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We derive an expression for the quasinormal modes of scalar perturbations in mear extreme
d-dimensional Schwarzschild-de Sitter and Reissner-Nordstrém-de Sitter black holes. We show that,
in the near extreme limit, the dynamics of the scalar field is characterized by a Péshl-Teller effective
potential. The results are qualitatively independent of the spacetime dimension znd field mass,
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1. INTRODUCTION

Recent observational results suggests that the universe
in large scale is described by an Einstein equation with
an {at least effective) cosmological constant. In this con-
textt, the dynamics of fields in spacetimes which are not
asymptotically flat has taken a new importance. Quasi-
pormal modes are an important part of this dynamics.
In general, perturbations in the spacetime exterior of a
black hole are followed by oscillations which decay ex-
ponentially in time. Roughly speaking, these are quasi-
normal modes, complex frequency modes which carry in-
formation about the background geometry, and are in-
dependent of the initial perturbation. The characteriza-
tion of the quasinormal modes originated from compact
objects are of particular relevance in gravitational wave
. astronomy [1]. Their detection is expected to be real-
ized through gravitational wave observations in the near
future.

In asymptotically anti-de Sitter spacetimes, the anti-
de Sitter/Conformal field theory (AdS/CFT) correspon-
dence [2] plays a very important role. In this framework,
a link is established among the gquasinormal frequencies
of a test field in AdS black holes and the decay rates in
the dual CFT field theory. A perturbation in the thermal
states in the strongly coupled CFT corresponds to per-
turbing the black hole. The first study of the scalar quasi-
normal modes in AdS space was performed by Chan and
Mann [3]. More recently, Horowitz and Hubeny (4] con-
gsidered the problem of guasinormal modes on the back-
ground of Schwarzschild-anti de Sitter black holes in four,
five and seven dimensions. Their basic results were con-
firmed in [5] by direct calculation of the wave functions.

For asymptotically de Sitter spacetimes, similar con-
jectures have been formulated. Strominger (6] proposed
an holographic duality relating quantum gravity on d-
dimensional de Sitter space (dSy) to a Conformal Field
Theory residing on the past boundary of dSa. This
dS/CFT correspondence has motivated several works (as

eg [T
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A very different and intriguing application of quasinor-
mal modes have been suggested recenily. In the context
of loop quantum gravity, it has been shown that the area
of the event horizon is quantized, but the expression in-
volves 3 free quantity, the Barbero-Immirzi parameter.
Hod, Dreyer and Mothl (8] proposed using the informa-
tion of the quasinormal frequencies to fix the Barbero-
Immirzi parameter in the expression of the quantum of
ares of the event horizon. Kunstatter used these ideas in
[9] to derive the Bekenstein-Hawking entropy spectrum
for d-dimensional spherically symmetric black holes. And
in [10], Abdalla, Castello-Branco and Lima-Santos pro-
posed an ares quantization preseription for the near ex-
treme Schwarzschild-de Sitter and Kerr black holes.

Calculating analytic expressions for the guasinormal
frequencies is usually difficult, except in patticular sit-
uations. One of these cases is the Pdshl-Teller poten-
tial [11). For this potential, many properties have been
proved and the frequencies have been calculated [12, 13].
In a recent work [14], Cardoso and Lemos studied the
Schwarzschild-de Sitter geometry in four dimensions, and
showed that the dynamics is specified by a P&shl-Teller
effective potential. They calculated exact expressions for
the quasinormal modes, demonstrating why a previous
approximation made by Moss and Norman [15] hold in
the near extreme regime.

In the present work, we generalize the method
used by Cardoso and Lemos in [14]. We analyze
scalar field, massless and massive, in the d-dimensional
Schwarzschild-de Sitter (3dS) and Reissner-Nordstrom-
de Sitter (RNdS) geometry. The approach here is a
bottom-up one. In the next section, the parameter space
of the d-dimensional Schwarzschild-de Sitter is discussed.
The geometry of the block outside the event horizon is
then treated in the near extreme limit. In section 4, we
show that the ideas developed in the previous sections
can be applied to more general spacetimes, including the
d-dimensional Reissner-Nordstrém-de Sitter black holes.
In section 5, the dynamics of the scalar field in spheri-
cal backgrounds is discussed, and analytical formulas for
the quasinormal frequencies are calculated. In the last
seckion, some final remarks are made.



1I. SCHWARZSCHILD-DE SITTER METRIC

The metric deseribing a d-dimensional non-
asymptotically flat spherical black hole was pre-
sented in [16]. Written in spherical coordinates, the
Schwarzschild-de Sitter metric is given by

ds® = —h(r)df® + h(r)*dr? + r2d03_, , (1)
where the function h{r) is

2m  Ar?

The integration constant m is proportional to the
black hole mass, and df?%_, is the line element of the
(d — 2)-dimensional unit sphere:

d2 , = d{6Y) +sin?6 d (61)" +- -
+sin* g .- sin® 992 d (Gd‘2)2 . (3
If the cosmological constant is positive, the spacetime i3

asymptotically de Sitter. In this case, A is usually written
in terms of a “cosmological radius” a as

A= @

a2
The causal structure of the spacetime described by the

_metric presented depends of the positive real roots of

the function h(r). This set in turn depends, for a given
dimension, on the parameters m and A. By rescaling the
metric and the coordinates £ and r, it can be seen that
parameter space of the metric has dimension one. Indeed,
if the mass is non-vanishing, a convenient parameter is
m?/a*9=3), We will classify the possible horizons of the
spacetime in the following proposition.

Proposition 1 Letd >4, a® > 0 and m > 0.

s The spacetime has two horizons if and enly if the
condition
m? (d—3)¢-3
228 < (g— 1)1 (3)

is sotisfied.  This is the wusual d-dimensional
Sechwarzschild-de Sitter black hole.

o The spacetime has one horizon if end only if the
condition

m? d—-3)43
Q23 %d = lgd—-l (6)

is satisfied. This is the extreme Schwerzschild-de
Sitter black hole.

s The spacetime has no horizon if end only if the
condition

m2 (d—3)%3
a2(d—3} > {(d— 1)1 )

is satisfied.

One way to demonstrate the proposition 1 is to write
the function h{r) as

M) = o ®

where P(r) is the polynomial
P{r) =r?1 — %% 4 2ma® . (9)

The characterization of the zeros of h{r) is therefore
equivalent to the characterization of the roots of P(r).
Here, we will just sketch the steps to be done. The maxi-
mum, minimum and inflection points of P(r) can be cal-
culated. To prove that the conditions are sufficient it is
used the asymptotic behavior of P(r), which depends of
d being even or odd. Together with the information of
the extreme points, it is possible to determine the num-
ber of real roots, their signs and multiplicities. With the
condition (6), the two positive roots collapse in a double
root. To prove that the condition is necessary it is used
the fact that extremes are explicitly calculated.

From: proposition 1 we learn that the global structure
of the manifolds described by the Schwarzschild-de Sitter
metric is largely independent of the dimension. With a
small value of m*/a?(@=9 | this metric describes a space-
time with two horizons -— an event horizon ry and a
cosmological horizon r. (0 < r4 < 7). The region of
interest in this paper is the block

Ty = {(t,r, 01, - ,0a-2),ry <7 <7Tc} . (10

In the critical value, the event horizon and the cosmolog-
ical horizon coincide. This is the extreme Schwarzschild-
de Sitter black hole. When m? /o243 is larger than the
critical value, the metric no longer describes a black hole.

III. NEAR EXTREME SCHWARZSCHILD-DE
SITTER BLACK HOLE

Since we are interested in the limit where the event
and cosmological horizons are very close, it is natural o
define the dimensionless parameter &' as

g Te— Tt
L 1

so that the near extreme limit is such that
0<d <1, (12)

In the Schwarzschild-de Sitter black hole case however,
is convenient to use another dimensionless parameter 4,

defined as _
- m? (d—1)8!

It is clear from proposition 1 that the near extreme 3d35
black hale corresponds to the limit

g<f€l. (14)




The limits (12) and (14) are equivalent. Furthermore, it
can be shown that they go to zero at the same rate:

5=2225 100 . (15)

In the Schwarzschild-de Sitter scenario, the function
h{r) has one local maximum rg in the interval [r4,r.].
This point can be expressed in terms of the parameters
m and a as

ro = {(d— 3)ma2]ﬁ . {16)

Near the extreme limit, the function h(r) can be approx-
imated by its Taylor expansion up to the second order in
§' around the local maximum » = #y:

o d?h(r) P—

hiry=nh — e By,
o =neo+ G G| () o

_ (17)
To lowest order 6’ and § are proportional, and the ex-
pregsion (17) can be written as :

Ilim - 10, (9

h(r) =

where the constants 57 and r2” are approximations of
the event and cosmological horizons, given by

1

1—(1-6%)"7
e = rmta (d—l)
- fd—3 4 =
--.a.( _d—-1+_d-—1)+0(5)’ (19)
1—(1—8)™
Tip =rp—a (d_él)

a( %_d_ﬁ-i)w@z) 0

The next step is to calculate the tortoise radial function

y z(r), defined at the block Ty in the usual way:
dr
“0 = e
1

1
= —?'gpln (T‘gp —7') + Z_PC:?.]H (T—'f'ip)

+0 (8 , (21)

where the constants £27 and k3 are

d—1
ap _ A0 __ ap apy __
Rie” =R =5 (Tc ""'“+)'—

Sro@) . @
Observe that these constanis are approximations to the

surface gravities of the event and cosmological horizons,
which tend to zero in the extreme limit.

3

The key point is that, in this limit, the function =(r)
can be analytically inverted:

-2F
e R

i+ e2u:’w

r(z) = ¥ +0{5) . (23)

With the expression (23}, the function h(z) = h{r(z))
can be explicitly calculated:

52 1

h{z) = S
(@ =71 cosh®(k%Fz)

+0 (&%) . (24)

All the constants in {23) and (24} can be obtained from
the parameters m and A.

The approach used here to treat the near extreme
Schwarzschild-de Sitter black hole can be generalized. In
the next section, we will see that #(r) and k(x) in the ex-
pressions (23) and {24) have the same form in a broader
class of near extreme spacetimes.

IV. MORE GENERAL SETTING

The fact that the funetion h(r) for the d-dimensional
Schwarzschild-de Sitter black hole can be written in the
form (18) is not a particularity of this specific geometry.
Basically, all we have used is that:

» The function A(r) has at least two positive real
roots r; and ro (r; < r9). If m and ru are con-
secutive roots, we are interested in the submanifold
given by the block

T1 = {(t,'f‘,gl,"' ,6{1_2),7‘1 <r < 1"2} - (25)

¢ The function A(#) is, at least, a C® function at the
interval [ry, 2.

e The points 7 and 75 are simple rocts of h(r).

s There is a near extreme limit, a region of the pa-
rameter space where the horizons are arbitrarily
close, such that

0< 2" g1, (26)
1

Since h(r) is continucus, there is a maximum or mini-
mum peint rg €]r1,7a[- But in general the analytical de-
termination of 7y in terms of the parameters of the metric
is not easy. It is convenient then to consider ry, r2 and &
as the fundamental parameters of the spacetime, where
#1 is the surface gravity at the horizon r = 1.

In terms of these parameters, the function h{r) can be
approximated, in the near extreme limit, as

2161

e (ry —r)(r =r) + 0O (&) , (@7

h{r) =




with § = (ry —r1)/r1. The tortoise function z(r), whose

domain is the interval Jri,rai, can be easily calculated

from. the expression (27). Its inverse r(z) is

€215y 41y
14 g2

and from (28) it is straightforward to obtain h(zx):

r{z) =

+0(8) , (28)

_ (ra—ri)m 3
() 2 cosh? (k) +0() - (29)
One possible generalization of the d-dimensional
Schwarzschild-de Sitter geometry is the metric in the

form (1} with the function h{r) given by

2m 2 Ar?
h(r)=1-ﬂ—_3+;é%:€—--é—. (30)
This is the d-dimensional Reissner-Nordstrém-de Sitter
metric [16], which describes a charged black hole asymp-
tatically de Sitter. The integration constants m and ¢ are
proportional to the black hole mass and electric charge.
The parameter space for the RNdS metric is much
more complex than the SdS case. It can be shown that
the function h{r), for arbitrary d, has at most three pos-
itive real roots (plus negative roots). And if the number
of positive roots is three, they are simple. These roots
are the Cauchy (r_), event (ry) and cosmological (r.)
horizons, with 0 < r.. < ry < r.. The function A{r) is
smooth in both intervals Jr_,ry | and Jry,re|, and there
are regions of the parameter space in which the intervals
collapse to points.

The conditions shown in the beginning of this section

therefore apply to the RNdS metric, and we have two pos-

sible near extreme situations for the RNdS metric, where
r_ me 7y and 74 & 7. Although the work developed in
this section applies for both cases, we are mainly inter-
ested in the second one. We will therefore specify the
work to the near extreme T, block of the Schwarzschild-
de Sitter and Reissner-Nordstrém-de Sitter metric.

V. EFFECTIVE POTENTIAL AND
QUASINORMAL MODES

‘We introduce in the d-dimensional SdS or RNdS space-
time a real scalar field €, with mass ¢ > 0, described by
the equation

(O-p?)&=0. (31)

Expanding the field in (hyper)spherical harmonics, in the
form

P = Z'f‘géﬂ}gwe(t, r)Yfm({e‘i}) H (32)
¢m

we get a decoupled wave equation for each value of £. In
terms of the coordinates ¢ and x, this equation reads

>y N ey
T a2 ax2

Viz)e - (33)

4

The effective potential V{x) = V{(r(z)) is obtained us-
ing the function ={2z) and the effective potential in terms
of the radial coordinate r:

V{r) = h(r)r) , (34)

with the function Q(r} given by

He+d—3) d-2,
o) = o+ LGRS
ezl -4 i)ff i FYay (35)

In four dimensions, if the mass of the scalar field is set to
u% = 2/’ then the effective potential above is also the
effective potential for the electromagnetic field (as can
be seen for example in [14]). So our results apply to this
case as well.

Expanding the function V{(r) around the point
r = (ry +r.}/2, we have, for £ > 0 or g > 0:

Vir) = E(E+;i 3) 4 #2} 264 (re —T)(r —74) +0(5) .
s Pe— T4

(36)
The expression {36} for V(r) is not useful when py =£ =0
because in this case V(r) = 0+ O{J). Assuming £ > 0 or

g > 0, we calculate the function V(z) as

- Vo
Viz) = il (n17) + 0, {37)

where the constant V; is given by

- ﬂ(f+d-3)+#2 {re — 4 )54

Vo r2 2

(38)

The effective potential V(z) in the expression (37) is
the Péshl-Teller potential [11], which has been exten-
sively studied. In particular, attention has been dedi-
cated to the quasinormal modes associated [12, 13]. One
way to introduce the problem [1, 17] is Laplace trans-
forming the wave equation (33}, so the problem can be
put as & Cauchy initial value problem. It is found that
there is a discrete set of possible values to s such that the
function 1., the Laplace transformed field, satisfies both
boundary conditions:

: T WS —
lim e =1, (39)

. - -8 — -
zgl_:r‘_lma,bg e =1, (43

By making the formal replacement s = iw, we have the
usual quasinormal mode boundary conditions. The fre-
quencies w (or 5) are called guasinormal frequencies.

Using the result (38), we find that for bath
Schwarzschild-de Sitter and Reissner-Nordstrdm-de Sit-
ter cases we have: '



w _ [[He+d-3)
——\/{ CEE

For the 8dS geometry, V5 can be written in terms of m
and A. The real and imaginary parts of the quasinormal
frequencies in this case are

A 2pd-2 (g 1)d-11%
Re(w) = [E - msd_2 Ed — 3;01_3]

(e+d—3) 321

[ d-3 +(d_1)A“Z]

ey

; (42)

1\ [A  m2A%2 (d-1)e-15
in) =~ (n+3) |5 - "5 G=pes]

(43)
with n € {0,1,...} labelling the modes.

VI. CONCLUSIONS

‘We have studied a scalar field outside the event horizon
of spherical d-dimensional black holes with near extreme
cosmological constant. Its dynamics is determined by a
Poshl-Teller effective potential, which allows us to calcu-
late analytic expressions for the quasinormal frequencies.
In the Schwarzschild-de Sitter case, the parameter space
can be precisely characterized. As a consequence, the

'J'c—'f'+_l_a-(ﬂ+l) ) (41}

2I€+ 4

quasinormal modes can be written in terms of the pa-
rameters m and A of the metric.

Qur results generalize the previous conclusions ob-
tained in [14] for the scalar and electromagnetic fields.
In particular, we see that the real part of the quasinor-
mal frequencies does not depend on the mode (n), and
that the relaxation time of the field is independent of its
mass. We also demonstrate that the addition of charge
to the black hole or mass to the scalar field does not alter
the basic characteristics of the field dynamics in the near
extreme regime,

Since we are imposing spherical symmetry, it is not
too surprising that the field evolution is qualitatively in-
dependent of the dimension. However, it is interesting to
note that the explicit expressions of the frequencies are
very similar for any value of d. It would be instructive
to see if this happens in non-spherical geometries.
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