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Abstract

In the present article we consider the Dirac equation in the magnetic-solenoid
field and in the regularized magnetic-solenocid field. First we construct self-adjoint
extensions of the Dirac Hamiltonian using von Neumann’s theory of deficiency in-
dices. We find a one-parameter family of self-adjoint extensions of the Dirac Hamil-
tonian and define a one-parameter family of the allowed boundary condition at
the AB solenoid. In the regularized magnetic-solenoid field, we find for the first
time solutions of the Dirac equation. We study the structure of these solutions
and their dependence on the behavior of the magnetic field inside the solenoid.
Then we exploit the latter solutions to specify boundary conditions for the singular
magnetic-solenoid field.

03.65.Pm, 03.65.Ge

1 Introduction

The present article is a natural continuation of the works [1, 2, 3, 4] where solutions of the
Schrédinger, Klein-Gordon, and Dirac equations in the superposition of the Aharonov-
Bohm (AB) field (the field of an infinitely long and infinitesimally thin solencid) and a
collinear uniform magnetic field were studied. In what follows, we call the latter super-
position the magnetic-solenoid field. In particular, in the paper [4] solutions of the Dirac

~equation in the magnetic-solenoid field in 2 + 1 and 3 + 1 dimensions were studied in

detail. Then, in [5], these solutions were used to calculate various characteristics of the
particle radiation in such a field. In fact, the AB effect in synchrotron radiation was
investigated. However, a number of important and interesting aspects related to the rig-
orous treatment of the solutions of the Dirac equation in the magnetic-solenoid field were
not considered. One ought to say that in the work [4] it was pointed out that a critical
subspace exists where the Hamiltonian of the problem is not self-adjoint. But the corre-
sponding self-adjoint extensions of the Hamiltonian were not studied. The completeness
of the solutions was not considered from this point of view as well.

One has to remark that even for the pure AB field it was not simple to solve the
two aforementioned problems. First, the construction of self-adjoint extensions of the

“nonrelativistic Hamiltonian in the AB field was studied in detail in [6]. In the work [6]

solutions in the regularized AB field were thoroughly considered as well. The need to
consider self-adjoint extensions of the Dirac Hamiltonian in the pure AB field in 2 + 1
dimensions was recognized in (7, 8]. The interaction between the magnetic momentum of
a charged particle and the AB field essentially changes the behavior of the wave functions
at the magnetic string [8, 9, 10]. It was shown that a one-parameter family of boundary
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conditions at the origin arises. Self-adjoint extensions of the Dirac Hamiltonian in 3 + 1
dimensions were found in {11}. The works {12, 13] present an alternative method of treating
the Hamiltonian extension problem in 2+ 1 and in 3 + 1 dimensions. It was shown in
[14] that in 2 -+ 1 dimensions only two values of the extension parameter correspond
to the presence of the point-like magnetic field at the origin. Thus, other values of the
parameter correspond to additional contact interactions. One possible boundary condition
was obtained in [9, 15, 16] by a specific regularization of the Dirac delta function, starting
from a model in which the continuity of both components of the Dirac spinor is imposed
at a finite radius, and then this radius is shrunk to zero. Other extensions in 2 + 1
and 3 + 1 dimensions were constructed in the works [17, 18, 19] by imposing spectral
boundary conditions of the Atiyah-Patodi-Singer type [20] (MIT boundary conditions)
at a finite radius, and then the zero-radius limit is taken. In the works [21, 22] it was
shown that, given certain relations between the extension parameters, it is possible to
find the most general domain where the Hamiltonian and the helicity operator are self-
adjoint. The bound state problem for particles with magnetic moment in the AB potential
was considered in detail in the works [23, 24, 25]. The physically motivated boundary
conditions for the particle scattering on the AB field and a Coulomb center was studied
in [26]. '

The study of similar problems in the magnetic-solenoid field is a nontrivial task. In-
deed, the presence of the uniform magnetic field changes the energy spectrum of the
spinning particle from continuous to discrete. Thus, the boundary conditions that were
obtained for a continuous spectrum cannot be automatically used for the discrete spec-
trum. By analogy with the pure AB field it is important to consider the regularized
magnetic-solenoid field (we call the regularized magnetic-solenoid field the superposition
of a uniform magnetic field and the regularized AB field). Here one has to study solutions
of the Dirac equation in such a field. The latter problem was not solved before, and is of
particular interest regardless of the extension problem in the AB field. One ought to say
that the Pauli equation in the magnetic-solenoid field was recently studied in {27, 28, 29).
The Klein-Gordon equation in this field was considered in [29] together with boundary
conditions.

In the present article we consider the Dirac equation in the magnetic-solenoid field and
in the regularized magnetic-solenoid field. First we construct self-adjoint extensions of the
Dirac Hamiltonian using von Neumann’s theory of deficiency indices. We demonstrate
how to reduce the (3 + 1)-dimensional problem to the (2 + 1)-dimensional one by a proper
choice of the spin operator. We find a one-parameter family of self-adjoint extensions
of the Dirac Hamiltonian, and define a one-parameter family of the allowed boundary
conditions at the AB solenoid. Then, we study properties of the corresponding solutions
and energy spectra. We discuss the spectrum dependence upon the extension parameter.
In the regularized magnetic-solenoid field, we find for the first time solutions of the Dirac
equation. We study the structure of these solutions and their dependence on the behavior
of the magnetic field inside the solenoid. Then we use these solutions to specify boundary
conditions for the singular magnetic-solenoid field. To this end, we consider the zero-
radius limit of the solenoid.



2 Exact solutions
Consider the Dirac equation (¢ =k = 1) in (3 + 1)- and (2 + 1)-dimensions,
iU = HY, H = 4" (P + M). _ (1)

Here v = (7%,7), v = (fy’“), P, =10, —qAg, k= 1,2, for 2+1, and k = 1,2,3, for
3+ 1, v = (0,k); qis an algebraic charge, for electrons ¢ = —e < 0. As an external
electromagnetic field we take the magnetic-solenoid field. The magnetic-solenoid field is
a collinear superposition of a constant uniform magnetic field B and the Aharonov-Bohm
field BA® (the AB field is a field of an infinitely long and infinitesimally thin solenoid).
The complete Maxwell tensor has the form:

F\, =B (86 - 6)62), B=B**+B.
The AB field is singular at r = 0,
BAP = d§(z1)6(2?) .
The AB field creates the magnetic flux ®. It is convenient to present this fux as:
® = (I + p) o, g = 27 /e, (2)

where [y is integer, and 0 < p < 1. We suppose © and B can take positive and negative
values. The case when the quantities are positive means the axis z and the direction of
the corresponding fields coincide. One ought to remark that the case ® < 0 does not
require a special study, but can be obtained from the case ® > 0 by changing p — 1 — u.

If we use the cylindric coordinates ¢, 7 : x! = rcos ¢, 2 = rsin, then the potentials
have the form:

Ay =0, edr = g+ p+ A(r)] ,eAgz—[lO—{—,u—l—A(r)]CO:w,

(A3 =0in3+1), A(r) =eBr?/2. - (3)

sin

2.1 Solutions in 241 dimensions
First, we consider the problem in 2 + 1 dimensions. In 2 + 1 dimensions there are two
inequivalent representations for v-matrices:

V=0 Al =io® ot = —io'(, (=1,

where t_he ”polarizations” { = +1 correspond to ”spin up” and "spin down” respectively,
o = (0*) are Pauli matrices. In our stationary case, we may select the following form for
the spinors ¢(z) :

U(z) = exp {—iamo} WO (z), (=41, 2, = (xl,xz) : (4)
Then the Dirac equation in both representations implies:
(oPL + Mo®) 0 (w1) = ey (1), (5)
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(cflchLa1 + MU‘S) () = epiNa, ). (6)

One can see that

W () = o*lay) - (7)
Further, we are going to use the representation defined by ¢ = 1.
As the total angular momentum operator we select J = —i8, + ¢3/2 . It commutes

with the Hamiltonian H and is the dimensional reduction of the operator J* in 3 + 1.
Then the spinors ¥/ have to satisfy Eq. (5) and the equation

T (o) = (1=l — 3) 4 (2) ®
Presenting the spinors 7,b§1) in the form
1 1
¥ () = el (), ale)= e lip(I-b=5 (1407}, ©

we find that the radial spinor ¥, (r) obeys the equation

hipy(r) =ey(r), h=I+c’M. (10)
Here - . 1 ) 1
H:—z[ﬁr—l-o;(5—5(1—0)—%”—}-%1(7“))]0. (1)

defines the spin projection operator action on the radial spinor in the subspace with a
given value /. Namely,

oP i gi(0)t (r) = gle)TIy (7) -
It is convenient to present the radial spinor in the following form

ti(r) = [0® (e — ) + M| uy(r), (12)
where

'U'l(T) = Z caul,cr(T): ul,a(r) = ¢l,a(T)Uaa

o=*x1

(i) (2)

and ¢, are some constants. The radial functions ¢;,(r) satisfy the following equation:
2 d p 1fw 1 V2
{P&*ﬁg"'"%—Z‘Fg [;—f(ﬁ“‘l“‘i(l_cﬂﬂ - @}ﬁéz,a(’f’) =0, (14)
where

p=r%l2, y=¢elB|, E=sgnB, v=p+1-1/2(1+0).

Solutions of the equation (14) were studied in [4]. They can be expressed via the Laguerre
functions I, ,,(p) which are defined in the Appendix. Taking into account these results,
we get:

a) For any I, there exist a set of solutions ¢, = (¢mys, m=0,1,2,...) where

¢m;l,0‘(r) = Imﬂui,m (,0) . (15)
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The functions ¢, ,(r) are regular at » = 0.
b) For I = 0 and y # 0, there exist additional solutions irregular' at r = 0:

:::;;1(7’) = Im+u—l,m (P) y 0= ]-: m = O) 11 2: ey
() I (P}, 0=~1, m=0,1,2,.... (16)
All the corresponding solutions #(r) of Eq. (10) are square integrable on the half-line
with the measure rdr . The Laguerre functions in Eqs. (15), (16) are expressed via the
Laguerre polynomials.
The eigenvalues w depend on sgnB. For B > 0 the spectrum of w corresponding to
the functions ¢, ,(r) reads

Y 2y(m+l+u), {1 -1/2(1+0) >0 (17)
]l 2y(m+1/2(1+0), {-1/2(1+0) <0’
and the spectrum of w corresponding to the functions ¢¥, ,(r) reads
_J 2y(m+y), o=1
W= { 2ym, o = —1 ' (18)
For B < 0 the spectrum of w corresponding to the functions ¢y, . (r) is
Y 29(m —l+1—-p), 1 -1/2(1+0) <0 (19)
S 2v(m+1/2(1-0),1-1/2(04+0)>0 "
and the spectrum of w corresponding to the functions ¢,  (r) is
_ ) 2vm+1l—p), o=-1
w—{ 2ym, 0 =1 ' (20)

Besides, for I = 0 and p # 0, a general solution of the equation (14) has the form:

Puo(r) = e (p) = p_l/zwz\,aﬂ(p)a
a=p—1/2(14+0), 2x=w/y-&(p—1/2(1 - 0)), (21)

where W), o/2 are the Whittaker functions (see [30] , 9.220.4). The spinors in (10) con-
structed by the help of the latter functions are square integrable for arbitrary complex A.
Therefore, eigenvalues w are not defined when the latter functions are used. The func-
tions 10y o were studied in detail in [4], some important relations for these functions are
presented in the Appendix. The functions ¢, ,(r) are irregular at r = 0.

We demand the spinors w;(r) to be eigenvector for II, such that the functions Um )+
have to obey the equation

H’U.m,g,i(?’) = :I:\/&_Jum,g)i('f‘) . (22)

N N

'Here we use the terms "regular”, ”irregular” at r = 0 in the following sense. We call a function to
be regular if it behaves as r¢ at » = 0 with ¢ > 0, and irregular if ¢ < 0. We call a spinor to be regular
when all its components are regular, and irregular when at least one of its components is irregular.




In the case w =0, B >0,

wi)= (G0 o ) 150 B0 = (G oy )ii=0 e

That can be easily seen from the relations (92) - (95) for the Laguerre functions I, ,,(p) .
In the case w # 0, B > 0,

Ui (r) = (i%;(j)l( ) ) 21, w=2y(m+1+p),
Umn1,2(T) = (i?é;ﬂl i ):35”1, w=2y(m+1),
Uit (r) = (iﬁiﬂ ( ),l=0,w=27(m+1),
u{r{:l:() (:l:ﬁ‘;ém(} 1 ) lﬂo,wﬁg"}f(m-i-g) (24)

In the case w =0, B <0,

ug(r) = ( o (r) ) 1>1; wll(r) = (0%'{1(7") ) 1=0. (25)
In the case w # 0, B < 0,

U1, +(7) = (irngri(a)ﬂ?”) ),15—1, w=2y(m-1+1—pu),

Unm1,,+(7) = ( iﬂﬁ&f;f_(f()r) ) 21, w=2y(m+1),

u:{r{+l,ﬂ:(T) = ( ﬁ;;;o(")l(r) ) (=0, w=2y{m+1),

I Gm,0,1(T)
U r) = e =0, w=2v(m+1—u). 26
£a) = () ) ym 1 (6)
For w # 0, we will construct solutions of the Dirac equation using the spinors corre-
sponding to the positive eigenvalues of the operator II. These solutions have the form:

Yma(r) = N [0° (& = V&) + M|ty 4 (r), 1 #0,
PRl (r) = N [0® (e — Vo) + M| uli(r), 1=0, (27)

where N is the normalization constant. Substituting (27) into Eq. (10), we obtain
two types of states corresponding to particles ;1 and antiparticles _t with ¢ = 4& =
+v M? + w respectively. The particle and antiparticle specira are symmetric, that is
|| = |-¢| for the given quantum numbers m, [.

The case w = 0 is special. Consider first B > 0. Then w = 0 at m = 0, ] < —1 (we
note the sign of | for the states w = 0 is opposite to the sign of B), and at m = 0,1 =10
for u{ spinor. Taking all that into account, one can see from the equation (10) that there



exist only antiparticle nontrivial solutions with ¢ = _e = —M . They coincide with the
corresponding spinors © up to a normalization constant

_thoa(r) = Nug,(r), | < ~1; _pi(r) = Nu{(r), I=0. (28)
Thus, in this case only the antiparticle has the rest energy level. The particle lowest
energy level for 1 < 0 is L& = /M? + 2~.
When the AB potential is present, if B < QOthenw=0atm=0,{> 1, and at m =0,
[ = 0 for the spinor u{’. One can see from the equation (10) that there exist only particle
nontrivial solutions with ¢ = ¢ = M. They coincide with the corresponding spinors u
up to a normalization constant,

0a(r) = Nugy(r), 1 2 1; 1457 (r) = Nug'(r), 1 = 0. (29)

Thus, in the case B < 0 only the particle has the rest energy level, and the antiparticle
states spectrum begins from _& = —/M? + 2v.

‘Thus, we observe the spectrum asymmetry. There is a relation between the three-
dimensional chiral anomaly and fermion zero modes in a uniform magnetic field [31] (for
review see [32, 33]). One can see the effect also takes place in the AB potential presence
(see discussion in Sect. IV). The spectrum asymmetry is known in 2+1 QED for the
uniform magnetic field when the AB potential is absent. Here the spectrum changes
mirror-like with the change of the magnetic field sign.

One can see that for | # 0 the spectrum is similar to the spectrum of the uniform
external field. The presence of the AB potential is especially essential for the states with
I = 0, when the particle penetrates the solenoid. The spectrum peculiarities for the states
with [ = 0 will be discussed in Sect. III.

All the radial spinors v, ;(r) are orthogonal for different m. The same is true both
for the spinors ¢}, and 4!, In the general case, the spinors of the different types are not
orthogonal. By the help of Eq. (98) from the Appendix, one can prove this fact and at
the same time calculate the normalization factor, which has the same form for all types

of the spinors,
f . (30)

\/2 (e — vy + 2]

On the subspace { # 0, the radial spinors ¢m,l( ) are square integrable on the half-line
with the measure rdr. By the help of the completeness relation for the Laguerre functions
{99), one can verify that the spinors ¥, (r} form a complete set in all the subspaces with
[ # 0. In the case { = 0, 4 = 0 the spinors t,,;(r) are square integrable and form a
complete set as well. In what follows, considering the subspace I = 0, we will always
assume p # 0.

Besides, there are special solutions of (10) that exist only on the subspace [ = 0. They
are expressed via the functions 1, ,(p). We present these solutions as follows:

Yol(r) = [0® (e = T0) + M] ua(r),
U (1) = Crtlw1(r) + co1tty 1(r), Upe(r) = duo(r)vy (31)

where ¢, are some coefficients. Using the relations (104) for the functions 1, 4(p), we
obtain the useful expressions

W

B >0, Muy(r) =iy/27u, 1(r), Dy _1(r) = —iﬁuw,lm, (32)



w

B <0, Mu,_1{r}= i@uw?l(r), My, 1 (r) = miﬁuw,wl(r). (33)

By the help of Eq. (106) from the Appendix, one can see that the spinors 3, (r) and
W (1), w 5 w' are not orthogonal in the general case.

Thus, on the subspace [ # 0 the complete set of orthonormal eigenfunctions of the
radial Hamiltonian % has been obtained. Therefore, the Hamiltonian A is self-adjoint on
this subspace. The situation with the subspace [ = 0, which we call the critical subspace,
is more delicate. We have found that for [ = 0 the solutions are not orthogonal and
irregular at r = 0. Thus, one has to study the Hamiltonian on the critical subspace in
order to construct self-adjoint extensions for it.

One can see that the radial Hamiltonian is symmetric if

o o0
L b eydr = [Tt () ar (34
for arbitrary spinors x (r), 1 (r). It follows as the end-point condition
: 1 L —
limrx' (r) o™ (r) =0 (35)

holds true. A symmetric operator is self-adjoint whenever its domain coincides with the
domain of the corresponding adjoint operator. It is well known that in the pure AB field,
the regularity of the spinor wave functions at » = 0 is too strong a requirement. The
same situation takes place in the background under consideration. The domain of the
adjoint Hamiltonian contains functions which are singular at » = 0 and therefore the
adjoint operator has a larger domain. Hence one has to impose a boundary condition
such that the requirement (35) entails the same boundary condition in the dual space,
i.e. a self-adjoint extension of the Hamiltonian is required. This will be done in the next
Section.

2.2 Solutions in 341 dimensions

To exploit the symmetry of the problem under z translations, we use the following repre-
~ sentations for y-matrices (see, e.g. [15]):

0 __ 0'3 0 1 _ iUz 0 2 ‘““'iO'l 0 3 _ 0 i
v = 0 _0_3 ) Y= O —iO’Q T G iO’l y V= —IO .

In 3 4 1 dimensions a complete set of commuting operators can be chosen as follows

(7" = =iy
H, P*= —id;, J® = —id, + X*/2, $* = ¥*y* (M + 7*P*) /M. (36)
oY = =0, (37)
P30 = 57, (38)
Iy = 2y, (39)
53 = sM/MV, (40)
where M = /M2 + (ps)?, p° is z-component of the momentum and j3 is z-component

of the total angular momentum. Remark that the energy eigenvalues can be positive,
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e = ,¢ > 0, or negative, € = _e < 0. The eigenvalues 7 are half-integer, for us it is
convenient to use the representation: j° = (l —lg— %), where [ = 0,£1,42,... . As the
spin operator, we choose the operator S° which is the z-component of the polarization
pseudovector [34]

HY ++°H), §'= L (A= +T'H)

0 __
5= oM

~577 (
the corresponding eigenvalues are s = =1.

Usually, the helicity operator S, = ZP/|P| is used as the spin operator. In this case it
is necessary to find a common domain for two operators: H and S,. That is not a trivial
problem even in the special case p* = 0 [21, 22]. Moreover, not for all the extension

parameter values of the Hamiltonian there exists a self-adjoint extension of the operator
5. We suggest to select the operator S° to specify the spin degree of freedom. Then, in
3+ 1 dimensions, one can separate the spin and coordinate variables and get the following
representation for the spinors ¥

U(z) = exp {—iaxo + z'p33:3} We(z, ),

1+ (p* + sM) /M] e o(z1) ) |

—1+ (p° + sM) /M| . o(21) 4D

\IJS(CCJ_) = N([

Here 9, (z ) are two-component spinors, z, = (0,z!,2%0), and N is a normalization
factor.
As a result, the equation (37) is reduced to the following form

(O'P_L + 3@03) Ve, o(21) = €¥es(x1), PL=(0,P, P,0). (42)

At fixed s and p? , the equation is similar to the equation in 2 + 1 dimensions (5). Thus,
the spinor 4, ,(z, ) in 3 + 1 dimensions can be obtained from the spinor %{"(z,) in 2+ 1
dimensions (4) with the substitution M by M. Note that

Yee1(z1) = 0 pgfz) . (43)

Using the results in 2 + 1 dimensions we conclude that for I # 0 solutions form com-
plete orthonormal set. And in the critical subspace the Hamiltonian needs a self-adjoint
extension.

3 Self-adjoint extension

First, we study the (2 + 1)-dimensional case. As well-known [7, 8, 15], the radial Hamilto-
nian in the pure AB field requires a self-adjoint extension for the critical subspace { = 0.
To this end one may use the standard theory of von Neumann deficiency indices [35].
As a result [8] one gets a one-parameter family of acceptable boundary conditions. In
the case of our interest, the external background is more complicated, it includes besides
the ADB field an uniform magnetic field. The wave functions and the spectrum in such
a background differ in a nontrivial manner from ones in the pure AB field. Thus, the
problem of self-adjoint extension of the Dirac Hamiltonian in such a background, which
is considered below, is not trivial.




We recall that for the extension problem the subspace [ = 0 is only important. To
establish the boundary condition we shall analyze the von Neumann deficiency indices. To
this aim we have to solve the following auxiliary problem: Let k be the radial Hamiltonian
with the domain D = {¥(r)}, where ¥ are absolutely continuous, square integrable on
the half-line with measure rdr and regular at the origin. Then one has to construct the
eigenspaces DT of h' with the corresponding eigenvalues +iM,

Rl (r) = 2iMyE(r), il =TT + %M | (44)
where , .
Hfzmi{ar—f——c—;—{,u—i(l—a?’)—i-A(r)]}al. (45)
Using the functions (21), we find for B > 0:
_ d1(r)
?pi(r) =N ( :I:eii”/‘*%qﬁwl(r) ) 3 (46)
and for B <0 : b0
r
’gbi(?") = N( :i:leﬂﬂ-ﬂ%qﬁ_l(?“) ) ; (47)
where

0o (r) = Pralp), 22 = —2M*/y—E(p—1/2(1-0)), o ==%1.
Thus, the deficiency indices are (1,1). Then there exist the following isometry from a
subspace DT into D~: _
Pt (r) = ey (r),
where €2 is a real number. By von Neumann’s theorem, the extensions of a symmetric
operator? are in one-to-one correspondence with a set of isometries. The extensions are
-self-adjoint if the deficiency indices have the same values. Thus, there exists a one-

parameter family A% of self-adjoint extensions of the original operator A . The domain
D of A reads:

D= {x(r) =¥ (") +C (%" (") +% (1) : T() €D},

where x is a two component spinor, x = (x', x?), and C is an arbitrary complex constant.
Using the behavior (105) of the function ¥ 4(p) at small p, we find:

_ 2T (Dt M2 [y) (g2 \ 1
. xH(r) (M?‘)l # (1an 1) T ()T (1+M2 /) ( vy ) , B >0,
11_r>% 2(r) (Mr)* - inE”F{i wPA+M2/y) M2\ (48)
r r T - M2
X (tan %71)1“(”)1“(1—“+M?/7) ( v ) , B<0

For our purposes it is convenient to pass from the parametrization by £ to the parametriza-
tion by the angle © such that at any B :

CxH(r) (M) . T 6
M = ) (e Lt (Z + E) ’ (49)

2We remark, that von Neumann’s theorem stated for a closed symmetric operator, but as known [35]
every symmetric operator has a closure, and the operator and its closure have the same closed extensions.
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Then one can see that:

i (Mr)* sin (r/4 -+ ©/2)
x{r) ~ ( (Mr) ¥ cos (x4 + O/2) ) asr =0 (50)

The boundary condition (50) is the same as in the case of pure AB field, see {8]. One can
verify that the limit v — 0 of the right hand sides of (48) coincides with the corresponding
expression obtained in [8] in the case of pure AB field.

Thus, solving the above auxiliary problem, we have obtained needed boundary con-
ditions for our real problem (10). Solutions for the latter problem with an arbitrary
boundary condition at + = 0 we found in Sec. II. These solutions are two-spinors
¥, (1) = (¥H(r), ¥2(r)) defined by (31}). We subject them to the boundary condition
(50). Then, with the help of (32), (33) and (105), we find

(

g SO0 L (24.9)
1 — T ©
r0 W2 (r) (Mr)P 2 tan 1 + 5
{ _ilet MY T(A—p) M p—t0/27) (&2)1*# B>0
_ rY *

M 2UT(1-w/27)

iM__ T(l-p)l(1-w/2y) [ M2\7#
(e—M) T T (1—p—w/27) ( ) , B <0

(51)

¥

Let us study spectra of the self-adjoint extensions h®. To this end we have to solve
the transcendental equations (51) for w considering two branches of €, one for particles
and another one for antiparticles, & = £/ M? + w. Introducing the notations

w = 2y, 2= @=(-M) /2y, Q)= +1, 5=+,

200 e 1=
1 =m0 =-wn(+3) () (52
we may rewrite Eq. (51) for B > 0 as follows:
P(#" sm) _
Q(cﬂ‘?)m—ﬂ- (53)

Having w for B > 0, one can obtain w for B < 0 making the transformation

s = —¢, Alp) = 1/fp), p—=1—p.

Therefore, below we consider the case B > ( only.

Possible solutions z = z (1) of the equation (53) are functions of the parameter n {of
u, v/M?, ©) and are labelled by m = 0,1,... . One can find the following asymptotic
representations for these solutions at || — 0:

_sin(mp)T(m+1 - p)

T (1) =+ Ay, Ay, = )0 () n, m=1,23,...,

' nM?

_ - — . 4
930(77) 'YF(}M) (5)

All z, (0), m = 1,2,... are positive and integer. The asymptotic representation of | zq (1)
at |n| — 0 is discussed below. The function .z, (n) vanishes at the point 5 = 2I'() and,
in the neighborhood of the latter point, has the form

o () = L) — /2
+0 (1) = SOy () — p(0)

11

(55)



Here 9(2) is the logarithmic derivative of the gamma, function I'(z), and —¥(1) ~ 0.577
is the Euler-Mascheroni constant [36]. At |p| — oo we found the following asymptotic
representations:

Im () =m+p+Azy, m=0,1,2,..., n— 00,

S Tm () =m -1+ pu+Az,, m=1,2,3,..., 7= —0o0,

A = SR (T T(m+ 1)@ (m+ 1) 5
al(m+ 1)y

These approximations hold true only for |Az,,| < i, |20 (n)| < p-

According to [37] (see there Theorem 8.19, Corollary 1} if 7} and T3 are two self-
adjoint extensions of the same symmetric operator with the equal finite defect indices
(d,d) then any interval (a,b) C R that does not contain 7}-spectrum points, may con-
tain only isolated points of Th-spectrum with total multiplicity < d. Let us select

the extension h at © = 7/2 with the eigenvalues & = M\/l + 29 1o (00) /M? and

+€ = :J:M\/I—E—Qq/ia:m (£oo) /M2, m > 1. Then the above theorem implies that if
(a,b) is an open interval where a,b are two subsequent eigenvalues of A at © = 7/2,
then any self-adjoint extension A% at © # 7/2 has at most one eigenvalue in (a,b). Ac-
cording to [38] (see there Chapter VIII Sect. 105 Theorem 3) for any ¢ € (a,b), there
exist a self-adjoint extension A% with the eigenvalue € . As it follows from (53,56), on
theranges (m—1+p < 22 () <m+p,m>1), (—oo < y20(n) < ) the functions
+2 (n) = (162 — M?) /2v are one-valued and continuous. This observation is in complete
agreement with the above general Theorems. The functions .z, ()} were found numeri-
cally in the weak field, v/M? < 1, for some first m’s . The plots of these functions (for
p = 0.8) see on Figs. 1 and 2.

I
e
s
S

Figure 1: Particle lowest energy levels in dependence on the parameter 7, =

ity (i) tam (54 )

One can see that &, = Tyt (7) — 2m {n) ~> 1 with increasing m . Ii follows from

12



Figure 2: Antiparticle lowest energy levels in dependence on the parameter n_ =

iy () tan (14 3)

the equation (53) that

§m — 1= 7 {cot (wzim) — ot [ (T — )]}~ (1‘—“ @), m>1,  (57)

m

where 6 = £ 1n Q(x)l < 1/%,, . The curve x5 () may give an idea how the functions

T=Zm
Zm (n) behave at big m .
Below we discuss some limiting cases.
Consider weak fields B, for which v/M? < 1, and nonrelativistic electron energies,
T (1) 7/M? < 1. Here the functions .z (n) change significantly in the neighborhood of
n = 0 only. The asymptotic behavior at || — oo reads:

gmm(‘a"??)"‘)m—l‘l‘.uf: §7?<O=
Im(sn) = m+pu, sn>0.

In the ultrarelativistic case, ., () y/M? > 1, the behavior of x,, () qualitatively
depends on p. One can distinguish three cases: p < 1/2, 4> 1/2, p=1/2. If p < 1/2
then the interval near 7 = 0 on which the functions change significantly diminishes with
m increasing. If g > 1/2 then this interval grows with m increasing. For y = 1/2 and

—% < (% + %) < %, we get the asymptotic representation:

1 ©
gxm(n):m+§(z+%),m>>l. (58)

One can see that negative 1z (n) exist only for > 0 . The minimal admissible
negative z, (1) is defined by the condition £ = 0. In strong fields B, for which v/M? ~ 1,
the quantity zo () is close to zero.
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Let ©y correspond to such an extension that admits € = 0. The value of O is defined
by the expression

7 O\ T(1—pwD(u+ M2/2y) (M2
ton (§+5°) =~ 2T ()T (1 + M2/27) (T) ' (59)

In weak fields, v/M?* < 1, the angle Oy is defined by the expression

T, 0 T(-u
tan (Z + 7) = —22”_11_,(#) s (60)

and does not depend on the magnetic field. It follows from (59) that in the superstrong
fields B, for which v/M?* > 1, the angle Qg does not depend on the magnetic field as
well. '
One can see that in weak magnetic fields, v/M? < 1, and for nonrelativistic energy
values, £ov/M? < 1, there exist negative zo (1) with big absolute values,

0 (n) = — (2/m)/0 (61)
_ao (n) = — (m2/7)" . (62)

Let us consider the particular case ©® = —x/2. It follows from (51) that for B > 0,
there exists _¢ = —M. The energies |¢| > M are defined by poles of I'(1 — x) or of
['(1—p—x) for B> 0or B <0 respectively. The spectrum ¢ coincides with one defined
by Egs. (26), (27) for ¢!, Moreover, using the relation (102}, we can see that the spinors
. (r) coincide with 7',

Py (r) = (r) for @ = —x /2. (63)

In the case ©® = 7 /2 we have the following picture: It follows from (51} that for B < 0
there exists £ = M. The energies |¢| > M are defined by poles of I'(z — z) or of I'(1 — )
for B > 0 or B < 0 respectively. The spectrum ¢ coincides with one found by Eqs. (26),
(27) for !, From (102) it follows that the spinor #,(r} coincides with

pu(r) =¥ (r) for @ = /2. (64)

Thus, that in the problem under consideration for 7/2 < © < 37/2 there exist the
only one particle state and the only one antiparticle state with energies || < M. The
same situation was observed in the pure AB field case [8]. However, in contrast to the
latter case, in the presence of the uniform magnetic field, there exists an angle ©y which
admits zero value for ¢.

The form of solutions in 3 -+ 1 dimensions (41) allows us to divide all Hilbert space
of solutions into two orthogonal subspaces with respect to the value of the spin quantum
number:

D(H)={Un}e{¥.}, (65)

and apply von Neumann’s theory of deficiency indices to each of the subspaces. Thus, we
have to solve the problem (66)

Df = Ker (—H' +£iM) ,
HIWE (g,) = MU (z,), H' = H, s ==+1, (66)
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and define deficiency indices in each subspace. Solutions of this problem is given in (67)

[1+ (* + 532) /M] g0 () ¥* (1) )
—1+ (p° + M) /M] go (9) * (r) |

where ¢g (¢) is defined in (9), and = (r) are functions from (46) or (47). It follows
from (67) that deficiency indices in both subspaces {¥,,} and {¥_;} are equal to (1,1).
Therefore, in each subspace {}, s = £1, solutions must be subjected to one-parameter
boundary conditions. Using the parametrization similar to (51) we obtain the boundary
conditions in the form (68)

po U () (M), () (M)
=0 2 () (MY () (M)

" Thus, in 3 + 1 dimensions there exist the two-parameter family of self-adjoint extensions
of the Hamiltonian. Spectra in 3 + 1 dimensions can be obtained from the results in 2+1
dimensions with the substitution 3 by M, and the relation (43). In particular, Fig.1
- presents energy lowest levels for particles with spin s = 1, and Fig. 2 presents energy
lowest levels for particles with spin s = —1.

T (zL) =N( [ (67)

. T O _
~ztan(z+7),s—:lzl. (68)

4 Solenoid regularization

One can introduce the AB field as a limiting case of a finite radius solenoid field (the
- regularized AB field). In this way, one can fix the extension parameter ©. First, the
manner of doing that in the pure AB field was presented by Hagen [9]. Below, we consider
the problem in the presence of the uniform magnetic field. To this end we have to study
solutions of the Dirac equation (1) in the combination of the regularized AB field and the
uniform magnetic field.
Let the solenoid have a radius R. We assume that inside the solenoid there is an
axial-symmetrical magnetic field B (r) that creates the flux ® = (I + u} By, By = 27/e.
Qutside the solenoid (r > R) the field B™(r) vanishes. Thus,

R
ef B™(ryrdr =1y + p .
0

The function B™(r) is arbitrary but such that integrals in the functions 9 (z), b(z) in
(73} are not divergent. The potentials of the fleld B™(r), we select in the form

Sm(p,eA2:~19(:1:)COSQO, (69)

Ain — 9
edy" =0 (z) 5 R

where m
9 (z) = ]O f (@) a'ds!, f(z) = R%eB™zR), z=1/R.

The potentials of the uniform magnetic field are

sin @ COoS

, Ay =—A(r) , A(r)= Br*/2. (70)

Ay =10, Ay = A(r)
Qutside the solencid the potentials have the form (3).
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Let us analyze solutions of the Dirac equation in the above defined field. To this end
we have to solve the equation inside and outside the solenoid and continuously join the
corresponding solutions. The former Dirac spinors we are going to call the inside spinors,
whereas the latter ones the outside spinors.

First, we study the problem in 2 4+ 1 dimensions. By the same manner as in the Sect.

I , we can find that the inside radial spinors ¢4 (r) (r < R) obey the equation:

hm"vbg:‘l (T) =& f.;ﬂ,'z (T) ) hm = Hm + 03M 3

where

Hin=_i 3+fj{[ml _l(1—03)+19(a:)+€,0 z*
R| " = ° 2 i

} ot, pr =7R*/2. (T1)
For w # 0 we present the spinors in the form

200 = (00 ) = [~ 1) ] asthopa + ot ]

W {r)
where ¢, are arbitrary constants. The functions ¢{% (z) satisfy the equation
19 0 1 912 9 in B
l;a—mx&; ~ (a + 9 (x)+ Epre ) +wR® — o (f (z) + 25,03)] e () =0. (72)

We demand the functions ¢} (x) to be square integrable at r = 0. We are interested in
the limiting case & — 0. For our purposes it is enough to use the approximation pg < 1,
wR? < 1. Dropping terms proportional to R? in (71) and (72}, we find that solutions of
Eq. (72) have the form

n(z) = { cx_n|eab(m)c}cmn§;;(:f)n|’_f ?-7“2%5(2;) on<0 (73)
[ diF (& / f (&) 2'de’, f(z) = R%eB™(zR)
nul—lg—(l—i-a)/Q, x—r/R.
For w =0 (|| = M) the solutions read:
() = ¢oz1( Jui, I=l>1,
i) = g a(@)v o, 1-1 <0,
o z) = ca:lo‘gexp{ / diz~ ( (i)-!-‘fpgsﬁz)}, a=l—l—(1+0)/2, (74)

where ¢ is an arbitrary constant.
The outside solutions (r > R) obey the equation

Pyt (r) = ey (r) . (75)

and the condition 1% (c0) — 0. Here h is defined by Egs. (10), (11). The general form

of the outside solutions reads:

wout( ): [0_3( H) ] (cléout( )vl—l—zc 1¢0m ( )'U—l) ,
o (1) =tra(p) ya=1+p—1/2(1+0), 22 =w/y— (I +p—1/2(1 - 0)[76)
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The solutions /2 (r) and ¥ (r) must be joined continuously at r = R,

¥ (R) = ¢ (R) . (77)

The joining condition (77) leads to the following conditions for the functions ¢, (r) and
out (r) at r = R:

(SR

4
_ dr
It is convenient to use in (76) the representation (102} for ¢4, , (p) . Then, the functions
out (r) read:

w,o

$R-=¢(R+e), 2d(R-0) = +d(R+q). (79)

gtf; (T) = Qg ln, m, (P) + boIm, g (,0) )

T +n) T (1 +m,)
sin (ny — mg) 7

. __Jra+ngra+mg

Go Sin 7w,

o : Sin M7 ,
sin (ng —my)
l—a 1+a
nc,:)\———z——, My = A — 5 (79)
where n,, m, are real numbers.
For the case [ — Iy < 0, the coefficients a,, b, can be found using (78),
_y_1 — ~b(1)
— ,(e-1)/2 1 1 L=l =1+ btu| W 1 ce
“1= PR {2[*“ I+p—1 IO sy
_ (+u-1y2 L —[l=lo—U+l+p] um ce™®
= “li- - — 80
bl pR {2|i l+,Ux_1 l,l() l+},l.—1 ] ( )
a_1 = ﬁ‘%ﬂ)/z—'_lgl :
Y2 o P e e Rl 4 e
b_1 = pg 5 [1 I+ 1 ce . (81)

where g, is some coefficient not depending on R. Here in (81) we had to compute the
next higher power of pg in the coefficient of I, ,, (p). At R — 0 we obtain from the above
expressions

2R 0

oo, I >1
bs

0,1<0
Besides, at R — 0 one finds
m,=0,1,2.,01>1; n,=0,1,2,..., I <0
from (79). Thus, for { — I < 0 the functions read:
T4 (1) = 67 (1) = Clinstarn (0) , @ = L+ 1= (1+0) /2,

oul (’P) — ?,tfl (T) = C'[m—f—lal,m (P) s ! 3& 0
il 8:%1 (r) = Cliy—ym (p),1=0"

_fm+i+p l>1 _
w/Z'Y—{ m+1 1<0 ,m=20,1,2,..., (82}
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where C is a constant.
For the case [ — Iy > (0, the coefficients a,, b, read:

—anny2 {1 I—lg—1]|+1 .
o = ol 1)/2{_. [1+ (L=t — 1]+ 0+ﬂ)] ?Ti(l)} |

2 L1
b = ply Vg, (83)
—(+m)/21 11—l +lo+p| ce~b(1)
_1 = — 1— 1 ’
a1 PR 2{{ l+ﬂf l’—l()+l+[1,
_ w2l I —lo| +lo+p| i e o
b_y = py 2{{14— T e (1) o (84)

where g, is some coefficient not depending on R. In (83) we had to calculate the next
higher power of pr in the coefficient of I, , (p). At R — 0 we obtain from the above
expressions:

0,1<-1,

00, [>0,

(—;ER—+U—+{

Besides, at R — 0 one finds:
o =0,1,2, ., 1< —1:my=0,1,2,..., 1 >0
from (79). Thus, for [ — [y > 0 the functions read:

oLy (r) = &2 (1) = Clugjom (0), a =1+ p—(140) /2,
ouit (7") . { Ztlﬂt (T) - Ofm+|a|,m (P), { '7'é 0
o 4 (1) = Clypip-1m (p), 1=0 "

m+1, [ < -1 m=0.1.9

w/2,}/:{m+l+”,l201 E 2 R B (85)

where C' is a constant.

Substituting the functions (82), (85) into (73), one can see that the solutions ¥/2* (r)
coincide with the solutions 9, ;(r) (27) for { # 0. For [ = 0 the form of solutions ¥ (r)
depends on sgnl;. Namely,

Yot (r) = No® (e~ va) + M| (e1ln wirm (0} o1+ ici Ty (P v1), 1 20,
v (r) = N(o® (e = Vo) + M| (lmru-m () v1 +ic1 Tnppm (p) v-1) , lo < 0(86)

We recall that sgnly defines the sign of the solenoid flux @®. Substituting (86) into (73),
we find that the solutions 92" (r) coincide with either o, (r) or I (r) (27) for I = 0:

out _ ?ﬁ;; (T’), Sgn( (I)) = +1
v ) = { W7 (1)) sgn (q®) — 1

In Sect. III we have found the relation between the extension parameter values and
solution types in the critical subspace { = 0 {63), (64}. Now we are in position to refine
this relation. Namely, if one introduces the AB field as a field of a finite radius solenoid
for a zero-radius limit, then the extension parameter © is fixed to be © = sgn (¢®) m/2.

18



Besides, this way of the AB field introduction explicitly implies no additional interaction
in the solenoid core.

To solve the problem in 3 + 1 dimensions we use the results in 2 + 1 dimensions
presented above. In the limit R — 0 solutions in the critical subspace have the form (87)

[1+ (0 + 53) /M] go (0) w2 () )

“1 (o 4 s /0] an () 8 (1) &)

‘I’gm(iﬁ_q_)mN( [

where N is a normalization constant, and the functions gy (¢), ¥ (r) are defined in
(9) and (86) respectively. We specify the values of the extension parameters in 3 -1

dimensions as follows:
Oy =6_1 = sgn{gd) /2. (88)

5 Summary

We have studied in detail solutions of the Dirac equation in the magnetic-solenoid field
in 241 and 341 dimensions. In the general case, solutions in 2+ 1 and 3+ 1 dimensions
are not related in a simple manner. However, it has been demonstrated that solutions in
3 + 1 dimensions with special spin quantum numbers can be constructed directly on the
base of solutions in 2 + 1 dimensions. To this end, one has to choose the z~component of
the polarization pseudovector S° as the spin operator in 3 + 1 dimensions. This is a new
result not only for the magnetic-solenoid field background, but for the pure AB field as
well. The choice S? as the spin operator was convenient from different points of view. For
example, solutions with arbitrary momentum p?® are eigenvectors of the operator 53, This
allows us to separate explicitly spin and coordinate variables in 3 + 1 dimensions. Thus,
in 3 + 1 dimensions one has to study self-adjoint extensions of the radial Hamiltonian
only. Moreover, boundary conditions in such a representation do not violate translation
invariance along the natural direction which is the magnetic-solenoid field direction. The
self-adjoint extensions of the Dirac Hamiltonian in the magnetic-solenoid field have been
constructed using von Neumann’s theory of deficiency indices. A one-parameter family
of allowed boundary conditions in 2 + 1 dimensions and a two-parameter family in 3 + 1
dimensions have been constructed. By that the complete orthonormal sets of solutions
have been found. The energy spectra dependent on the extension parameter © have been
defined for the different self-adjoint extensions. Besides, for the first time solutions of the
Dirac equation in the regularized magnetic-solenoid field have been described in detail.
We considered an arbitrary magnetic field distribution inside a finite-radius solenoid. It
was shown that similarly to the pure AB field, the extension parameters © = sgn(q®)7/2
in 2+ 1 dimensions and O = ©_; = sgn(g®)7/2 in 3+ 1 dimensions correspond to the
limiting case 2 — 0 of the regularized magnetic-solenoid field.

6 Acknowledgments

D.M.G. thanks CNPq and FAPESP for permanent support. A.A.S. thanks FAPESP for
support. S.P.G. thanks Brazilian foundation CAPES for support. S.P.G. and A.A.S.
thank the Department of Physics of Universidade Federal de Sergipe (Brazil) for hospi-
tality.

19




A Useful relations

1.The Laguerre function I, ,,(2) is defined by the relation

I'(1+n) exp(-z/2) £n-m)/2g

TA+m)TQ+n—m) (-myn—~m+1iz).  (89)

Lnm(z) =

Here @ (a, b; z) is the confluent hypergeometric function in a standard definition (see [30],
9.210). Let m be a non-negative integer number; then the Laguerre function is related to
- Laguerre polynomials L, (z) ([30], 8.970, 8.972.1) by the equation

m!
— —-z/2, /2T
o 1 T — dm —& Mt

Using well-known properties of the confluent hypergeometric function ( [30], 9.212; 9.213;
9.216), one can easily get the following relations for the Laguerre functions

2yz(n+ D ham(z) = (0 —m+ z)ym(z) — 221, () , 92

(92)
2y/z(m 4+ DInma(z) = (n —m — ) Inm(z) + 221, . (2) (93)
2v/andnym(z) = (0 — m + &) I (2) + 2210, (2) (94)
2vVEmlym1(z) = (n —m — 2}y m(x) — 221, . (2). (95)

Using properties of the confluent hypergeometric function, one can get a representation

_[Ta+n) @2 .. |
Lym(z) = (1 tm) F(1+n_m)x ®(1+n,1+n—m;—z), (96)

and a relation ([30], 9.214)
Lim(2) = (—1)" ™ Lun(x), n —m integer . (97)

The functions Iyimm(x) obey the orthonormality relation

fﬂ Ttnn (2) Lo (2) 42 = Gmn | (98)

which follows from the corresponding properties of the Laguerre polynomials ( [30],
7.414.3). The set of the Laguerre functions

Intmm(z), m=0,1,2..., a > —1

is complete in the space of square integrable functions on the half-line (z > 0),

i}fwrm,m(m)fwrm,m(y) =d(z—y). (99)
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2. The function ¢ o(x) is even with respect to index «,

Q/))\,04 (m) = 1/‘))\,—05 (-77) . (100)

It can be expressed via the confluent hypergeometric functions

i e e
I'(a)z~% l—a _
+F(3‘%—/\)¢)( 5 —/\,l—a,x)}, (101)

or, using (89), via the Laguerre functions

JTA+n)(1+m) _
Yra (T) = Py P (sin na Iy () — sinmal,p (7)),
a:n—m,2A=1+n+m,nz)\—1“7a,m:)\~—1;a. (102)

There are the following relations of the functions ¥ (),

— 2
Pra@ = VB pat () F s 10 (2),

P (D) = Vit pant () + TS 10 (2),

20,0 (z) = (22— 1—2)dra (@) +3 (22~ 1 -0} (2A~140)drra (@),

2203 () = (a—2)¥na (@) + (23 =1 — ) VI 1041 (7)
= (3: —2)— 1) Q/)A,a - 2¢A+1,a . (103)

As a consequence of these properties we get

_2)\—1-%-(1/

Asthra (7) = 9 @b,\f%,afl (), Az@b)\-é,a—l () = ¥ (2),
T+ a d ; _rta-1 d
Ay = 2\/E+‘/Ed3:’ Al = NG \/Ed:z:' (104)

Using well-known asymptotics of the Whittaker function ({30], 9.227), we have

Clla)
mﬁ? 2,0’.’?50, x~0. (105)

raj

—%
2

Vae (T) ~ 227572, 1 = 00; g (2) ~

The function . (z) is correctly defined and infinitely differentiable for 0 < z < oo and
for any comaplex A, &. In this respect one can mention that the Laguerre function are not
“defined for negative integer n,m. In particular cases, when one of the numbers n,m is
non-negative and integer, the function ¥, , (z) coincides {up to a constant factor) with
the Laguerre function. '
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According to (105), the functions ¢, 4 (z) are square integrable on the interval 0 <
z < oo whenever |a| < 1. It is not true for |a| > 1. The corresponding integrals at o # 0
T

can be calculated as following ([30], 7.611),
| r 1+a—2A v 1-—a—2X
(A= X)sinar 2 2

_ [1“ (1_0‘2_ 2’\’)1“(1“‘2_ ZA)T}, la| < 1, (106)

oo R (1+cx2—2A) — (1-&2—2)\)

%ra T sinar T (1+of?—2)\) T (1—~a2-2)\) '

f’%\,a (z) Pa (z) dz =
0

0\

lo] < 1, (107)

Here 9(z) is the logarithmic derivative of the I'—function ( [30], 8.360). In the general

case, the functions 9, o () and ¢y 4(z), X' % A, are not orthogonal, as it follows from
(106). '
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