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Abstract

The detailed analysis of angular dependence of the synchrotron radia-
tion (SR) is presented. In particular, we analyze the angular dependence
of the integral SR-intensity and peculiarities of the angular dependence of
the first harmonics SR. Studying spectral SR-intensities, we have discov-
ered their unexpected angular behavior, completely different from that of
the integral SR-intensity. Namely, for any given synchrotron frequency,
maxima of the spectral SR-intensities recede from the orbit plane with in-
creasing particle energy. Thus, in contrast with the integral SR-intensity,
the spectral ones have the tendency to deconcentrate themselves on the
orbit plane.

1 Introduction

At present the theory of synchrotron radiation (SR) is well developed and its
predictions are in good agreement with experiment [1, 2, 3, 4]. We recall that
the SR is created hy charged particles, which are moving with velocities v along
circles of radiug R in an uniform magnetic field H,

BE _mopc® 5— o v 24 —1/2 E '
e f— o= — = _ = ]_ . 1
k e eH V7 1.8 ¢ 7 (=59 m002>> (1)

Here E' is the particle energy, ¢ is the charge, and myp the rest mass. The
radiation frequencies w, = vwy, v = 1,2, ..., are multiples of the synchrotron
frequency wo = cefI/ E . The spectral SR-intensity (SR-intencity for a fixed

radiation frequency) has maximum for harmonics with v ~ 3. Two limiting
cases, the non-relativistic (3 < 1, E =~ mgc?) and the relativistic limits (8 ~
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1, E > moc?), are of particular interest. In the non-relativistic case, only the
first harmonic wy = w is effectively emitted. The SR-intensity has a maximum
in the direction of the magnetic field. In the relativistic case, the integral SR-
intensity (spectral SR-intensity summed over the spectrum) is concentrated in
the orbit plane within a small angle A8 ~ 1/ v « 1. Thus, as the electron
energy increases, the integral SR-intensity tends to be concentrated in the orbit
plane. Any polarization component of the integral SR-intensity has the same
behavior. These results were first derived in the framework of classical theory.
Consideration in the framework of quantum theory does not change essentially
results of the classical analysis, since quantum corrections are small [1, 2, 3, 4].

However, one ought to say that the analysis of angular dependence of the
spectral and the integral SR-intensities was not done before in detail. Recently
this work was done by us, and in the present article we present results of such
an analysis. In Sect. IT we analyze in detail angular dependence of the integral
SR-intensity. In Sect. IIl. we study peculiarities of the angular dependence of

‘the first harmonics SR. Studying spectral SR- intensities (see Sect.IV), we have

discovered their unexpected angular behavior, completely different from that of
the integral SR-intensity. Namely, one can see that for any given synchrotron
frequency, maxima of the spectral SR-intensities recede from the orbit plane
with increasing particle energy. There exist limiting angles (at 8 — 1) for the
maxima, which depend on the synchrotron frequency. Thus, in contrast with
the integral SR-intensity, the spectral ones have the tendency to deconcentrate
themselves on the orbit plane. The analysis is done in the framework of classical
theory, but as was already mentioned above, quantum corrections cannot change
the results essentially.

2 Angular dependence of integral SR~ intensity

In the SR theory one introduces polarization components W; , ¢ = 0,41, 2,3 of
the integral SR-intensity [1, 2, 3, 4]. Here W4, are the integral SR-intensities of
the right (+1) and the left (—1) circular polarization components respectively,
whereas Wy and W3 are the so called "¢” and "#” linear polarization compo-
nents. The total integral SR-intensity Wy is defined as Wy = Wy + W_; =
W, + Wy . In the framework of the classical theory of SR one can find:
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folv, 3,0) = for(v, 5;6) + fr(, B 0) = fa(v, 5; 6) + fa(v, 5;0) . (2)

Here ¢ is the angle between the z-axis and the radiation direction. The sum
over v is just the sum over the spectrum, such that the expressions inside the



sum represent spectral distributions. The functions f;(v, §;68) have the form:
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Here J,(z) are Bessel functions of integer indices. The following simple proper-
ties hold true:

fk(yrﬁzg) = fk(yzﬂ;w_QL k =O!2J3; f_l(U,ﬁ;G) = fl(V,ﬁ;’.’T“ B) . (4)

Thus, it is enough to study the functions fi(v, 3;8), k£ = 0,2,3, at the interval
0 < 8 < /2 only, and between the functions fi it is enough to study fi only.

Exact analytic expressions for the functions Fi(3,6) , ¥ = 0,2, 3 were already
known [1, 2, 3, 4] '
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‘Expressions for the functions Fyy can be found in the form:
Fii(B,0) = 2 Fy(8,0) + U(Bsinb) cosf, T() = — -2 iqu(ya:) ©)
1 3 2 Q ’ H 21: de' b v '

One can find that for any fixed 73 all the functions F;(3, #) have an extremum
at & = 0. Moreover, the extremal values of these functions do not depend on 3,

F_1(8,0) = 0, 2Fy(8,0) = 2F1(6,0) = 4F(8,0) = 4F3(3,0) =1.  (7)

The point § = 7 /2 provides an extemum for the functions Fy, , ¥ = 0,2,3 only.
Here we have:

FO()@:I 77/2) = Fg(ﬂ,'ﬂ'/2) - 2F:|:(ﬂ,’ﬂ'/2) = %73(7’}'2 - 3)! F3()6:7T/2) =0. (8)
Therefore, for F5 the point § = 7/2 is an absolute minimum. For any fixed 3
the function F5(3,8) is a monotonically increasing function of & on the interval
0 <0< 7/2. Thus, § =0 is an absolute minimum and # = 7/2 is an absolute
maximum of this function. The maximum of the function Fb increasés as E°
with increasing particle energy K.

For v <", (8 < 857), |
WP = /776 =~ 1.0801, A =1/V7 ~0.378, (9)

Fp and F) are monotonically decreasing functions of # (Fp on the interval 0 <
¢ < /2 and Fy on the interval 0 < 8 < o). Thus, at ¢ =0 t_hese functions have
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an absolute maximum. The functions Fy and F; have their absolute minima
at # = w/2 and & = 7 respectively. Besides, F1(8,7) = 0. For 7((,1) <<

’Y(()z)’ (ﬁél) <B< /@(()2))1
7B = ﬁ‘%ﬁo’ﬁ ~1.1949, g8 = "%(\/é_ 2) = 0.5474, (10)

the points ¢ = 0, 7/2 are minima for Fy, and the point & = (),

Bv2(1 — 372) + 2+2,/15(167% — 2292 + 9)
34y =3)(»* - 1)

sin? 6o(f) = , 0<6o(B) <m/2,

| (1)
provides a maximum for Fy . For 752) < 7y, (652} < 3 < 1), the function Fy has
an absolute maximum at the point 8 = 7 /2.

Denoting via 9((,”") (8) all the maximum points of Fy, we may write:

- 0, A=A
0B =4 6B), A <p<p? (12)
w2, A <p<1
The plot of the function Qém} {(B3) see below:
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Figure 1: The function 6™ (8).

For any given § € (ﬁél), 1), the function F; has its maximum at the point
8 =6:(8), 0<81(8) <n/2. Denoting via aﬁ’") (B) all the maximum points of
F| , we may write:

(m)ray 0, g<g
& (5)—{ 8,(8), [331)<ﬁ<1 - (13)

At the moment, there is no analytical expression for 6;(3) similar to (11) for
6o{3). However, one can see that the function 6; () is a monotonically increasing

function of 3 € [ﬁél), 1] . For 8 — 1 there is an asymptotic form

0.(8) =m/2 -/, (14)
where a7 ~ (.2672 is a root of the equation (see [1])
5maq (5 + 1202)v/3 + 64(5a2 — 1)4/1+ a2 =0. - (15)

4



i )

DA B8 05 0T OB 0 I

Figure 2: The function 6™ ()

The plot of the function 6™ (8) see below:
For 8 < B3 (v < 73),

2 15
-~ 05164, 13 = 4/ — ~ 11678 , 16
Bs 7 V3 1 8 (16)

Fj is a monotonically decreasing funciion on the interval 0 < 8 < w/2 . The
point 8 = 0 provides the absolute maximum for this function. For I > 3 >
B3, (v > v3), the points 8 = 0 and § = 63(8) provide the minimum and the
' maximun respectlvely for Iy

- V/B(12574 — 34y2 +5) — 1942 ~ 5

607 —1) L 0<Gy(f) <n/2.  (17T)

sin? 83(8
Denoting via Gém) () all the maximum points of F3, we may write:

(M) ay 0, pBZB
% (ﬁ)“{ag(ﬁ), <<l (18)

For # — 1 the following asymptotic expression holds true:

1 /2 '
0™ mom /2 — =/ =
3 w/ V5 (19)

The plot of the function Qém) (3) see below:

3 Angular dependénce of spectral SR-intensity

3.1 First harmonic radiation

The angular distribution of SR from the first harmonic (v = 1} is distinctly
different from that of the higher harmonics (v > 2) . Previously it was known [1,
2, 3, 4] that: a) The first harmonic alone contributes essentially to the radiation
in the directions # = 0,7. b) In the nonrelativistic case (8 ~ 0}, the radiation
is maximal exactly in these directions.




Figure 5: The threshold values v,v, %» and the limit values §v* (in degrees)
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Figure 6: The plots of the functions éx(v, 8), (k = 0,1,2,3) at » =1 - 10,50.
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Figure 7: The threshold values v, yo» and the limit values §v* (in degrees)
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Figure 8: The plots of the functions fr(v,1;6),k=0,1,2,3at v =1,2,3,4,5,10.
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Table 1: The threshold values v, v,v and the limit values 6v* (in degrees)

v 2 3 4 5 6 7 10 15 20 25
vy 100 122 140 154 167 179 208 246 275 3.00
v 159 210 255 297 336 373 475 625 759 882
8% 4550 3622 31.29 2811 2584 2410 20.66 1748 1559 14.30

¥ 45.88 36.83 32.02 2891 26.68 24.98 21.57 1839 16.48 15.16 A
6f 3884 2844 23.06 19.67 17.30 1554 1214 920 757 6.51
6F 49.83 41.09 3629 33.11 30.80 29.00 25.34 21.83 19.69 13.19 '

v 30 35 40 45 50 100 200 300 400 500
¥¢ 321 340 358 374 388 498 635 731 807 870
v§ 998 11.07 1210 13.10 14.06 22.38 35.58 46.66 56.54 65.63
8 12.34 1259 11.98 1147 11.03 860 6.74 586 531 492
8Y 1418 13.41 1277 1224 11.79 924 728 634 575 533
6% 575 518 474 438 408 256 161 1.23 101 087
8% 17.06 16.16 1543 14.81 1428 1126 890 7.76 7.04 6.53
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