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Abstract

The linear sigma model coupled to a massive vector (gauge) meson, V,, is considered for the
description of nuclear matter properties. The field equations (of pions &, sigma o, nucleons N, V) are
analyzed in the homogeneous limit in a nearly self consistent way which yields the saturation density
at the correct point. Solutions are sought semi-analytically. The pion condensate is found to be non
zero at finite density corresponding to a dynamical symmetry breaking. The solution of the vector
meson mean field (which can be viewed as another condensate) indicates the occurrence of another
dynamical symmetry breaking at finite density. The scalar condensate, related to the QCD scalar
condensate < §q >, seems to decrease -as usually expected. The chiral radius at the saturation density
as well as the pion and sigma masses are analyzed. The non zero pion condensate causes a splitting
between the neutron and proton effective masses as well as oscillations between these two isospin states
in the medium. These results indicates the existence of another QCD condensate at finite density: a

pseudo-scalar < Jq >p,.
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1 Introduction

Dynamical symmetries play an essential role in systems described by Strong Interactions and regulate
many aspects of the structure and dynamics of strong interacting particles. Whenever a theory invariant
under a continuous transformation group presents a non invariant ground state the corresponding sym-
metry is said to be spontaneously (or dynamically) broken. In this case the theory is expected to present
zero energy collective Goldstone modes [1].

Being constituted by Hadrons, atomic nuclei should be expected to be described by the theory of the
strong interactions. Given that the fundamental theory for these systems, the Quantum Cromodynamics
(QCD), has a very complex non abelian structure and strong coupling constants at low energies it is

very difficult to obtain a description of nuclear systems from it. In the vacuum, the lightest strong

interacting particles are known to respect, approximately at least, chiral symmetry SUL(2) x SUg(2) -

which is spontaneously broken down to STU(2). Pions, whose masses are small in the hadronic scale,
are viewed as the Goldstone bosons of such SSB. At the same time the vacuum acquires & non trivial
structure due to the formation quark-anti quark condensate < gg >, the order parameter of the Chiral
S8B. For low and intermediary energy processés one is lead to construct effective models which respect
these main properties and symmetries of the QCD. These features can be taken into account via sigma
models which, in the linear realization, implement chiral symmetry with two fields: the (pseudo-scalars)
pions and the (scalar) sigma. The scalar field acquires a non zero expected value in the vacuum < o >
due to the Chiral SSB which lowers the energy density of the vacuum. Although in the usual picture of
hadronic physics the (small) pion mass is considered to break explicitly the chiral symmetry in {2} it is
shown that the massive character of pions can be understood in a chiral invariant fashion if the quantum
fluctuations are taken into account.

In this work we argue that the Linear Sigma Model (LSM) with a vector meson yields a suitable
frame for the description of finite density nuclear matter properties and eventually of nuclei. In spite
of limitations found before [3] we show new insights and we argue that those limitations may be due to
the methods used so far. The self consistency of the field equations is taken into account with particular
prescriptions. We found that there is a (isospin) spontaneously broken symmetry generating non zero
expected value for the pion field. Correspondingly we suggest that isovector collective modes in nuclear
matter are the Goldstone bosons. In the next section the linear sigma model with an Abelian massive
- gauge vector boson is presented and their dynamical equations are shown taking into account quantum

fluctuations of the sigma and pion fields in a truncated version of a variational approach. Their solutions
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are discussed and some other possible consequences are analyzed.

2 Linear sigma model at finite density

The Lagrangian density of the Linear Sigma Model with nucleons N(x), sigma and pions (o, T) coupled
to a (gauge) vector meson V), is given by:

L= N(x) (i7,D* — gg(o — i7s7.7)) N(x) + % (0,0.0%0 + 8,7.0"%) +

A

: (1)
~SE 4 5 (0 + (77 -2,

where the covariant gauge derivative is: D* = 9% — {gy V¥, the gauge invariant tensor is: F* =
T ORVY — 9YVE. gy, gs and X are the coupling constants and v = f; in the vacuum. If the pion mass
were considered to break the chiral symmetry explicitly we add another term Ly = co. We consider the
possible existence of condensates of the sigma as well as of the pions and lock for solutions. The coupling
of the nucleon to these (scalar and pseudo scalar) mesonic fields yields the effective masses for N. From
expression (1) the Hamiltonian can be calculated.

The nucleon field is quantized in terms of creation and annihilation operators. Its wave function
can be written as superposition of spinor (y), isospinor (n) and coordinate components u(p), v(p). Tt
generates non zero scalar, baryonic and pseudo-scalar dens.ities (ps, pp and ppg). We will not explicitly
evaluate here all these quantities but only make use of pg. The resulting expressions for the quantized

fermionic energy denéity pr and for the baryonic density pp are given respectively by:

kr 43k

kp d3
Pf=’Y[ (2;;3 k? + (M*)2, psx'rf G (2)

In these expressions 7 = 4 in symmetric nuclear matter, kr is the nucleon momentum at the Fermi
surface and the effective mass M*. In fact we will show that M* is a matrix which depends on the isospin
(and spin) of the nucleons. But for the sake of the main argument it will be considered to be a number
as usually done: M* = gg5. .We will see that this is the leading contribution.

‘To take into account the quantum fluctuations of the sigma and pion fields we consider a truncated
version of the variational approach using a Gaussian trial wave-functional in the Schroedinger picture
[4]. This variational principle states that a maximum bound for the energy density of the vacuum can
be obtained by calculating the averé.ged energy with trial wave-functions (Hg =< ®|H|® >) whose
(trial) parameters are fixed when the energy density is minimum with relation to its parameters. The

averaged value of the Hamiltonian is calculated with trial (Gaussian) wave-functionals for the scalar and



pseudo-scalar fields: < U[o, 7]|H (o, )| ¥[o, #] >. For the sigma we can write:
1
¥ (o) = Neap{~7 | dxdybo(x)G5 (5 ¥)0 (1) } (3)

Where do(x) = o(x) — &; the normalization is N, the variational parameters are the condensate
& =< Y|o|¥ >, the quantum fluctuations represented by the width of the Gaussian Gg(x,y) =<
Ulo(x)o(y}¥ >. An analogous expression for the pion sector is considered with variational parameters
given by: % and G“P’b, which is a matrix that can be considered as diagonal as a particular case along this
work (G8* = Gp). This reduces the corresponding functional space. We will assume that these quantum
fiuctuations only intervene for the meson magses, as shown below, as well as for a shift the respective
fields:

~2 -
#F=7+0p, #=5+0Gs. (4)

This corresponds to a truncation on the self consistency with a particular renormalization energy point. )
More exact calculations are being done for this model as well as in the absence of pions for non linear
scalar couplings in [5, 6].

The minimizations of the averaged energy with respect to the Gaussian variational parameters yield
the GAP equations which define the minimum of the potential for these fields. The following set of

equations is obtained for the sigma sector:

A(&2+G5+%’2—92)+2d__=0;

doy _G5® A N oz o9y
iGs 3 5 +4(60 + 27 21})—-0.

S

This last expression gives the sigma mass. For the sake of clearness we truncate the possible complete

self consistency considering that:

dp f -
dG;

0, Gp = Gg = G ~ constant. M
The corresponding GAP equations for the pion field are:

- d
)\(1?’2 5% —o?) +272L =0, |
& | o (8)



As discussed above, these expressions (6,8) for the meson masses, with the shift of the fields (4), are
the only effects of the quantum fluctuations in the present work. It is also assumed the possibility that
quantum fluctuations generate a mass for the pion without break the chiral symmetry explicitly. This is
implemented considering that & ~ 89MeV which is the value attributed to the chiral limit of the pion
decay constant [7]. The quantum fluctuations, G, yield the missing value for & = f,. This is discussed in
2 more consistent frame extensively elsewhere [5]. Assuming the usual hypothesis of a explicit symmetry
breaking (L = co) to generate the pion mass the results of this work are almost unchanged.

The Euler Lagrange equation for the vector meson was calculated for a gauge in which only the
component Vj is non Z€ero and homogeneous. This is the case which is usually studied. The equation is
_ given by:

d
v (o0 + B2 ) ~ iy = 0. (9)
2%

* This equation, is as relevant for the description of nuclear matter properties (and eventually of the nuclei)
as the others.

The total averaged energy density can be written as:

1 AL ~2 -
H=pr+gvVops — §m%,V02 + Z(Ug +7 — %)% (10)

" The binding energy per nucleon is: E/A =H/py.

3 Particular Truncated Self Consistent Solutions

In this section solutions for the above equations are given such that the main properties of the nuclear
matter are consistently described. The stability condition of nuclear matter at the saturation density can

be written as:

an
dpp

H

(11)

- 1
pa=py  PBlpg=pq

- where pg is the density of saturation. To guarantee that these expressions are satisfied we consider some

prescriptions for the dependence of the variables involved in on the baryonic density. Namely:

dpr _ Pt

dpp P o

d(&2+7? "'"1?2) _ (5’24‘7}' —'U2) (12)
dpp B PB ’

dity _ Hy

dop  pB’

In this last expression #y is the energy density contribution of the vector meson.
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From the first of equations (12) we find a solution for the dependence of p; on the baryonic density

which is in excellent agreement with that resulting from the integration of expression (2). It is given by:

2
P8 . (PB B
=-K h{ )+B —- K8 (13)
or 9 00 pE 900

where B is a constant to be found and K is the incompressibility modulus:

d(E/A)
Carr s (14)

K =9

From the second expression in (12) we find a constraint which can be considered as defining a “chiral

radius” (encompassing an “isospin radius”) in the medium:
32+ 7 —v?) = C\/pp + A. (15) ~

In this expression C' and A are constants. Whereas the first of these constants is really necessary we -
choose A = 0 for the sake of conciseness. Therefore in the vacuum: &2 == v> = f7 as discussed above.
The GAP equations (5, 8), for the & (which is a GAP equation of the “in medium” chiral SSB) and

for the % can be faced as differential equations for gy

~ ~2 ~ def ':,2 ~9 ~0 def
(F+a —oh)+ 22 =, (T +6°—0)+-—5=0. (16)
Ada? AgEt

Where %% = v? — G. These equations are isomorfic and show an equal dependence of p; with each of
these chiral fields. Assuming that the main component of the nucleon effective mass is provided by the
- sigma expectation value & we use M™ to fix it choosing a constant gg in the medium. However we can
face these two expressions as differential equations for ps. An approximated solution for the two GAP
" equations as if p; were a function of these fields independently and neglecting the #* term which was
found to be small. The constants obtained in the solution of these equations of py are fixed by requiring ~

‘that in the vacuum 7 == 0 and & = v. These solutions can be written as:

2 2 2
~2NU__:2 v__"2 é
ot =g wi:\/(z cr)—l—)\pf,

. 2 4
#:icﬁﬁ L ANRLA

(17)
2 X4

Eliminating the p; from the first expression with the second we find the following approximated value
for the pion condensate:
i Gkl



With gs = 10 and M* = 0.7M we find the values 52 ~ 0.47fm~? and 5% ~ —0.034fm~2. Only the
second value is consistent with the approximation done for expression (18).

A more consistent approach for determining the pion condensate is to seek it by facing the second
of the above equations (16) as differential equation for p; = ps (1:r'2) in which &* is given by the first
with expression (17). This differential equation for py ('fr'z) (with &2 eliminated) yields a transcendental
equation as solution. The numerical self consistent values are discussed in the next section. We can also
estimate the pseudo-scalar density to be of the order of ppg ~ 7/&.

Alternatively we can consider the condensates to be nearly independent of each other and face these
GAP equations (16) as partial differential equations for which we find other solutions:

pr e A 52 (52 — &%) + Cp(e? - ),

~2 -2

%2, 9 - (19)
py=xT (° —7") — Cpr,

Where Cj is a constant. Together with the above expressions for p; and the symmetry radius C'\/pp
(15} we obtained a consistent basis for the study of the dependence of the condensates with density.
Expecting that these solutions are valuable in some range of ps as well as pp we can equate expressions
(19) to obtain the following constraint equation for the condensates:

,ﬁ2

CrCy/p = % ((&2 -5 - (7 - %2-)2) : (20)
This also expresses the dynamical symmetry breaking which occur in the medium.
From these solutions and the expressions of ps in terms of the baryonic density (2 or 13) we can study
the dependence of the condensates with the nuclear density. This will be extensively done in [5].
We found that, at finite density, there exist a non zero pion condensate solution since the fermionic
density depends on 7 generating a pseudo scalar density. To explicit this feature we have to re-write the
nucleon effective mass. In fact, from the averaged value of the energy we should consider that M™ is a

matrix which depends on the isospin (and eventually spin) of the nucleons:
Mgy, = gs < ¥[o, 7). < Nos|(o +ivs7.7) | Nys > | Ulo, 7] >= gs(5 + iM, pyTa). - (21)

In this expression a, b stands for neutrons/protons, and M is a non diagonal isospin matrix. This matrix
also includes a dependence on the nucleon spin state. The nucleonic mass can be therefore obtained
the averaged value ¢ plus a contribution from the averaged value of the pion field. This allows for the

possibility of different values of M* and even for oscillations between the states of proton and neutron.



The quantities calculated with it -mainly the densities (p, in particular)- will be considered to be the
usual ones, 1.e., with a constant diagonal effective mass - unless explicitly considered: M;,b(?’r) = M.
Finally, considering the equation of V; of {9) as a differential equation of the baryonic density pg as

a function of the baryonic density we obtain the following solution:

—gvpp * \/g%ng — 2Cyppm3, \ (22)

VEJ(PB) = 3 )
my

where C'y is a constant. This constant will be the only contribution of the vector meson sector to the

energy density Hy = Cypg. In the limit of zero density Vg — 0 as expected. It is seen that the baryonic

density generates a non zero value of V- a condensate. This may be seen as a dynamical symmetry |
breaking of this gauge symmetry. Requiring the baryonic density to be stable with relation to variations .
on Vy we find that: Cy = 2¢v V. Where V; is the value of V} at the saturation density. In this point we
have m? = —2gyvpo/Vo which can be identified to the omega meson mass. As we have developed above, |
this solution makes the density stable, i.c., dop/dVo =0,  d®pp/dVy > 0. This also indicates that this
solution is similar to a dynamical symmetry breakdown: the saturating baryonic density is a minimum
point in terms of the condensate V5. This seermns to suggest the existence of still another QCD condensate
. at finite density. These results are different from those usually considered and they can be compared to
the contribution of the vector meson in the frame of other relativistic models [3]. The contribution to the
energy density in the usual models can be written as < H' >,= g?‘,pQB / (Qm%,) which is thus four times

smaller in modulus.

3.1 Numerical estimates and discussion

Considering all the terms in the averaged density energy (i.e., in the binding energy) we fix the values
of K = 200 MeV, —E/A = 16.0 MeV, pg = 0.16fm . The value of the coupling constant A is changed _
to search for the solutions. We take M™ ~ 0.7M and g5 = 9,.although meaningful deviations may be
considered. These values fix & = m*/gg.

In figure 1 self consistent solutions of the GAP equation of the pion condensate as a function of the
coupling A are shown (no consistent solution for negative —60 < A < 0 was found). The dots (crosses)
correspond the minimum (maximum) values which the square condensate rﬁay assume with the above
parameters for each value of A. This means that the squared pion field 7 may assume values between the
dots and crosses. We see that the pion condensate may be imaginary as well as it may acquire relatively

large values (remember that f2 ~ .22fm™2). There is an intriguing behavior in this figure which are the



discontinuities of the values when 16 < A £ 43 for the lower and upper values. Qutside of this range of
A, i.e., for relatively weak and strong coupling, there are stronger constraints for its value. As a matter
of fact, the values of the pion condensate are related to the values which the extended chiral radius C
may assume. The discontinuities in this figure are not yet very well understood. The corresponding
maximum and minimum values for the Symmetry Radius € from expression (15) can be seen in Figure 2
as a function of A. The same behavior of figure 1 is found because & was kept constant. These results can
be in agreement with the usual idea of symmetry restoration as precluded in other works [8]. However a
more extensive comparison will be left for another work.

7 As discussed below the non zerc pion condensate leads to a splitting in the nucleon masses, expression
_ (21), in the medium. This is probably connected with the Nolen-Schiffer effect which relates the nucleon
effective masses to the scalar QCD condensate < gg > [9]. Furthermore we can associate 7 to a pseudo-
- scalar condensate < ggq >ps that shoﬁld.be non zero at finite baryonic density. This mass splitting is
nearly given by:

AM* = M} — M} = 2igg||. (23)

Considering the imaginary solutions of #° from figure 1 with A ~ 60 (only 7 < 0) we find that AM* ~
40gs MeV which is seemingly too much large. The inverse reasoning can be done and then gg}#| can be
fixed to reproduce an expected AM*.

The above solutions were found by fixing the scalar condensate to fit the effective mass of the nucleon,
the 7 contribution was assumed and found much smaller. Results are consistent. However this was done -
for a coupling gs = 9 which is not necessarily true. The scalar condensate could then be smaller or
greater than & in the vacuum which would correspond to gg smaller or greater by considering a fixed
effective mass for the nucleon. These would correspond to the symmetry restoration or, in a less appealing
. scenario, to further breaking of the chiral symmetry in the medium.

For some of the solutions of figures 1 and 2 we check the binding energy of nuclear matter by means

- of expression (10). This fixes the constant Cy from the vector meson solution. Some values are shown

below:
A 22 16.0 = /—Cy/pg ~ 25MeV — Cy/pp =~ —3.6fm™ L, (24)
A= 40.0 = /+C/py = 55MeV — Cy/pp ~ ~3.9fm™ L
Although C'y presents close values in these examples there is a large difference between these two solutions.
in the first the value of the pion condensate is small (1r~‘r'2 ~ 0.05frm2), the constant C is small and negative

T o~ =2 . . = . .-
indicating that &2 + @ < v? at the saturation density. In the second case C is large and positive due



to the large value of the pion condensate 7:r'2 ~ 0.14fm~2 and then &% + %r'z > v2%. The values of Cy afe
consistent with estimates from the expresstons of the last section taking my ~ 780MeV and gy ~ 4.

In figure 3 we show the behavior of the ratio of the pion mass in the medium divided by its value in
the vacuum for the solutions shown in figures 1 and 2 as a function of the coupling A - still keeping &
constant. By varying the scalar condensate we can obtain different results - The increasing values may
be associated to the restoration of chiral SSB. A complete account of these possibilities will be shown
elsewhere [5].

In Figure 4 we show values of the ratio of the sigma mass in the medium to its value in the vacuum
according to expression (6) as a function of the A for squared pion condensate of figure 1. my in the
medium can be smaller or greater than its value in the vacuum. It is curious that the sigma mass in the
medium, for lower values of the A is lower than its value in the vacuum (u3 ~ 482MeV in the present
work) whereas for higher values of A it becomes higher than u.

From the GAP equations of pion and sigma we can write the ratio of their masses as:

W _ 2% +CypE 25)
pe 262+ Cypg
This expression reduces to & non zero finite value in the vacuum according to the assumptions done for

the plon mass.

3.2 General remarks

" The equation (8) for the pion mean field of is a GAP equation of the condensate 7. This induced a mass
splitting between neutrons and protons which makes the density py from expression (2) -and eventually
pB- to be different. The corresponding induced density difference p, — pp cé.n be also associated to the
order paramefer of this (isospin) spontaneously symmetry breaking as described by a Landau model [10]. |
This non trivial solution corresponds to a non invariant ground state under exchange of protons into
neutrons transformations, although the Lagrangian is symmetric. The nuclear Ground State potential -
for Symmetric (N = Z) nuclear systems is not invariant under transformations of protons into neutrons
(and vice-versa). Zero energy (Goldstone) collective modes are therefore expected to occur. They can
be found by means of the calculation of the response function of the nuclear matter [11, 12]. Non zero
width can be obtaining by considering pairing effects which in fact destroys the zero energy character of
the modes.

Other resonances -"spinorials”- are not necessarily collective motions but coherent at the saturation



ciensity and can become very collective, for example, in neutron stars and supernovae [12]. Scalar reso-
nances are also observed as the monopolar and dipolar ones (a nearly exhaustive study with Skyrme type
effective interactions was done in the second reference of [12]), and seem to be also manifestation of other
dynamically broken symmetries [5]. From the 1970’s onwards, several resonances were found to occur in
nuclei, with respect to multipolarity as well as the corresponding quantum number (isospin and spin) [13],
They are actually found not only in nuclear ground states but also in excited states -“hot”, fast rotating
nuclei-, as predicted by Brink and Morinaga [14]. It is very plausible that the isovector ones correspond
‘to the manifestation of the SSB found in the present work in nuclei. Their descriptions are more involved
due te finite size and other effects like pairing which makes the zero energy character of the resonance
disappears. The width of the Isovector Giant Dipole collective modes, for example, may disappear at
nearly the same nuclear temperature at which the (so-called “liquid-gas”) phase transition is observed in
- nuclei, i.e., nearly T ~ 4 — 6MeV, [15, 16]. This phase transition occurs at fragmentation densities, of
the order of p ~ 0.15 — 0.3py which are of the same magnitude of those found for the appearance of scalar
instabilities in nuclear matter with non relativistic Skyrme interactions {17]. It seems to correspond to
the manifestation of the restoration of the SSB which leads to the formation of the pion condensate.

To what extend this SSB and chiral SSB as well as the underlying gauge symmetry for the vector
meson - leading to finite saturation density with the right binding energy - are related is not yet clear.

Processes involving pions in the nuclear medium seem to provide valuable information. Let us take
for granted that the Goldberger Treiman relation nearly holds at the saturation density. If we write it
in such a way as to encompass quantum fluctuations with the rearrangement of the scalar condensate as
considered in expression (4) we can write independently for protons or neutrons (which now would have
non degenerated masses): |

gs& = (M* + AM*)g4, | (26)

Where AM™ is given below expression . For in the vacuum (where AM* = 0, & = f, and M* = 955)
© we obtain a small value g4 ~ 1.05. It could not be expected to result a realistic value for g4 with the
presént arguments, but we can expect that the behavior at finite density would be reasonable.

~The fact that the non linear models are usually accepted as more suitable for the nuclear observables '
may be a consequence of the fact that the calculations done with them take into account (explicitely)
more properly nonlinearities which can also be present in the linear sigma models. This means that a
truncation is always done in the self consistency of the coupled equations and the non linear models

seem to take into account (effectively) more nonlinearities which would be present in more self consistent
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calculation for the LSM.
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Figure caption

~ Figure 1 Squared pion condensate 7 (fm™2) as a function of the coupling A for M* = 0.7M and g5 =9

found self consistently.
Figure 2 Symmetry radius ¢ (fm~%/2) for the solutions of figure 1 as a function of X.

Figure 3 Ratio of the squared pion mass in the medium divided by its value in the vacuum as a function

of A for the solutions of figure 1.

Figure 4 Ratio of the squared sigma mass in the medium divided by its value in the vacuum as a function

of A for the solutions of figure 1.
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