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Abstract

We modify the superfield formalism of Sp(2) covariant quantization to realize
a superalgebra of generating operators isomorphic to the massless limit of the cor-
responding superalgebra of the osp(1,2) covariant quantization. The modified for-
malism ensures the compatibility of the superalgebra of generating operators with
extended BRST symmetry without imposing restrictions eliminating superfield com-
ponents from the quantum action. The formalism coincides with the Sp(2) covariant
superfield scheme and with the massless limit of the osp(1,2) covariant quantization
in particular cases of gauge-fixing and solutions of the master equations.

1. Introduction

The superfield formulation [1] of the Sp(2) covariant quantization rules {2] was the first
to realize a superspace description of extended BRST symmetry [3, 4] for general gauge
theories. Different modifications of the formalism [1] have been considered in [5, 6, 7].
In [5], the arbitrariness of [1] was analyzed in the context of extending the gauge-fixing
procedure. In [6, 7], two modifications of [1] were proposed to realize an additional
requirement of Sp(2)} invariance of the quantum action, originally implemented within
the osp(1,2) covariant formulation [8] of the Sp(2) covariant scheme [2].

The ambiguity of the superfield formulation [1] analyzed in [5] is related to a freedom in
constructing the generating operators of antibrackets with given algebraic properties. In
[5], it was shown that this freedom is fixed uniquely by the requirement of extended BRST
symmetry realized in terms of superspace translations. In fact, this unique realization of
generating operators is the one implemented by [1].

Two other modifications [6, 7] are related to constructing an extended set of gener-
ating operators to realize a superalgebra containing an additional mass parameter and
isomorphic to the osp(1,2) superalgebra (9], as required by the quantization scheme [8].
The formulations {6, 7] are not free from difficulties. in [6], there remains the problem of
inconsistency [7] between the realization of generating operators and the extended BRST
symmetry in terms of supertranslations. In [7], this problem is solved at the cost of
eliminating some superfield components from the quantum action, which means that the
extended BRST symmetry in [7] is not completely controlled by the master equations.

In [7], it was conjectured that a satisfactory formalism of osp(1,2) covariant superfield
quantization should contain the Sp(2) covariant superfield scheme [1] in the massless
limit, which is suggested by the relation between the original osp(1, 2} and Sp(2) covariant
schemes [2, 8], with allowance for the results of [5].

To advance in the solution of this problem, we demonstrate the existence of a superfield
scheme with the properties of such a massless limit. Namely, we propose a superfield
scheme based on a set of generating operators that form a superalgebra isomorphic to the
massless limit of the superalgebra realized in the osp(1, 2) covariant scheme [8]. The choice
of generating operators is consistent with the form of extended BRST symmetry in terms
of supertranslations, without imposing restrictions eliminating superfield components.
- The formalism contains the original Sp(2) covariant superfield scheme [1] and the massless
limit of the osp(l, 2) covariant scheme [8].

The paper is organized as follows. In Section 2, we introduce the main definitions. In
Section 3, we formulate the quantization rules. In Section 4, we discuss the relation of



the proposed formalism to the quantization schemes [1, 8]. In Section 5, we summarize
the results and make concluding remarks.

We use the notation adopted in [1, 8]. Derivatives with respect to (super)sources and
antifields are taken from the left, and those with respect to (super)fields, from the right.
Left derivatives with respect to (super)fields are labeled by the subscript “1”. Integration
over superfields is understood as integration over their components.

2. Main Definitions

Consider a superspace (z#,8%), where z# are space-time coordinates, and 6% is an Sp(2)
doublet of anticommuting coordinates. Notice that any function f(6) has a component
representation,

1
fO) = fo+6°f+6%f5, 6= 5909“,
and an integral representation,
/ 2660 — 0)f(@), 66 —8)= (0 —6)?,

where raising and lowering the Sp(2} indices is performed by the rule 8% = £, 8, = e,
with £% being a constant antisymmetric tensor, 12 = 1, and integration over 6 is given

by

/ 420 =0, f 4% 6° = 0, ] 420 670" = £,
In particular, for any function f(6) we have

2
[ #0755 =0
which implies the property of integration by parts
2 . 2nf s(f) (9) 1
[ 0 10 g09) = - [ag-1y00) %22, @)

where derivatives with respect to % are taken from the left.
We now introduce a set of superfields ®4(8), e(®4) = &4, with the boundary condition

o4(0)|,_, = ¢*

and a sot of supersources ® 4(8) of the same Grassmann parity, e(®4) = £4. The structure
[2] of the complete configuration space ¢ for a general gauge theory of L-stage reducibility
is given by

QSA _ (Ai, Ba:slcn---as,C;Ozala,o...cw)1 s=0,...,L, (2)

where A® are the initial classical fields, while B®la1es (esieoas gre the pyramids of
auxiliary and (anti)ghost fields, being completely symmetric Sp(2) tensors of rank s and
s + 1, respectively.



For arbitrary functionals F' = F(®,®), G = G(®,®), we define the superbracket
operations (, }* and {, }a

dF 8 4G
o 2 = _1yeatl ¢ y{e(F)+ 1) (e(@)+1)
(F,G) = [ % { 551098, 58,7V - () (F & G)} ,

2 2
| (F,G}a=— f dze{(oa)BA ['6%5 ('g:%%) 6 %ﬁ (5;5;9) 92)] 6559)
52 (5§£9) (o) + 3‘5"5—“@93(0‘”)3‘4) Ba(s&ff(e) + (~1)F PO (F G)}: (3)

* 302

where

Notice the properties of derivatives

o ((e?; - ff;((g,)) — 56 — )55, %—((% — 5(6' — 6)3E.
In (3), the matrices (04) 42 = —(04)% 4, with the indices (2), are given by
(0a)%a = (0a)"4(Pe) 2. (4)
Here, (0,)°,, with a = (0, +, —), stands for a set of matrices which possess the properties
(0a)'a = —(02)ss  (02)" = e(00).” = (00)% ™ = e*(0a)eae™, (0a)™ = (7)™,
(02)a" = (0a)% = 0, %6, + €467 = —(0%)(0a)", (5)

and form the algebra si(2)
Talg = Gap + %Ea‘g.-fo"y, o% = ga'g()’ﬁ, TI‘(O'aO',@) = 29043,

100
g =100 2|, ¢9s=75

c 20

with €3, being an antisymmetric tensor, €p,... = 1.
In (4), the matrices (P:)5¢ are given by

(Pe)is = (Po)Rs — (Po)A8 + 0307, (Po)d = 6(Pe)3E,

where '
6;61? A=1B=1j
(P )Ba — 62:(8+1)Sgigia'b A:aslal“'asa B=)88|b1"'bs;
TN 55+ 2SI A= aglag-ay, B =Bulbo b,
0 otherwise.

Here, SEE:::Z“;‘; is a symmetrizer (X® being independent bosonic variables)
bo--bsa —

s _ 1 o 9 9
%0-asb = (54 9)19Xe  §Xe §XP

XaXba .. 'Xbo,

3



with the properties

1
syt = iy (st S Sy,
1z
1 8
bo-bs L. b bgrrbpr_31bp bs
Somal = S+1Zé r Ghorbe—abri1
‘From the above definitions follow the properties [8]
(Pr)cu(Pe)Ga =10, &P+ e"(Pe)ii = —(0*)(0a)%
e (Pe)je + " (Pe)ie — (0%)*(00):(Pr)ie = ~(0*)*((0a) 0% + F¢(0a))-

Let us introduce a set of first-order operators V%, U? (odd) and V,, Uy (even),

. 884(6) &

ve = [aogy 554(0)"

a _ 2, 004(8) 9

v = [de=p HA)

Ve = [0 (8000)uzorg ~ o (B4 0 5575

U, = f d26 ((I)A(UG)AB(S@?:(@) ;;2 (@A(@)@a) CARE 6<I>il(9))' (6)

. These operators obey a superalgebra with the following non-trivial (anti)commutation
relations:

Ve VBl = €0p"Ver [V, VO] = V(o) {V%,V'} =0,
[Ua, Ug] = ""eaﬂ’YU“n U, U*] = _Ub(aa)ba; e, Ub} = 0. (7)

Let us introduce a set of second-order operators A* {odd) and A, (even)

at = —f d295@A 8 9, M)j( 6)’
An = (1)t /d29 {(cra)BA [% (5@%!(9)) 0 — % (5@(2(9) 92)}
+% (cs(;Tl(g)Hb(%)”a + 5@(}(9) HG(%)AB) 9“}5@2(9) ' ©

These operators possess the algebraic properties

IADU Aﬂ] =0, {Aaz Ab} =0, [Aa: Aa] =0, (9)

[AOH Vﬁ] + [Von Aﬁ] = EaﬁvA’Y!
{24,V +{ve, A%} = 0,
[Ag, VO + [V, A% = AP(0,),% (10)



From (8) it follows that the action of the operators A® and A, on the product of two
functionals defines the superbracket operations (3), namely,

A(FG) = (ALF)G + F(ALG) + {F,G}a,
AYFG) = (AF)G + F(A'G) (1) + (F, Gy -1y, (11)

Using the relations (9), (10), (11), one can establish the properties of the superbrackets
- (3) at the algebraic level [8].
Finally, we introduce the operators

- i - 1
A“EA“—]—}%V“, AQEAQ—I—EVQ.
From (7), (9), (10) it follows that these operators obey the superalgebra

[Ba, gl = (§/B)ens" Ay,
[Ae, A% = (i/R)A%(04)y",
{A*, A%} = 0,

isomorphic to the massless limit of the superalgebra of generating operators used in the
method of osp(1, 2)-covariant quantization [8].

3. Quantization Rules

- Define the vacuum functional Z as the following path integral:
- ; - 1 -
7= / 4P 4B exp [% (W(@, 8) - SeaUUPF(2) + @@)] , (12)

where W = W(®, ®) is the quantum action that satisfies the master equations

A% exp (%W) =0, (13)
and the subsidiary conditions _
A, exp (%W) =0, (14)
with A% and A, given by (8). Equations (13) and (14) are equivalent to
SWW) VW = iAW, (15)
%{W, Wt Vil = iBALW, (16)

where the superbrackets (, ), { , }o and the operators V¢, V,, A% A, are defined by
(3), (6), (8). The quantum action W is also assumed to be an admissible solution of (15)
and (16), which implies the fulfillment of the restriction

f 420 62 ( 5(3{9) + @A(G)) =0. (17)
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In (12), ®® is a functional of the form
30 = f d20 B 4(8)34(6), (18)
while F(®) is a gauge-fixing Boson restricted by the conditions
U.F(®)=0, (19)

where U, are the operators (6).
An important property of the integrand in (12) is its invariance under the following
transformations:

§84(0) = pU°®4(8), 6B4(8) = paVPu(0) + pa(W, 24(6))", (20)
§B4(0) = uU,B4(0), 8B4(0) = u*Vod4(0) + u*{W, 4(0)}e, (21)

where U® are operators given by (6), while yx, and p* are constant (anti)commuting
parameters, e(u,) = 1, e(u®) = 0. The validity of the symmetry transformations (20),
(21) follows from the master equations (15), (16) and the conditions (19) for the gauge-
fixing Boson, with allowance for integration by parts (1) and the algebraic properties
(7).

‘The transformations (20) realize the extended BRST symmetry, while the transforma-
tions (21) express the symmetry related to the Sp(2) invariance of the quantum action.
'This interpretation is explained in the following section by the relation of the present su-
perfield formalism to the original Sp(2) covariant superfield scheme [1] and the osp(1, 2)
covariant approach [8]. Note that the admissibility condition (17) is not required for the
proof of invariance. As will be shown in the following section, this condition establishes
the relation between the present formalism and the quantization schemes [1, 8].

The transformations of extended BRST symmetry (20) permit establishing the inde-
pendence of the vacuum functional (12) from the choice of the gauge Boson F(®). Indeed,
any infinitesimal change F — F + 6F can be compensated by a change of variables (20)
with the parameters p, = —(i/2R)e,UPSF(®), and therefore Zp s = Zp, which implies
the independence of the S-matrix on the choice of gauge in the proposed formalism.

4. Component Analysis

Let us consider the component representation of the formalism proposed in the previous
section in order to establish its relation to the Sp(2)} covariant superfield scheme [1] and
the osp(1,2) covariant approach [8.

The component form of superfields ®4(f) and supersources ® 4(0) reads

A0) = ¢+ 7", + A0,

Ba(0) = fa— 0, —na.
The components (¢4, 74%, M, @4, ¢%,, ma) are identical with the set of variables required
for the construction of the vacuum functional in the quantization schemes [1, 8].

With allowance for the manifest structure of ®4(d), ®4(f), the component represen-
tation of the integration measure in (12) is given by

d® d® = dé dm d) dpde™ dn, (22)
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and the functional ®® in (18) has the form
O = Far* + Bl — nag? (23)

Denote F(®,®) = F(¢, 7, A, ¢, *,17). Then the superbrackets ( , )% and { , }, in (3)
have the following component structure:

o _ OF 8G  ,6F G . 1)EE)+EEH)
(FJG) - 5¢A5¢*AQ+E 67rAb5¢ (FHG’)( )
_ 4 6F 6G  SF 8@ SF, ., SF g\ &G
ARGl = (0a)s (5¢A 5np T 3A5g5) T\ G %)t 5B 0) 4 ) 5
+(F o G)(—1)=E9), - (24)

while the second-order operators A% and A, in (8) have the form

i 4 ea+1_ab 55 é
A
& o o O
— _1%eA A i ! ¢
Aa ( 1) (O-Of)B (5¢,A 5773 + SAA 5¢B)

A® = (—1)

5 4
+1 { B
+(—1)EA (6 Ab( ) 6 = (O'a) A) 5¢*Aa . (25)
In (6), the first-order operators V'* and V,, have the component representation

& )
Ve = Eab * —— ,
55 o,

- )
— B - * b * B 2
Va ¢5(0a) A5 + (¢Ab(0a) o T @5a(00) A) 5 (0a) AFp (26)
while the first-order operators U* and U, are given by
Q 5 £ a 5
Ut = (DN - (Dt
KB & &

— B a Ba A B A_Tt
UC! - ¢' (O—C‘!)B 5¢A + ( ( Qf)b 7 (O—OC)B ) 677‘40' + A (O—Q)B 5AA : (27)
The component form of the admissibility condition (17)

% = ¢* (28)

implies a simplification of the quantum action:
W = W(¢) A) W? q_s.'l ¢*) + nAqu' (29)

To establish the relation between the proposed superfield scheme and the osp(1,2)
covariant formalism [8], note, first of all, that the operators U, and V, in (26), (27)
coincide with the generators of Sp(2) invariance [8]. In particular, equation (19) implies
the condition of Sp(2) invariance for the gauge Boson F(¢,, A).
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Let us subject the quantum action W to the conditions
SW W
oM jrhe
reducing the dependence of W to the set of variables (gbA,qEA,qu:m,nA) parameterizing
the quantum action in the osp(1,2) covariant formalism. By virtue of (30) and the
component representations (24)-(27), the set of equations (15), (16) becomes identical
with the massless limit of the master equations in the osp(1,2) covariant scheme.
Let us now restrict the gauge-fixing Boson to the class of gauges used in the osp(1,2)

covariant scheme: F = F(¢). Then, with allowance for the component form (27) of the
operators U, the condition of Sp(2) invariance (19) reduces to

(30)

-
(aa)BA%%sB -0, (31)

which, in view of the admissibility condition (28), can be represented as

4 OF 6W
(UG)B 5¢A 5773 - (32)
Equations (31) and (32} reproduce the whole set of additional restrictions used in the
o0sp(1,2) covariant scheme [8] to provide an Sp(2) invariant gauge-fixing. Note that in
[8] the condition (28) arises as a particular case of (31) and (32). Using (28) and the
‘restrictions (30), with allowance for (4), (5), one can transform the subsidiary master
equations (16) into the condition of Sp(2) invariance of the quantum action [8]

SW -
(aa)Bqu—gqﬁB + VoW =0,

which establishes the interpretation of the related symmetry transformations (21).

_ Let us demonstrate the relation of the vacuum functional (12), given in terms of
W = W{(¢p,é,¢* 1) and F = F(p), to the vacuum functional of the osp(1,2) covariant
scherne [8]. Using the component form of the operators U?, given by (27), and integrating
out the variables n4, with allowance for (22), (23), (29), we can represent the vacuum
functional (12) in the form

7 = f déde* dr dB ) exp [% (W2 +Gax* + ¢j4a7rf‘“)] , (33)
where the quantum action W = W + na¢* satisfies (15), (16), (28), and the gauge-fixing
term X is given by
1 §2F
_ A Aa Bb

X = “gaz)\ — §Eabﬂ' Wﬁ y
with 7 subject to (31). On the other hand, the vacuum functional in the massless limit
of the osp(1,2) covariant formalism [8] can be represented as '

Z= qub exp (%Seg) , (34)
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Seﬂ( )= ext(¢’¢¢ 77)|¢ s g’ GXP[( /ﬁ) ext] ( )CXP[( /h) ]

‘Here, S = S(¢, ¢, ¢*,n) is the qua.ntum action subject to the system of master equations
“and subsidiary conditions (15}, (16), (28) satisfied by W = W (g, ¢, ¢*,n), and U(Y) is
an operator of the form

o Y 4 ih § &Y 4§
00 = o (s + T sy )

where ¥ = Y(¢) is a gauge—ﬁxmg Boson restricted by the same condition (31) of Sp(2)
invariance which is imposed on F = F(¢). To establish the identity between the vacuum
functionals (33) and (34), it is sufficient to set S =W and ¥ = F.

Let us now establish the relation of the proposed superfield formalism to the original
Sp(2) covariant superfield scheme [1]. First, note that U and V* in (6) are generators of
supertranslations [1], which is important for the interpretation of the related symmetry
transformations {20). Next, with allowance for { , )* and A® in (3), {8), equations (15)
- are identical to the master equations of the formalism [1]. Finally, using the admissibility
condition (17) and the related form of 7-dependence (29), with allowance for (22), {23),
we can rewrite the vacuum functional (12) as follows:

7= [ 4®d% p(®) exp [ (W(@ &) - %eabUaU"F(é) + é@)] , (35)

where p(®) is an additiona] integration weight, given by
o(®) =5 ([d080)) =5(n).

“The vacuum functional (35) is formally identical with the corresponding functional of the
Sp(2) covariant superfield scheme [1]. Namely, the vacuum functional of [1] coincides with
(35) in case W{®, ®) satisfies the subsidiary conditions (16), (17), and F(®) is subject
to the condition of Sp(2) invariance (19). In view of the invariance of p(®) under the
transformations (20), the integrand in (35) remains invariant under {20}, which realize
the superfield form of extended BRST symmetry {1} in terms of supertranslations.

5. Conclusion

- In this paper, we have proposed a modification of the Sp(2) covariant superfield scheme
[1} on the basis of a superalgebra of generating operators isomorphic to the massless limit
of the corresponding superalgebra of osp(1,2) covariant quantization [8]. The extended
BRST symmetry- realized in terms of superfield translations is completely controlled by
- the master equations. An additional admissibility condition reduces the formalism to the
original Sp(2) covariant superfield scheme and to the massless limit of the osp(1,2) co-
variant scheme in particular cases of gauge-fixing and solutions of the master equations.
-As mentioned in the introduction, the present study is motivated by the problem of con-
structing a superfield scheme based on a superalgebra of generating operators isomorphic
to osp(1,2), and containing the Sp(2) covariant superfield scheme in the massless limit,
by analogy with the relation between the original osp{1, 2) and Sp(2) covariant methods
[2, 8]. In this connection, the present formalism possesses the properties of such a mass-
less limit. The question of existence of a superfield osp(1, 2} covariant scheme containing
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this limit as a particular case is related to the problem of massive extensions [8] of the
‘superalgebra based on the generating operatos realized in the present formalism.
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