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Abstra,ct :

o We developed a Monte Carlo (MC) code to snnuiate coherent X-ray. radlatlon (CXR) produced C

P 'by relat1v1st1c charged pa.rt1cles in dla,mond hke crystals The code calculates both the number off_,,_.

h coherent photons under CXR peeks as a function of the crystal target or1entat1on Wlth respect

‘to: the beam d1rection a.nd the shape of a CXR line at ﬁxed crystal orlentatlon The calculations - . ..

T are carrled out in the Laue geometry and for’ observa.tlon a.ngles g > fy 1 where 7 is the projectile - -

- Lorentz factor The MC srmulatron takes 1nto account multlple sca.tterlng process, attenuatmn of .

the photon ﬂux in the target and detector Wlndow finite detector acceptance and energy resolution
of a detector The developed code can be used to study the potentraht1ee of CXR apphcatlons

- and to the plamng of further expériments with CXR.



I. PROGRAM SUMMARY

Title of program: CXR

Catalogue number;

Program obtamable from: _
L C‘omputer for 'whzch f;he program was deszgned and others on whzch it 15 operable: Mmrow S
comp.uter_wl_’c_h._lni;el 80386{—80387, Intel 80486-+80487, and E_"entmmlnite_l: 233 ..

-Installations: Physics Institute, University of Sao de Paulo "Sa,o.Péulo- ‘Brazil. -

Opemtmg systems under whzch the program. has been tested MS DOS 6.00, Wmdows;'._- |

o 95/98 and Windows NT 3.5. . 5
' Progmmmmg language used Turbo Pascal 7.0
Memory Teqmred to ea:ecute wzth typzca,l data: 8 Mbytes of RAM memory and 1 Mb of -

- :hard dlSC memory

) 'No of bzts ina word: 16 _ y
No of bytes i dzstmbuted program, mcludmg test data etc 405031
_ Dzstmbutzon format ASCII ﬁles CXR EXE '

'Keywords coherent X—radlatlon coherent bremsstrahlung, pa.rametrlc X—radla,tlon :

'-"}-_:_Monte Carlo method

1. NATURE OF PHYSICAL PROBLEM

The interactiéjn of a relativistic charged particle with a 6rystalline medium leads to the
appearanée of a rbw of physical effects due to the ordered. character of such medium and
do not show up themselves in amorphous mediums. One of these effects is coherent X-ray
radiation (CXR). This radiation arises because in.crystals, and in the X-ray energy range,
radiation probabilities have sharp maxima at those momenta transferred to the medium
~which are very close to the reciprocal lattice vectors. The first experimental observation of
CXR was performed at Tomsk (Russia) synchrotron ”Siriys” in 1985, {1]. Due to difficulties
in measuring a charge passing through a target during exposition to radiation spectra, the
authors of this work came to the conclusion that the radiation observed by them is Cherenkov
radiation in the X-ray energy region. Later, much finer experimental methods and equipment

have been developed, allowing the elucidation of the question about the nature of CXR. It



were carried out absolute measurements of radiation intensity in silicon, germanium and
diamond crystals, by using linear accelerators with electron beam energies of tens of MeV.
In particular, the integral number of photons under the CXR peak, as a function of the
crystal orientation, were measured in silicon crystal at 15, 15.75 and 25 MeV ([2],[3]), in

germanium crystal at 21.6 and 25.4 MeV ([3],[4]), and in diamond crystal at beam energies

" below 10 MeV' [5]. The first information concerning observation:of the interference effect.

- 'between polarization and static bremsstrahlung mechanisms of the radiation_;wa,s provided - .-

- by the authors of Ref. {6] and the analysis of these results was made in Refs. [7] and [8].

: Shape and orientation dependence of CXR linewidths were for the first-time experimentally ..

“and humerically investigated by'Adejishvili et el [9] using a Monte-Carlo- si'mulation'for a o

| germamum crystal at electron beam energy of 25 4 MeV. Note that the above mentioned

_.-Works st1rnulated a large number of other experlments where the CXR propertles where S

1nvest1gated and the results of these sermnel works have been- conﬁrmed The years of i

| '-..anBStlgatIOIlS on CXR are summarized in Refs. [_10] and [11],‘ whereenalytmal expressions - .

N - describing. CXR intensity and shepe of the radlation-=lirle'Were..obtajhed- in the small-angle -

o multiple scattering approximation. It was quantitatively shown advantages as high energy... -

5"3:, resolutlon easy tunable energy, h:lgh degree of hnea;r polanzatmn as well as dlsadvantages o
B -'_."fj.:hke low mtensﬂ:y of CXR ' - | i P -
o Itis noweday a needed aim to ﬁnd fields for apphcatlon of CXR which effectwely use'
| _' the advanteges of CXR and do not need the high 1ntens1ty
To estimate the potent1ahty of CXR for particular applications, and to plen further
| _. expenments where CXR would be used, one need to calculate the radiation characteristics
at arbltrary sets of workmg parameters. The more natural way for calculatlons is a Monte
Carlo procedure and the present work is devoted to the descr1pt1or1 of such a code. The
algorithms are based on the theoretical approaches described in Refs [12], {14], {13]. The
code was already used for studies of CXR characteristics in Refs [15], [16], [8], [11].

1II. METHOD OF SOLUTION

The Monte Carlo simulation, which takes multiple scattering process, attenuation of
the photon flux in the target and detector window, finite detector acceptance and energy

resolution of a detector into account.



Restrictions on the complexity of the problem

- The CXR code makes calculations for crystals with diamond-like structure, i.e., for di-
amond, silicon and germanium crystals, and it is assumed that the radiation is generated
in the Laue geometry, i.e., coherent photons and relativistic particles exit on the same side
of the crystal, and channeling radiation does not ocecur. Moreover, we assume that: (1) the

~Imomentum of ﬁhe-projectile is much larger than momenta of radiated photons and, therefore,
) -1.:'he_ influence of the radiation on the projectile motion can be neglected; (2) the thickness of -
o a target is such that energy loses of the projectile can be neglected; (3) pola,rization'states
of bremsstrahlung photons are not observed; 4) detector angular size is much less than 41
| a,nd (5) the tragectory of the prOJectlle 1ns1de the crystal is approx1mated by straight lines.

Typ@cal runmng tzme Depends on the ch01ce for calculatlons For a pa,r_tlculex_ set of

” '_" : | paxameters the rumung tlme 1s appro:s(lma,tely 120 seconds

 IV. LONG WRITE-UP

: A CXR Cros_s _.se'ct];on' .

2 Quantum theory of brem'sst‘rehlung,' ar'ising‘ dﬁe to'irlteraot'ion of ‘a. relativistic charged TR

o --partlcle Wlth an atom as a whole, was developed by Amu51a ét. -al. ([13]), [17]) and, a crysta,l -
case, was considered by Nitta ([18)). ' '

The nature of coherent X-radiation cen be explained as a result of constructive inter-
ference of the bremsstrahlung emitted by a relativistic charged particle, passing through
a. crystal, and bremsstrahlung 'resulting from bound atomic electrons in _fhe crystal. The
three-order Feynman diagrams describing the radiation amplitudes are presented in Fig. 1.

In the X-ray energy range the crystal band structure can be neglected, and the radiation
cross section per an atom in a crystal can be expfessed through a cross section for an
isolated atom do, and the diffraction factor, as it was performed in the theory of high-
energy coherent bremsstrahlung ({19],[20]). Therefore, we can consider firstly the atomic
cross section which can be written in the ordinary form

3, 3

where P';, E; and Py, Ey are the initial and final momenta and energies of the projectile,

dbo,y = 2 IM“ (ﬁu; ?; € y; ?)’26 (B; — Ef - w)
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FIG. 1: The third-order perturbative theory diagrams. The solid lines, the twin-solid lines and - . .

. the dashed lines represent the relativistic charged particle, crystal electrons and bremsstrahlung .. ::.

: .»:p_hoton',: respectively.-a, &, ¢ and d diagrams show bremsstrahlung processes (BS); e and fdiagrams. - ;.

' ..repreSent-polarizatiorr- bremsstrahlung processes (PR}..:.. "
-respectwely, k ‘é’ 7, w are the momentum vector of pola;r}zatlon and energy of a ra.dla.ted Sl

‘:photon q Ti—Tf— ¥ is the recoil momentum

By assuming that: (1 ) the atom does not cha,nge its state durmg the 1nteract10n (2) i

- fj'-'the mequahty W << E;, Ef is satlsﬁed for all relevant photon energies and (3) the radlatlon i

energles are la.rge compared to the electromc binding ones, the full amplitude of the radlatlon S

. process for a nonrelativistic atom has the form ([13], [17])

73| _, | eed g e F(q) Tw-—Tg

' 2
IM? = |MPS 4 MPR = 22 |33 { - (Z-F (7))

w 1 movyg® w—

In Eq.(2) ¥ is the particle velocity; « is the projectile Lorentz factor; ey and my are
the charge and mass of the relativistic particle; e and m are the charge and mass of the
electron ; F (77) is the atomic form factor; Z is the atomic number. M*% describes the
relativistic bremsstrahlung of the particle (diagrams a, &, ¢ and d in Fig.1) and MEZ results
from polarisation bremsstrahlung of the atomic electrons (diagrams e and fin Fig.1).

It was shown in Ref. [19} that the perturbative theory can be applied not only to an atom
but to a crystal too. The proposed method was successfully applied in calculating the cross

section of high-energy bremsstrahlung and electron pair production in thin crystals ([19],

5}



[20]). Every atom of a crystal gives the radiation amplitude M,; exp (——z?]_%)—f), where
—R)f’ are the relative coordinates of crystal atoms and, therefore, in the crystal medium the

total cross section of the process, described by the diagrams in Fig. 1, differs from Eq.(1)

by the diffraction factor Z exp (—z?ﬁ—») :

For an actual crystal the dlﬁra,ctlon factor ﬁormahsed to one crystal cell and averaged
R over thermal v1brat1ons has the form ) o SR ‘ g
o < Z'BXP(_i?ﬁ“") > =D(7) 5 (?) EXP-“(““Q%Q') +-N [1—— exp ('—QQ-UQJ] ;o (3)
: 7 S . - TOUTRAE S _

~~where N is the number of atoms per unit cell; S* (_’) is the crystal. structure factor;

S exp (wqu) is-the Debye-Waller factor; u? is. a ‘mean-square. temperature displacement of

—

. the crystal atoms from their equilibrium positions; D(q) is the diffraction factor of the

.7 ideal crystal with Ny periods in the direction. of crystal thickness and with large numbers of -, :

.- periods, -N3; N3 — 00, in the crosswise directions: .. ...

.. where E" (4 =1, 2 ,3) are the lattice basis vectors; V' = ajagaz is the volume of the unit
~_crystal cell; g’ are a set of crystal reciprocal lattice vectors; ™ = @1/a; is the unit vector in
~the direction of the crystal thickness. In Eq.(4) the symbol 1 7 means than the §-function
argument is a vector component, which is perpendicular to 7

As it follows from Eq.(3), the total (BS plus PR) bremsstrahlung in a crystal subdivides
into two terms. The first one is a coherent term; it is proportional to exp (—¢?u?) and it
gives a contribution to the interference effects. The second term is an incoherent one; it is
due to the thermal vibrations of the crystal atoms.

To obtain the CXR cross section we have to multiply Eq.(1) on the first part.
of the diffraction factor, Eq.(3), and then integrate the coherent cross section over
d®ps.  Introducing new variables P, — 7, = P, & — By = Ei, and us
ing equality P,7 = Ei, we can replace §(7 — F), 7 6(Fi—~ Ey —w)d’p; by

—

5 (“jo“‘l -k - ?)J_ﬁ) 6 (B ~w) (T7w)” dgpl L. After integrating, and by using the
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limit transition N; — oo, we obtain the following expression for the CXR spectral-angulax

cross section

o d’o m-——ST’U—Z[,M |282(§’)exp(—gzu2)5 —— ==, ()
o\ dwdQY ) V(l—‘ﬁ’ﬁ’k)qf A 1-o7)’

_, Whexe'ﬁ’k_:_r; ?/k, and the summation in Eq.(5) is over all i‘e‘éi_procal -Ia,ttice_‘yector_s-‘g’_ and: . o

_photon polarization directions. In Eq.(5) the matrix element has the form. .

6 - : o
e s : Epimn

g (- r"@)"—————fr T tED)

M MBS PR o —_—
- f M L7 0m2 | T emoyg®

The energy of the radiated photon is defined by equatmg the S-function argumernt in - : -

-Eq.(5). to zero. Thus, the condition g = 7 leads to the appearance of monochromatic . ... -.

radiation. This phenomenon has been considered to BS in-details in Ref [19].:' There is the-; .

.. same mechamsm of constructive mterference for PR. For CXR the equahty G makes. RETEE

. ;_.small the denominator (q + k) — k? in Eq. (6) but not. equa,l to zero. This COIldlthl’lf'-:‘.‘: R

B s similar to the’ -known- Bragg: condition. Because.of this: CXR has the separate reflexes - <
* - -with- angular dimensions of the order of y~! in the directions ¥.— w™' 7. The reflexes for. ..

. different ¢’ are partly covered at projectile energies of the order of several MeV. At this ..

point CXR differs from coherent bremsstrahlung (CBS), so as CBS for all reciprocal lattice
vectors is directed forward. This circumstance permits to select CXR from CBS by choosing
~ the observation angle § > 7! _

Egs.(5,6) are valid for those projectile energies at which the inequality v < w/w, holds,
wp 15 the plasma frequency of the crystal medium: If this relation breaks, then we have to
replace w in Eq.(6) by 5(1]/ %, where g is a middle dielectric permittivity of the crystal. It .
leads to limitation of the CXR yield increase, as -y is unlimitly increased due to the density

effect ([21]).

B. Method

The main task of the code is to calculate a number of coherent photons under CXR peaks,

and a shape of a CXR line, as a function of the crystal target orientation with respect to the

7



particle beam direction. The CXR code calculates the number of coherent photons under

the peaks by the following formula:

t’ N g
N. .0 dG’ 1,9 (7 .

" where t/ _i's"‘fhé"‘thi('iknes's' of the target along the_bea,rn'.axlsﬁ;, €-is' the mean number of .

scattérihg events in the target; IV, is the number ‘of the: rélativistic ﬁa,rticles passing through

" the target; dd (goz, f; ) i the cross section of the radiation, generated by the projectile moving ..

' along the ,ith5str-a.1ght path of its track; ¢; is an.angle--between a set of.crystallographlc planes, -

... on which -t.he__ra;diation_ is.generated, and the ith segment of the L:t;jack;uﬁi_ is the observation- .

angle for a photon'emitted at this motion; angles @, # mean -the same as ¢;, 8;; but with .

.., respect to the beam axis’ (Fig. 2).

The shape of ' CXR line at a glven crystal orientation is- obtamed by: calculating the
“distribution of N, (¢,6) over w.
_C. Program organization

- Thé computer code CXR has been written in'Turbo Pascal, version 7.0.. The list of the "« -

-input parameters used and their allowed ranges are presented below.. .- . -



Parameter name

PLANE

'_.'Z

| .. '.:‘DNP '

_ Cban_uel, eV _ |

Range allowed Note

(111)...(533)

0 6,14,32

'1.2500

120

“Detector FWHM, &V 1..5000

" Detector

Scattering - -

o

o

- Number of FI-points 50..500

S 0, md:._:._

E, MeV
" Prin, T0d.
Pmax, 7.
“Lyem.

- Xo, rad.

€p

Hm‘ient: deg

PFiz Tad.

2
3.5..500

A Pmax /2

2y1.8

100..1000

104,102
1/-1/0
1073.3 x 1072

0.1/5/0.05y~}

0..20

v 1.6

Miller’s indexes of those crystal planes on

which the radiation is generated.

Nuclear Charge of the crystal atoms.

- Number of particles pa.ssmg through the
target durmg the MC calculation.

Energy scale of a chanuel in that spectrum -~

" which presents shape of CXR line. :

_ FWHM of the detector to be used in
measurements.

Detector resolution will be (1) or will

~not be (0) faken into account..

Multiple scattering will be (1) or will

| not b.e (0) taken into account.

Number of steps by  to be used in calculating

a number of coherent photons under a CXR pea.k

o Observatmn angle.”

Energy of the projectile.

Initial value of @.

Final value of ¢.

Length of the photon channel.

Initial divergence of the particle beam.
Charge of the projecﬁle. If 0 is set it means that
the static radiation component is ”turned off”.
Thickness of the target.
Radius of the detector aperture. If r is more than
0.05771, then, it is assumed that r =0.05y71.
Angle at which the work planes were cut
off with respect to the face surface of the target.

Fixed orientation of the target in calculating

- a shape of the CXR line.



1. Unit SCAT

This unit calculates the components of a unit vector directed along a projectile’s mo-
mentum in the laboratory coordlnate system. In th1s system axis z ig directed along the
partlcle beam axis; and the mz—pla,ne passes through the beam axis- and the photon channel

 axis (Flg 2).

Y

CRETT orystalplane| T
| 1>
" 'beam direction L. _ B 7
_. I
H B T
X f'“n-‘ ) B_ .
X .

photon channe! axis

FIG. 2: The laboratory coordinate system and definitions used in the paper. E is the wave vector
of a bremsstrahlung photon; the particle beam is directed along the z-axis and & is the observation
angle. The radiation is generated on a set of crystal planes, which are normal to the zz plane

(scattering pians). Vector g lies in this plane and makes angle 7/2 — ¢ with the z-axis.

‘The particle track in the laboratory system is described by two anhgles: 6, and .. 6,
is the angle between the motion direction and the z-axis, and the angle ¢, is between the
projection of the particle momentum on the zy-plane and the z-axis. Another coordinate
system, the local system, where the particle moves along the z-axis, can be obtained from
the laboratory system by rotation of an angle 6. around the y-axis, and of an angle ¢,

around the z-axis. The rotation magtrix has the form:

10



cosf.cos, —cosf,sinp, sind,
Ay = Sin @, COS (e 0 |- (8)
—sinf, cos . sinf.sing, cosd,
When the partlcle penetrates the ta.rget an 1n1t1a1 value of 9 is generated in accordance

":wrth a Gaussran dlstrlbutlon usmg the algomthm of Ref [22]

- .'_ee;z-xm/*zlngl, B OIS S (9)

U and ©e - 27r§2 Throughout this paper we demgnatebyé arandom number umformly

“distributed in the range [0,1]. The components of the unit vector along the projectile. mo- -

“mentum are:

‘The initial coordinates of the local system origin are: - - looe 20 et
Lm=0g=aye o ()

.. According to Ref. [23] the mean number of scatterings occuring in.a target: of thickness . :

s

3 T .(12)

where p is the density of the scatterer, in g/cm?, A is the atomic weight and ¢ is in em. The

4. 2 4/3
O — lg O] otZ

-mean free path of the projectile in the target is

At = /. (13)

After passing the distance At the particle will be scattered and, in the local coordinate
system, the angle f, is defined from the single-scattering probability:

_ &1
where xp is the Born screening angle ({23]):
1.13
IR PRV (15)

137

11



The angle ¢, is defined as 27&;. The coordinates of the local system origin are calculated
by

z; =z + AL, | - (16)

and then we put #9 = x;. The angles 6. and ¢, are calculated and then a rotation matrix .-

Al;, which describes the connection between the old (before scattering) and the new (after . i

scatterlng) local coordinate systems, is formed. The connection between the local coordmate ST

~'system after scattering and the laboratory coordinate system is described by the matrix ...

© Brj = AAe ' S O Vo I

.- . -and then we equate the matrixes A and B. The. current components of the umt vector-along . -

.- the: partlcle momentum are defined by Eq.( 10)

2. Unit PHOT .. . .

'n.ate‘system. It is assumed that the photon collimator is circular. . An enterlng.phot.on. point: -

has coordinates:

x =1 cos (2m&) cosf + Lsint;y = réisin (2nés) ;2 = ¥r§1 cos (2m&s) sinf + Lcosd. (18)

It is supposed that in the local coordinate system the coordinates of a point, where a
photon is radiated (PR), is (0,0, At/2) and, therefore, its coordinates in the laboratory
system are

Tl = m? + A,;AL/2, (19)
where 7 are defined by Eq.(16). Then, an unit vector directed along a photon wave vector

has the components:

ke =K (z—z.);k, =K (y—fﬂf,,);?ém =K' (z—1), (20)

1/2

where K = (2= 2"+ (y = 23" + (2 = 1))

12

Thrs umt calculates the components of the photon wave vector in the laboratory coordr— S



3. Unit ATTEN

This unit calculates the attenuation of the photon flux in the target, on a path length from
PR to a point where it leaves the target (PL), and in a detector window. The coordinates
@f PL are (¢s,1y,t.), where

: t— ) + k k2 e - T o
bty = —=t 2t ety = F kT (b~ )t =1 =t tan o, (21
. kzk;1+tan(,o iy Y YT (:.!: w) L m.l:‘..(:p | ( )
- where ¢’ =t/ cos p. The path length which the photon passes in the target.is

J=EYa%

. We assuine.tha;t the orientation of the crystalline _t.a;_rg'e'tr is such that the coherent scat-." .

Itéx‘i’ng -procéss of the fa;diated ‘photons does not occur: : There'fore, the attenuation fact__or:;

. has the form exp (—pr (W) Labs — piw (w) Lw ), - where Ly is the detector. window thickness; -

MT (w) and g (w) are the attenuation coefficients at.a given w for the target and the detec-:. o

‘ .iﬁor,_window_ material, respectively. In the code we use the following representation for these .. -
functions: o '

p(w)=p Z a;w'. (23)
The values of a; (Tables 1-4) for beryllium, diamond, silicon and germanium were calculated
by using the data from Ref. [24].

4. Unit GLOBAL

This unit contains definitions of physical constants (lattice periods, densities, atomic
weighté, ete.) and a set of functions for calculation of the required physical values. The list

of the functions is given below.

13



Name of the function Result, dimension

CellVolume returns the value of unit cell volume, em®

Reciprocal Vector returns the module of a reciprocal lattice vector, cm™!

StructureFactor returns the crystal structure factor, dimensionless
FormFactor returns the atomic form factor for given Z and PLANE.

RotationMatriz calculates the rotation matrix, Eq(8).

StartRotationMatriz  calculates the initial rotation matrix.

StmtValues P | calculates the values required for SCAT

. MatemalDeﬁmtwn - definition of physical constants. | |
_ 'Absolute(}’oeﬁicz_ent_ - returns the coeflicient in. the cross section formula ;

CrossSection, | returns the value of the radiation cross section:

Itis a.ssumed that the radiation can be generated on the planes with the followmg Miller’s
indexes: (111) (220) (222) (311), (331) (420), (422) (511) (333), (440}, (531) (442),
(633). In calcula.tmg the form factor for (111). and. (220) planes of silicon and diamond we-
- use experlmental known values, Ref. {25]. In all other cases we approximate the form factor

: " functlon by the followmg expression {[26]):

4
Fg)=c+> asexp (—bz-q?‘) , S (24)
i=1
where ¢ = g/4m and the coefficients a;, b; are presented in Table 5.
5 Unit CXRUT

This unit contains a set of procedures which provides the user interface. It gives a
possibility to change parameters required for calculations, to visualize results of calculations,

to save these results to the data file with a name defined by a user.

6. Unit CHANCE

It contains the function RGenerator, which is the random number generator. For more

details see Ref. [27].

14



7. Unit NUMBER

This unit calculates the number of photons under a CXR. peak as a function of ¢ by
calling the SCAT, PHOT and ATTEN units. At each fixed ¢ the calculations are performed
until the inequality 22 < ' — 20 tan ¢ is fulfilled, i.e. until the projectile is inside the target.

8. Unit LINE

_ This unit calculates the shape of a CXR line at a given @y, by calculating a distribution

- of N, (p,0), Eq.(7), over w. The distribution is presented by a spectrum ‘S (4), which has Np
channels, Vy = 500. The energy scale is defined by users. To take a finite value of detector
resolution into account, the CXR code convolutes S (¢) with a function of detector response,

which is assumed- as a Gaussian one. The resulting spectrum, 8’ (), has the form:

| _S’(i).-\/_. mz_jls@ egp( L ;EO)Z),.:- TR (2.5.).

: Where o= 0. GFWHM and a Value for the detector FWHM is deﬁned by the users.
9. " Unit CXRHLP

This unit provides a short help for users. The definitions of the used parameters and

their allowed ranges are presented.

10. Unit CXRCTR

This unit provides a control for the ranges of those parameters which are put by users.

11. Units PRINTI1, PRINT2

These units write results of the calculations to the output data files in ASCII format.
Unit PRINT1 writes a number of photons under a CXR peak as a function of the angle ¢.
Unit PRINT?Z writes a number of photons under a CXR peak as a function of w.

15



12. Unit CXR

This is the main program in the code. It provides fulfillment of the tasks in accordance

with a user choice through the main program menu.

D. Input data files

- The data required for the CXR code are saved in two files: INTGPAR.CPR. and RE-
ALPAR.CPR. INTGPAR.CPR contains the following integer parameters: PLANE, Z, N,,
Channel, Detector FWHM, Detector, Scattering, Number of Fl-points.” REALPAR.CPR
contains the real parameters: 6, E‘, ©min; Pmax, Ly X0, €0y Ly 7y Bopient, ©rie.. After each
- running the used parameters are written into the same files. If, by some reasons, one or
_ the both files are absent, the CXR code creates themn with values of the parameters defined
by default. These values are: PLANE = 111, Z = 14, N, = 20, Channel =1, Detector -
FWHM = 350, Detector =1, Scaﬁtering =0, ‘Numbet of Fl-points = 100, _6?_ = 0.3, E = 25, |
(Pminzﬂ.l, Pmax = 018, L = 450, xo = 3 x 1074 eg=1,t =3x 1073 r = 0.15, Ho,n;-em = -
‘_‘O,‘ PCFig = ¢ /2. Note that the input data files are not in the text format and, _tl_leréfore, can

not be edit by users.

E. Output files

Output data are saved into files in the text format. File names are defined by users.
To easily‘ work with standard graphics software (for example, with Origin), output data
files have extension DAT. Data files have a heading, which contains information about used

parameters and results of calculations organized as a table.

F. Example of run type

INTGPAR.CPR

PLANE = 111, Z = 14, N, = 500, Channel = 1, Detector FWHM = 350,
Detector = 1, Scattering = 1, Numbet of FI-points = 50.

REALPAR.CPR
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6 =03, E =25, puin = 0.1, Yumax = 0.18, L = 450, xo = 0.001, ep = 0, t = 0.003, r =
015: gorient = 0; Criz = 9/2

Number. DAT
Crystal:

Crystal plane :

Crystal thickness :
Energy of the beam :
Scattering angle :
.Photoﬁ channel length :
Detector radius :
Initial beam divergence
"Particle-Charge :
.Number of particles :

ingle FI

Function

Silicon
111

3.00E-03
2.50E+01
3.00E-01
4, b0E+02
1.50E-01

: 1.00E-03

cm.
MeV
rad.
cm.
cm.

rad.

0.00E+00 .

500

1,0016000000E—01 1.7489533883E~05
1.0176000000E—01 1.8711545800E-05

Line. DAT

Crystal :

Crystal plane :

Crystal thickness :
Energy of the beam :
Scattering angle :
Photon channel length :

Detector radius :

Initial beam divergence :

Particle Charge :
Number of particles :

Fixed FI :

Silicon
(111)
3.00E-03
2.50E+01
3.00E-01
4.50E+02
1.50E-01
1.00E-03
0.00E+00
500
1.50E-01

cm.
MeV
rad.
cm.
Ccm.

rad.

rad.
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Energy Functionl FunctionZ2
1.2919389052E+01 2.6402584237E-09 2.6934993195E-08
1.2920389052E+01 0.0000000000E+00 2.7200659155E-08

Here Functionl and Function2 denote the values which do not take (Functionl) and

take (Function?2) energy resolution of the detector into account.

G. Some graphic results

Fig. 3 a,b,c represents the results of a calculation in comparison with our experimental
data ([3],(11]). The photon detector used in the measurements was a 5-mm Si(Li) solid-
- state detector, enclosed by a 25-um Be window and placed directly into a vacuum photon

channel, ortented at 8 = 0.3059 rad with respect to the beam axis, L = 450 ¢cm and r =,
0.15 cm. In Fig. 3(a) the number of coherent photons as a function of the rotation angle ¢,
_calculated for a g.ermanjum (PLANE = 220) and silicon (PLANE = 111) crystals, is shown.
_. For germanium crystal: ¢ = 54 pm, E = 25.4 MeV,; for the silicon case: ¢ = 30 pum, E = 25
MeV. -I__il_"”both cases NN was equal to 500. Note that for the chosen Ny, the electron beam
é_‘hergies and target thicknesses ﬁnder conside:fétion, the number of radiation events at éach
o was about 3 x 104 and 4 x 10 for the silicon and germanium cases, respectively.

Fig. 3(b) shows the number of coherent photons as a function of @ for a silicon crystal
with the same calculation parameters shown above, except that £ = 15 MeV.

In Fig. 3(c) we compare the measured and calculated shape of a line of the radiation
generated in the germanium crystal at & = 25.4 MeV, ¢, = 0.17 rad and N, = 1000. The
dashed line represents the MC results, and the solid line shows the spectral density resulting
from the convolution of the MC data with the energy resolution function of the detector. It

was assumed that the energy resolution of the detector is 2.8% at 22.5 MeV.

18



20 T T T T T £l T 0-5 T T vlri T T T
H a ] 1 b
£ Gs, (220) } 7 sk (111)
2 1 Y 4 e 1
a )
H 10 / \ % 0,3 -
E=4 ] - a
g Si, (111) z
~ g
1 [=]
2 =
v a2 N
0,5 J 1
e
o . .04 _ B
o0 T T T v T - T T T T T T T T T T T T T T ]
010 0,12 0,14 0,18 0.18 0,20 0,10 0,12 0,14 016 018 020

- P{rad} : p(rad)

107 photon/(eleciron eV sr}

0 F ~ 3 T = L —— a T T
20,5 21,0 215 220 225 230 235
wikeV)

FIG. 3: (a) Calculated and observed angular dependence of number of CXR. photons in germanium
(E = 25.4 MeV) and silicon (£ = 25 MeV) crystals; (b) The same as Fig.3a but for the silicon
. crystal at E = 15 MeV; (c) The observed and calculated spectral density of CXR for the germanium
crystal (E == 25.4 MeV). The dashed line represents the MC result, and the solid line shows the
- spectral density resulting from the convolution of the MC data with the energy resolution function

of the detector.
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Tables
Table 1. Coefficients in Eq.(23) for berilium. ,
| |248 keV S w< 5 keV|5 keV < w < 15.5 keV|15.5 keV < w < 31 keV
oo 172.28 28.14 1.2
ap|-71.11 -6.84 1-0.067
|as|7.6 0.56 10.001
jasi- -0.015 I

Table 2. Coeflicients in Eq.(23) for diamond.

‘ w<< D keVid keV < w < 15 keV{15 keV < w < 33.4 keV
{ag|347.92 | 73.64 3.8

ap|-126.86  }~17.63 -0.35

18p112.23 1.446 0.012

agl- -0.04 -0.00013

Table 3. Coeflicients in Eq.(23) for silicon.
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w<4keVid keV <w < 6.2 keV[6.2 keV < w < 15.5 keV|15.5 keV < w < 31 keV
a0[4064.85 [3391.54 £26.08 49.96
a1|-1198.25 |-1059.07 -137.08 -3.44
an[-9.54 85.83 10.37 10.06
1a3]20.54 - -0.96 -

|ag|1144.88

| a;|-135.71

a9;5.64

1a3]-0.078
[ Diamond|Silicon |Germanium
]a1]2.31 | 6.2915 {16.0816
{ag] 1.02 | 3.0353 |6.3747
;:agr 15886 |1.9892 |3.7068
a4: 0.865 7 1.541 |3.683
_‘-bl" 20.8439 12,4386 {2.8509
: b2}10.2075 |[32.3337/0.2516
|bsfo.5687 06785 |11.4468
-fb4' 31.6512 |81.6937]54.7625
le |0.2156  |1.1407 [2.1313

Table 4. Coefficients in Eq.(23) for germaniurn.
124 keV < w < 31 keV
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Table 5. Coefficients for the presentation of the form factor function, Eq.(24).




