wave functions

The Hamiltonian matrix elements are calculated with the wave functions of a deformed
axially symmetric oscillator potential. The wave functions in the coordinate space ¢; are

expanded into eigenfunctions of the axially deformed harmonic oscillator potential.

These eigenfunctions form a complete orthonormal basis for the single particle Woods-
Saxon wave function

T, (Ta’,a)= DGR S (Tz’,a). | (22)

ez, AT

From this expansion, we may conveniently express the single particle Woods-Saxon wave

function in momentum space:




¥, (?,a) = > ChoasPrnans (?,0) ; (23)

Tpy e, AT

with

Dr3/2

- 1 _
Prp AT (ﬁ,d) = /dﬁ€_1 ?'ﬁq’np,nz,mz (T{),ff) (24)
normalized to one.

We define densities n; (T()) In momentum space in an analogous way of that in the

‘configuration space:

pi (B) = pi(r2) = [2F (r, )] + |87 (r. o) (25)

with
¥ (r2) = = T taglanClyn nonans (B.0), | (26)

and
ni (B) =i (b, k) = |35 (. 52) C B e k) (27)

 with
: F (k,k,) = \/——% Z 5&%5&:&1\0;%,A,zgnmnz,mg (T(), a) . (28)

Rp, Mz, A2
These single particle momentum distributions n; (?) were averaged over nuclear sym-

metry axis directions.

Similarly to the total density

p(B) =Y 20 (), (29)

the total momentum distribution is given by

n (?) = 221)1-2712- (?) : (30)

where v} is the occupation probability resulting from the BCS model. [11], [10]
The results for the occupation number calculations are shown in Fig. 2.

The energies of the 23U proton bound states are shown in table 1.



IV. FISSILITY

The quasifree knockout of nucleons leads to the excitation of the residual nucleus. This
excitation energy (E”*, nucleus A-1) has two origins: holes in the shells of the nucleus A,
which appear as a result of the knockout of nucleons, and final state interaction (FSI) of the

outgoing nucleon, which we assume as negligeable due to the high energy of the proton.

The fast, quasi free reaction stage occurs at zero thermal excitation (ground state) of
* the initial nucleus 2%8U, and results in a single hole in one of the shells. This single hole
configuration forms a doorway for a thermalization process which leads to the thermal
excitation E*of the residual nucleus %7 Pa.

The thermalization is a complicate process which involves creation of new many particle-
hole configurations in competition with particles emission and fission, and for some doorway
configurations it might has non statistical character, but, as a first guide-line for order
of magnitude estimates we calculate the total fission probability (nucleus with energy E*
deexcites in several steps) on the statistical theory grounds, both with and without taking

into account the preequilibrivin decay.

A. Compound nucleus model

Firstly, we considered a extreme situation, by assuming that the residual interaction
leads to thermalization and formation of compound nucleus just after the fast reaction
stage, without any preequilibrium particle emission In this case, the compound nucleus

excitation energy is assumed to be :
E*=-F, (31)

where F, is the energy of the bound state (hole).
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- For calculations of compound nucleus fissility we used the Bohr Wheeler [12] and
Weisskopf [13] models for the description of the evaporation/fission competition. It was
developed a Monte Carlo algorithm for the evaporation/fission processes which includes not
only the neutron evaporation vs. fission competition, but also takes into account the proton
and alpha-particle contributions.

The probability for the emission of a particle § with kinetic energy between Ej and

By + dEy is calculated within the Weisskopf statistical model [13] as:

T

Ps(Ex)dEy = v,0,E}, (ﬂ) dE, (32)

where o; is the nuclear capture cross section for the particle 7, v; = %7z, where g denotes
the number of spin states, and m is the particle mass. The level densities for the initial and

ﬁnal: nucleus, p; and p¢, respectively, are ca,lc‘ula._ted from the Fermi gas expression
p(E}) = exp [2( aF})'?],
| .Wl.liere a is the Jevel density parameter (see below),
Ej=FE"-(B;+Vj), (33)

E* is the nuclear excitation energy in the initial state, B; is the particle separation energy,

and V; is the Coulomb barrier corrected for the nuclear temperature, 7, defined by E* = ar2. |

The particle emission width is calculated as

g

From this general equation, the k-particle emission probability relative to the j-particle

emission is:

% _ (%ﬂ&) exp |2 (o BV~ (o555)"")]. - (3)

v Ej ax
The level density parameter for neutron emission is [14]:
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an = (0134 A—1.21 -107* A?) MeV~, . (36)
and for all other particle emission this quantity is related to a, by,
G; = Tj0n, ' ' (37)

where r; is an adimensional constant.
Shell model corrections [15] are not taken into account. For high excitation energies their
effects are likely to cancel each other upon averaging over all possible nuclei created during

the reaction.

Using the fission width from the liquid drop model [12], and the neutron emission width

from Weisskopt [13], we get

Tty e [2 (o ) - (on 50))]. @)

where

2((ay E;;)lf? -1

Kj=HKoa, 4A28a;Fx 7

(39)

with Kq = 14.39 MeV and E} = E* — By. Here By is the fission barrier height discussed
below.

For proton emission we get

-;:i- = ( Eé) exp [2 (am)l/2 ((TPE;)I/Z - (E;:)l/g)] ; . (40)

and for alpha-particle emission [16] [14],

r. (2 E:

T, E:

) oxp [2(an )V ((raEZ)Y? — (B7)V?)] . @

In the above equations, the Coulomb potential for protons is [17]

ky(Z — 1)e?
V,= C—-2~
P Y r(A— 4B+ R

and for alphas,
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2K, (Z — 2)e?

V,=C (43)

where K, = 0.70 and K, = 0.83 are the Coulomb barrier penetrability for protons and alpha.
particles, respectively, R, = 1.14 fm is the proton radius ,R, = 2.16 fin is the alpha particle
radius, and rg = 1.2 fm . The factor C introduces in a semi-empirical way the dynamical
effects in particle separation energy and fission barrier due to the nuclear temperature [17],

namely

E*
O =1 -~ 44
B’ ( )

where B is the total nuclear binding energy (B=1794 MeV for 7 Pq [17)]).
The fission barrier is calculated by [17],

Bs = C(0.22(A — Z) — 1.40Z + 101.5) MeV. . (45)
 The neutron separation energy was taken as 5.78 MeV for the first step (*7Pa) , and
- for the other steps as [15]:

Bn= (-0.16(A — Z) + 0.25Z + 5.6) MeV, (46)

while the proton and alpha-particle separation energies are calculated through the nuclear

mass formula [18]:
By =my+MA—-1,Z-1)— M(A, Z), (47)

where my, is the proton mass, and M(A, Z) is the nuclear mass calculated with the param-

eters from reference [18]. For the alpha particles we get
By=m,+ M(A~4,Z—2) — M(A,Z), (48)
where m, is the alpha particle mass.

"These values reproduce the experimental data for Py (see discussion below)
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The present Monte Carlo code for evaporation-fission calculates, at each step ¢ of the

~ evaporation chain, the fission probability, F;, defined as

“An evaporating particle j is randomly chosen (neutron, proton or alpha particle),

according to its relative branching ratios. Once one of these particles is chosen , the mass

and atomic numbers are recalculated through

A1 = A;— DA,
and
Z'i+l = Zz — [.\Z“

where AA;, and AZ;, are, respectively, the mass and atomic numbers of the ejected |
particle at the ith step in the evaporation process. The nuclear excitation energy is modified

2
J
according to the expression : |
!
&k A
i1 = B — B, — T,

where B; and 7; are the separation and the asymptotic kinetic energies of the particle being
ejected, respectively. For neutrons T = 2 MeV, and for protons and alpha particles T = 0 i
MeV. The expressions described above ensure that the nuclear excitation energy will be, }
at each step in the evaporation chain, smaller than in the previous step. This process

continues until the excitation energy available in the nucleus is not enough to emit any one

of the possible evaporating particles. At this point the evaporation process stops, and we

can calculate the nuclea;r fissility by the expression

w=>" {ﬁa—Fj)

i =0

B (49)

Using the model described above, we calculated the fissility for 7 Pa (figure 3, solid

curve). Peaks observed for the fissility reflect the opening of the fission channel in the
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daughter nuclei. Figure 3 also shows ( rectangle) the data for the fissility of *” Pa obtained
by extrapolation of the neutron to fission widths ratios for Z = 91, and 4 = 230, 231,232, 233
to A = 237 [19], by using the empirical trend presented in Vandenbosch and Huizenga [16]

It should be pointed out that in our calculations of the fissility we assumed that the
hole excitation energies for an A-1 nucleus correspond to the compound nucleus excitation
energies , that is to say, the complete thermalization is reached without any preequilibrium

decay. Such calculations could be considered as an upper limit estimate for the fissility.

B. Exciton model

During the thermalization of the hole excitation energy, the nucleus A—1 could undergo

particle evaporation (preequilibrium decay [20], [21]).

In this case, the energy of the hole is not attributed to the nuclear temperature but,
iiﬁstead, assumed as a characteristic of the doorway state in the thermalization process
' .féllowed by the emission of particles or fission.
| The calculation involving the preequilibrium decay was performed within the framework
of the exciton model [22], using the code STAPRE. In this model, the states of the system
are classified according to the number of excitons n, which corresponds to the total number
of excited particle p and hole A degrees of freedom, n = p + h. The exciton model included
in STAPRE does not distinguish between protons and neutrons. Starting from a simple
configuration of low exciton number, the system is assumed to equilibrate through a series
of two-body collisions and to emit particles from all intermediate states. The application of a
two-body interaction to the states of a (p, h) configuration results in states with (p+1, h+1),
(p,h), and (p — 1,h — 1) excited particles and holes. The difference between the number
of excited particles and holes remains fixed, justifying the use of the exciton number to
- label the states. However, the transition rates, which are an averaging over all states of

a configuration, do depend on the number of excited particles and holes. The equation
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governing the time development of the occupation P(n) of the n — th exciton configuration

can thus be written as

dP(n)

A+ 2) Pn+2) + do(m) P() + A (n —2) Pn—2) = X(n) P(n)  (50)

where A(n) is the total transition rate,

Aln) = A_(n) + do(n) + Ap(n) + A(n), (51)

© with Ac(n) being the total rate of particle emission from the n — th exciton configuration.

The quantities A_{n), Ao(n), and A (n)} are the average rates for internal transitions from
the n — th exciton configuration with a change of exciton numbers by -2, 0, or +2.
The internal transition rates can be written as the product of the average squared mat_rix
‘element of the residual interaction | M|?*with the relative density of available states. For the
latter, STAPRE uses the expressions of Williams [23] as corrected for the Pauli principle by
Cline [24]. These yield

(9E — Cpr1pr1)’
p+h+1

2
Xo{n) = Xo(p, b, E) = —ﬁ"IMlzg(pr h—1)(gE — Cpp),

A(n) = A(p,h, E) = 2 |2 , o ®

2T
Ai(n) = Ai(p,h, B) = —|M|*gph(p+ h - 2),
where

Con = 5 (#° +17),

Lo =

with E the excitation energy of the system. The parameter g is the single-particle state
density, which is taken to be g = ;r%a, with a as the level density parameter. Following

Kalbach-Cline [25], the average matrix element is approximated as

s Im
|M| '“AgE)

where A is the mass number of the system and fj; is a parameter, which we assumed to be

[ = 230 MeV? in our calculations.
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The particle emission rate A.(n) is the sum of the integrated proton and neutron differ-
ential emission rates, ‘A.,(n, ) de,,, which are determined through considerations of detailed

balance [26],

Aev(n, ) dey, = Aey(p, b, E,e,) de, (53)

— 1 W(Pml,h,E—*By--EV)
= et & o) R 5

dey,

where u,, is the reduced mass of the emitted neutron/proton, ¢, its outgoing kinetic energy,
B, its separation energy, and o,(¢,) is the cross section for the inverse absorption process.
The factor R, is a simple correction standing for the fact that neutrons and protons have

not been distinguished in the process; thus,

R N/A  for neutron emission
v = .
Z/A  for proton emission

- The densities of states are taken to be the Williams densities,

g (gE — A,y

bk ) = T h =T

(54)
v?here the Pauli blocking correction is
1
Ap,h. = Z (p2 + h,2 +p_3h) .

' The differential emission rates differ from those of usual Weisskopf compound nucleus emis-
sion by the factor K, and by the use of exciton state densities rather than compound nucleus
ones.

The time evolution equation, Eq. (50), form a set of coupled linear differential eqﬁations

whose solution could be written in the form of a vector as,
P(t) = exp[-At] B,
where the matrix A is given by

Annf - /\(’n) (Snf,n — A (TI =+ 2) 6n’,n+2 - )\0(77) 6n’,n — )\,}_(n — 2) 6,.,,:,”_2,
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and the vector 130 describes the initial exciton configuration of the system,
Py(n) = Pﬁ(pa h’) = 610,33061‘1,110'

The decay of the system into all possible final configurations can be obtained by integrating

the total emission rate over all time,

Z fom Ae(n) P(n,t) dt = Z)\e(n) (A‘l)n’n, Py(n). (55)

The decay of the fraction of the initial probability, which survives preequilibrium emission, is
described using the Hauser-Feshbach formalism. We have considered fission in competition
with neutron and gamma emission.

The initial configuration in ?*"Pa consists of one-particle at the Fermi level and one-hole
in a bound state. This configuration is consistent with the proton knockout reaction for
2381 initiating the statistical cascade. Our calculations were performed assuming an one
-hole initial configuration of the 1=0 partial wave alone. The particle at the TFermi level
contributes negligibly to the equilibration process. The fission barriers, neutron separation
energies and level density parameters were taken the same as those of the compound
nucleus calculations in the previous section.

The exciton model fissility results for single hole states of 23"Pa are shown in fig 3 by the
dotted curve. We note that these calculations for fissility show a smoother behavior than
that for compound model. The preequilibrium particle emission removes some excitation
energy before a equilibrium is reached reducing, therefore, the probability of opening new

chances for fission.

V. FINAL RESULTS

The differential cross section for the (e, e'pf)-reaction was obtained by assuming an

isotropic angular distribution for the fission fragments, and the fissility as a factor :

18




d’o _ 1 ddo
A2 ), dE, dQ;  4m dQ, ), dE,

Py (56)

Fig. 4 shows the seven folded differential cross sectionsah?mﬁ% for some bound
proton states (table 1) and the compound nucleus model fissility (solid curve in fig.3) calcu-
lated for £;=2000 MeV , fe = 23" and the parallel kinematics [27]. In this kinematics ¢,
and fe are fixed, and for each value of &5 the proton spectrum is measured in the direction
of 7 , varying each time the angle 0p 4, .(see fig.1). For such scheme of measurements the
initial (missing ) momentum of the proton f,, is always parallel (or antiparallel) to g .
The parallel kinematics simplify the accounting of FSI, since there are no contribution of
interference terms in the cross sections (see Egs. (9)). Figs 5 and 6 show the momentum
distributions for states used in the calculation of the cross sections presented in fig. 4, and

fig. 7 shows the outgoing proton kinetic energy and angle 0p,; versus e, for the parallel
kinematics we use.
. Figs. 8 and 9 show the differential (e, ¢'pf)—cross sections calculated for the same e,
and e but for two fixed proton angles: 05, = 0.98 rad for the group of proton states of
238(J which have a maximum in the low missing momentum region (fig.5), and fp,, = 0.82
rad for the group having a maximum in the high missing momentum region (fig.6) . These
angles Op, were chosen in order to achieve parallel kinematics, that is fp,q = 0, and
maximum for cross sections at both the low ( #p = 0.98 rad ) and high (0p = 0.82 rad )
missing momentum regions. Fig.10 shows the missing momentum P,, and the angle p,q as
functions of the outgoing proton kinetic energy for 8, = 0.98 rad ( solid curve) and 0.83 rad
( dashed curve).

It is seen from the .ﬁgures 8,9 and 10 that for such a choice the cross sections have
maxima at £, around 300 and 400 MeV and, for these energies, the proton angles p,q are
small (parallel kinematics).

The differential cross-sections presented in figures 4, 8 and 9 correspond to the situation
when the hole excitation energies for an A-1 nucleus is the compound nucleus excitation

energies , that is to say, the complete thermalization is reached without any preequilibrium

19



decay. Such calculations could be considered as an upper limit estimate for the cross section

VI. CONCLUSIONS

We presented a theoretical study for the quasifree electrofission of **8U.

The proton bound states were calculated in the framework of the Macroscopic-
Microscopic approach, using the axially deformed Woods-Saxon single particle potential.
The occupation numbers were calculated in the BCS approach.

The exclusive differential cross sections for the quasi free scattering reaction stage were
calculated in PWIA using off-shell electron-mucleon cross sections.

The fissility for the single hole states of the residual nucleus %7 Pa was calculated in the
framework of two approaches:” compound nucleus model without taking into account the
preequilibrium emission of the particles, and the exciton model accounting for preequilibrium
. emission. Both models exhibit the same general trend, but the fissility as given by the
preequilibrium model is smoother.

The obtained results could serve as a first guide-line on order of magnitude estimates of

the expected cross sections for quasi free electrofission of 2%%U.
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IX. FIGURE CAPTIONS

- Fig.1. Momentum diagram of the A(e,e’p)A—1 reaction in the impulse approximation:
74?1, and 732 are the initial and final electron momenta, respectively; 7, is the momen-

- tum of proton before interaction; P, is the momentum of

knocked-out proton.

~ Fig.2. Occupation probabilities for the single particle bound states of 2**U.

Fig.3. Fissility of 7 Pa vs the hole excitation energy.

The solid curve shows the. compound nucleus model calculation, assuming that the hole
excitation energies correspond to the compound nucleus

excitation energies: the complete thermalization is reached without any preequilibrium
decay. The dotted curve corresponds to the exciton model

calculations, which take into account the preequilibrium decay. The rectangle shows the
extrapolated experimental data (se text for details).

Fig. 4. Seven folded differential cross sections for the parallel kinematics. The calcula-
tions of the cross sections were accomplished for £; = 2000

MeV, fe = 23% ¢ = 0° . The cross section for E=-10.388 MeV state ( subbarier) is
multiplied by 100.
| Fig.5. Momentum distributions for some proton bound states having maxima at the
IQW missing momentum region.

Fig.6. Momentum distributions for some proton bound states having maxima at the
high missing momentum region.

Fig. 7. Variation of the angle 6, (see fig.1) and the outgoing proton kinetic energy
E, vs g3 for the parallel kinematics and &, = 2000 MeV, fe = 230,

Fig.8. Differential cross sections for some bound states of ?¥U, having maxima of the
momentum distributions at the low missing momentumm region. The calculations of the cross
sections were accomplished for £; = 2000 MeV, fe = 23°, ¢ = 0% and 6,5, = 0.98 rad.

Fig.9. The same as in figure.5, but for some bound states of 2**U, having maxima of the
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momentum distributions at the high missing momentum region and for 8, , = 0.82 rad .
Fig.10. Missing momentum p,, and angle 85, as functions of the outgoing proton kinetic

energy for 6,5 = 0.98 rad ( solid curve) and 0.83 rad ( dashed curve).
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X. TABLE CAPTION

Table 1: Proton single-particle levels of 233U, The Fermi level is the level 46.
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