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Abstract

This work is a natural continuation of our recent study in quantizing relativistic particles. There it
was demonstrated that, by applying a consistent quantization scheme to a classical model of a spinless
relativistic particle as well as to the Berezin-Marinov model of 3 + 1 Dirac particle, it is possible to obtain
& consistent relativistic quantum mechanics of such particles, In the present article we apply a similar
approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a
problem differs in a nontrivial way from the one in 3 -4 1 dimensions. The point is that in 2 + 1 dimensions
each spin polarization describes different fermion species. Technically this fact manifests itself through the
‘presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint
does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1
dimensions is alse interesting from the physical viewpoint {e.g. anyons). In order to quantize the model,
we first derive a classical formulation in an effective phase space, restricted by constraints and gauges.
Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in
an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed
quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-
energy levels, and exactly reproduces the one-particle sector of the 2 4 1 quantum theory of a spinor
field,

1 Introduction

This work is a natural continuation of cur recent study (1, 2, 3] which was devoted to the consistent quantization
of classical and pseudoclassical models of relativistic particles. We recall that in the first article [1] it is
demonstrated that, by applying the consistent quantization scheme (canonical quantization, comhined with
the analysis of constraints and symmetries, as well as of the physical sector) to the classical model of a spinless
relativistic particle, it is possible to obtain a consistent relativistic quantum mechanics (QM) of such a particle.
Remarkably, the problem of the infinite humber of energy levels and of the indefinite metric is solved in the
same manner as in the corresponding quantum field theory (QFT), i.e., by properly defining the physical
sector of the Hilbert space. In external backgrounds that do not viclate vacuum stability, the constructed QM
turns out to be completely equivalent to the one-particle sector of the QFT. We stress that the Schrédinger
equation of the QM is equivalent to a pair of relativistic wave equations (in this particular case to the pair
of Klein-Gordon equations), namely, to an equation for a particle with charge ¢ and to an equation for an
antiparticle with charge —q.

As a logical extension of the approach [1], we consider the quantization of psendoclassical models of spinning
particles. In this relation one ought to recall that there does not exist a unique framework for the description
of relativistic spinning particles which embraces all possible cases: particles with integer and half-integer spin,
massive particles and massless particles, particles in even and in odd dimensions. In all these cases, the action’s
structure differs in an essential manner, and therefore each case requires a completely different treatment in
the course of its quantization. In cur works [2, 3], we started the quantization program of spinning particles
considering the pseudoclassical Berezin-Marinov [4] action of the massive 3 + 1 Dirac particle, the structure of
which is typical for all massive relativistic particles with half-integer spin in even dimensions. The constraint
structure of this model in the Hamiltonian formulation allows one to fix completely the gauge freedom at the
classical level. In spite of the considerable technical difficulties involving the realization of the commutation
relations and the Hamiltonian construction, one can carry out the canonical quantization scheme leading to
the consistent (as in the spinless case} QM of the 3 + 1 Dirac particle.

In the present article we consider the problem of quantizing the massive 2 + 1 Dirac particle using the
pseudoclassical medel first proposed by Gitman, Gongalves, and Tyutin (GGT) in [5]. From this particular
model, one can devise the general quantization scheme for half-integer spinning particles in odd dimensions [6},
since the action for the general case has the same essential structure as that of the GGT model. More remarks
are in order regarding the choice of the model for the massive 2 + 1 Dirac particle. Namely, we note that a
number of alternative models have been proposed for the description of a spinning particle in 2 + 1 dimensions
(see, e.g., [5, 7]). We also note that in 2+ 1 dimensions, a direct dimensional reduction of the Berezin-Marinov
action does not reproduce the minimal quantum theory of spinning particies, which must provide only one
spin projection value {1/2 or —1/2}. In the papers |7, 8], two modifications were proposed. One of them
is not minimal and is P- and T- invariant, so that an anomaly is present. The other does not possess the
desirable gauge supersymmetries. The GG'T action is gauge supersymmetric and reparametrization invariant.
Furthermore, it is P- and T-noninvariant, in accordance with the expected properties of the minimal theory
in 2 4+ 1 dimensions.

We stress that the quantization of the GGT model differs in a nontrivial way from the one presented for




the Berezin-Marinov model. The point is that in 2 + 1 dimensions {as well as in any odd-dimensional case)
-to each spin polarization corresponds a different particle, because distinet spin projections of a 241 spinning
particle belong to distinct irreducible representations, and thus describe different fermion species. Technically
this fact manifests itself in the model through the presence of a bifermionic constant and of a bifermionic first-
class constraint. This constraint does not admit a conjugate gauge condition at the classical level. However,
gince the corresponding operator has a compact spectrum, it can be consistently used to fix the remaining
‘gauge freedom at the quantum level according to Dirac. Such problems do not-appear its the Berezin-Marinov
case. Our interest in the GGT model does not reside entirely upon these mentioned departures from the
Berezin-Marinov model. The quantization problem of a particle in 2 + 1 dimensions is a very interesting one
from the physical viewpoint. There is a direct relation to field theory in 2 + 1 dimensions [9, 10], which has
recently attracted much attention, due to non-trivial topological properties, and especially due to the possible
existence of particles with fractional spin and exotic statistics {anyons). There is alsc a strong relation of the
2 + 1 quantum theory to the fractional Hall effect, high-T, superconductivity, etc. [9]. Thus, we hope to have
motivated the construction of a consistent relativistic QM of a spinning particle in 2 + 1 dimensions,

The paper is organized as follows. In Section 2, we study the classical properties of the given pseudoeclassical
model and present its detailed Hamiltonian analysis. We focus on the selection of the physical degrees of
freedom and on an adequate gauge-fixing. We obtain a Hamiltonian formulation of the medel in an effective
phase space, restricted by constraints and gauges. We gauge-fix two of the initial gauge symmetries, and
retain an effective bifermionic first-class constraint, which does not admit gauge-fixing. In Section 3, we apply
& quantization approach, being a combinaticn of the canonieal and the Dirac schemes, in which the bifermionic
first-class constraint is imposed at the quantum level to select admissible state-vectors. We present a detailed
construction of the Hilbert space. Then we reformulate the time-evolution in terms of the physical time,
and verify that the constructed theory has the necessary symmetry properties. We select a physical sector
which desecribes the consistent relativistic QM of particles in 2 + 1 dimensions without an infinite number of
negative-energy levels. In Section 4, we make a comparison of the constructed QM with the one-particle sector
of the 24-1 QFT. In Section 6, we summarize all the resuits obtained in our paper. In Appendix A, we justify
the selected Hamiltonian realization, considering the semiclassical limit of the QM constructed. In Appendix
B, we present some necessary constructions of the corresponding 2 + 1 QFT, and we consider the problem of
defining spin operators in 2 + 1 dimensions. We actively use the results of the Appendix B throughout the
article.

2 Pseudoclassical model and its constraint structure

2.1 Lagrangian and Hamiltonian formulations

In order to describe classically (that is, pseudoclassically) massive relativistic spin-1/2 charged particles in
2 + 1 dimensions, we take the action first proposed in [5]. It has the form

! 2? m? 1 :
§= ] Ldr, L=—— —e— — qif'A, + iegF, V" — imédy — —fme — i, E",
0 2e 2 2
2 = ity + ek (1)

Here e, 5, and =, p == 0,1, 2, are even variables, while y and £*, n = (g, 3), are odd variables; the Minkowski
metric in 2+ 1 dimensions reads 7, = diag(l, —1, -1}, and in 3+1 dimensions is My, = diag(1,~1,-1,-1); 8
is an even constant; £ is the Levi-Civita tensor in 2+ 1 dimensions normalized as e012 == 1, and summation
over repeated indices is assumed. The particle interacts with an arbitrary external gauge field A,{x), which
can be of Maxwell and/or Chern-Simons pature, Fy,,, = 8, A, — 8,A,, is the strength tensor of this field, and
g is the U(1)-charge of the spinning particle. We assume that the coordinates =* and £# are 2 4 1 Lorentz
vectors; e, &, £, and y are Lorentz scalars. All the variables depend on the parameter 7 € (0, 1], which plays
here the role of time. Dots above the variables denote their derivatives with respect to 7. The action (1) is
invariant under the restricted Lorentz transformations, but is P- and T-noninvariant, in accordance with the
expected properties of the minimal theory in 2 + 1 dimensions.
‘We recall that the action is invariant under the reparametrizations
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where £ (7} is an even gauge parameter, and under two types of gauge supertransformations
P’
Szt = ite, de=iye, St = ;—e, §e% = %e, dx=¢, dr=0,
e
Szf = —feMAEL 6, SEH = %s’“’)‘zu@ﬁ, Sn=1, fe=66=8x=0,

-where €{7) is an odd gauge parameter and 9(7) is an even gauge parameter,

We note that e, x, and « are degenerate coordinates, since their time derivatives are not present in the
action. In what follows, we consider a reduced hamiltonization scheme for theories with degenerate coordinates
[11], in which momenta conjugate to the degenerate coordinates are not introduced. To proceed with the
hamiltonization, we introduce the velocities v# and o* and write the action (1) in the first-order formalism as

1

Sv=]01 [Luﬁ'p,u,(ﬂ‘?'u'“vﬂ)'*-’ﬂ'n (én_an)] dT=~/0 (Pu"i’”"'ﬁnén_Hu)dT:

where
» 72 m? . . .3 1 e n
L= ek quitAy + igeF Y — iméSx — §9mn — €0,

_ ¢ =t — ity is“”‘\g,,&n , HY=p,of + 0™ — LY.
The variables p,, and w, should be treated as conjugate momenta to the coordinates z# and £" , respectively.
The ordering of variables in the Hamiltonian H" complies with the usual convention for the choice of derivatives
with respect to coordinates as right-hand ones and those with respect to momenta as left-hand ones.

The equations of motion with respect to the velocities and the degenerate cocrdinates read

a8v 1 aSY 72 m?
=Py EZ_LL - qA.u =0, -+ "'*unVE'uéu =0,

o e =23
asv 1_ v 1 &8sV .
= —Ezﬂsuukf §A - Egm =0, S Tn + €y =0,
a8y 1 ) .
Bx == (U”{-’M +ze“”’\§p§y£Am) —iméd =0.
The equations §.5%/8a™ = 0 lead to the primary constraints
Pp =Ty + %f'n. ; (2)
and the equations 85" /§v* = 0 can be used to express the velocities v#, viz.,
Vi = —e (p* o gA*) iy — iR {3)

Substituting this relation into the other equations, we obtain more primary constraints
$1 = (p+qA) &, + me?,
¢2 = (p+qA)’ —m® + 2igF, £"¢",

93 = Cpus (P + gAY €6 + 0m. (4)

Upon substituting (3) into the Hamiltonian HY, we get the total Hamiltonian
H® = A181 + Aoz + Asds + A0, , _ (5)
where Ay = —iy, Ag = —e/2, Az = —ix, and A™ = —a™ are henceforth Lagrange multipliers. One can see

that the total Hamiltonian is proportional to the constraints, The resulting dynamically equivalent action is

1
s = f (pﬂi"'“ ™ — H“)) dr.
0
In the following, we shall make use of the Dirac brackets with respect to a set ¢ of second-class constraints,
{AJ B}D(tp) = {A? B} - {AJ tpa} Cﬂb {(Pb} B} -

Here C% {5, 0.} = 6% and the Poisson brackets of the functions F and G of definite Grassmann parities £(F)

and & (@) are given by
aF 0G  OF 8G

i Bp, O™ Omn
One ought to say that in the classical theory the quantity @ is a bifermionic constant. In the quantum
theory, though, it turns out to be a real number (see Sect. 5 Discussion).

{FC}= (-1 (F o @), (6)
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2.2 Constraint reorganization and gauge-fixing

In analogy to [2, 3], we first reorganize the constraints (2) and {4) into an equivalent set (T,(} such that
T == (T3, T2, T') is a set of first-class constraints, and ¢ is a set of second-class constraints,

{T, THT,'P*D = {T, ‘P}IT,:p:O =0.

" The new constraints I have the form

Ty = (p+qA), (m* — ") +m (v* - i€%)

Ty =po+gho+¢r, (= -sgnlpo+qdo,

T = £ (p+ gA) €7 + L0m, (7)

‘where ¢ = &1, and r = \/m2 + (pr + qu)2 + 2¢F,,ErmY is the principal value of the square rootl. One can
see that Tp and ¢q are related as

i

¢2 = —20rTs — Qﬁﬂnﬂnﬁ {pa $2} + (T0)* .
In terms of the T-constraints, the Hamiltonian (5) becomes
HY = ATy + AT + AT, ©

with redefined Lagrange multipliers.

Our goal is to quantize this theory, so supplementary gauge conditiens will be imposed upon the first-class
‘constraints Ty and Th, except the constraint 7", which is of bifermionic nature. The problem related to its
gauge fixing is still open (see discussion in [6, 12, 13, 14]). In the end, there will remain a first-class constraint
T" reduced on the constraint surface, while the second-class set of all the other constraints and gauge conditions
will be used to construct Dirac brackets. The surviving first-class constraint will be enforced on state vectors
of the quantized theory in order to fix the remaining gauge freedem according to Dirac.

We impose the following gauge-fixing conditions

¢f =0 — i€ + ( (v~ ig%) (9)
$§ =z — (7, (= £L. (10)
The gauge (9), chosen to fix the gauge freedom related to 77, reduces the set of independent spin variables.
The gauge (10), chosen to fix the gauge freedom related to T, is the chronological gauge (15, 1, 2]. The

resulting set of constraints (77, Ty, 6, 5, ¢) is second-class.
In order to simplify the Poisson brackets between constraints, and to write the dynamics in terms of

independent variables, we pass to a set ('-'I),’f) which is equivalent to the set of constraints (T, ¢%, ¢52G @)
Here @ are the second-class constraints

@12P0+‘1A0+§5’= ‘1’2:@5?, (1)3:(;01: ®4=(|925

‘I’5=—%T1+6T2+C¢2G, g =07, Br=10, Ps=3, (11)
where
- - 2(gFwp
= 2 4 AT RY kol kel
w \/wo+@0+m(p+qA)L(£ wh+wkgl),
@y = \/m2 + (pr + gAR)? + 2gFybinh
b i{(ﬁg,Tl} . _{—%Tl + b7, &1}
2 {45, Ta}’ {¢§, @1}
and T reads -
- =T —{_’L}@G, T=T5_0 -

B {®61 ¢5}

* 1We define the principal value of the square root of an expression containing Grassmann variables as the one which is positive
when the generating elements of the Grassmann algebra are set to zero.
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The constraint 7' js first-class, so it is orthogonal to all the second-class constraints, {'f‘, (I)}iq N 0.

However, for the further consideration, it is convenient to use the constraint 7', which coincides with 7" and
T’ on the constraint surface,

1
T=-m¢ (§n* - &nt) + 56m. (12)
The constraint T', which is responsible for parity violation with respect to reflection of one of the coordinate
axes, does not depend on the space-time coordinates and momenta. The corresponding operator can be realized
as a finite matrix. Therefore its spectrum is compaet, and we thus do not expect standard difficulties with the
Dirac quantization in such a case.
The nonzero Poisson brackets (taken on the constraint surface ® = 0) between second-class constraints are
{2,901} = —{@1, 2} =1, {®3,P3} = {By, B4} = 21,
{85, @6} = { P, s} = {{@a +m), [y, 07} = — {0, s} = 2i.

“In terms of the new constraints, the Hamiltonian (8) becomes
HO = Ad, + AT, a=1,2,5,6.

with redefined Lagrange multipliers,

2.3 Effective dynamics in the reduced space

Evidently, not all variables are independent, due to the presence of constraints. In fact, it is possible to reduce
the number of the variables using some of the second-class constraints. In doing so, we retain the following
set of variables

n=(z*pi, 57, ), k=1,2. (13)

We hereafter refer to these variables as the basic variables. All the initia} phase-space variables can be expressed
in terms of these basic variables. We remark that the basic variables are not independent, since there still are
constraints among them.

Therefore, we seek to write the dynamics in the reduced space determined by the evolution of the basic
variables (13) alone. Despite the fact that the corresponding constraints are time-dependent, it is still possible
1o write the evolution equation for the basic variables by means of Dirac brackets if we introduce a momentum
€ canonically conjugate to the time-evolution parameter v as was done in [16]. This equation reads

o i - F— 14
) {n,ATH}D@), $=0, T=0, (14)

where the Dirac brackets {, } p(s) are constructed with respect to the constraints (11).
The new set of constraints (&, 7 ) allows a number of simplifications in equation (14). In this connection,

we divide the set & into second-class subsets U/ and V given by
U= {®),Py,95,04}, V= {s, g, D7, B3},
so that it is possible to apply the rule 7
{4, B} p(ay = {4, Bl pgyy = {4, Vel pry € (Y%, Bl pwry » C*AVe, Vol ooy = 8 (15)

for any dynamical variables A and B. As a result, thanks to the vanishing of {V}, ¢} p() on the constraint
surface, equation (14) is simplified to

N=A{mAT +elpy,, U=0, T=0. (16)

In the same spirit, we further divide the subset U into two sets w = (@3, ®4) and v = (®;, ®2). This time,
application of the rule (15) gives rise to a new simplification due to the vanishing of {n, ¢} D) Thus,

{n, E}D(U) = {n:'va}u(ﬂ) c*® {""b:e}D(u) ={{n, ©1}D(u) . (17}

Since neither the basic variables nor the constraints « involve the coordinate 2%, and py is alone in the constraint
®,; as an additive factor, we can eliminate py altogether from (17). Consequently, we are now able to take




@, = 0 identically, and thus substitute 2z = {7 into the same brackets. Finally, we express 7 in terms of gk
in &, using the constraints u, so that the equations of motion in the reduced phase space space (13) become

fr = {n, Her + AT}D(u) , up=mg+i =0, T=0, (18)

where Hog is an effective Hamiltonian given by

Heﬁ = ECQ'AO +w}m°=(‘r y W= Gjlwk:—ie-’“ = \.‘ l:“'[:‘ZIJ +0,

; —4i€qF)
M= \/m2 + (pi + gAi)” — 2igFug e, p= ﬁg

(p +q A1) €°€, {19)

and T' (12) is an effective first-class constraint.
The naonzero Dirac brackets between the basic variables i are given by

, i
{xk:PE}D(u) = 5.!k : {Eka&}p(u) = {ﬂ-ksﬂ-i}p(u) = %{fk)ﬂ-l}D(u) = 'ﬁnkl - (20)

3 Quantization

3.1 Operators of basic variables

The equal-time commutation relations for the operators X*, P;, =%, and ¢, corresponding to the basic vari-
ahles 5, pg, £5, and ¢, are defined according to their Dirac brackets (20). The nonzero comutators [, |
(anticomutators {, |, ) are

S A i
[X’“,P;] = insf, (858 = -gn*. (21)
We assume (2 = 1 and select a preliminary state space R of x-dependent 16-component columns ¥ (x),
_{ Ya(x)
¥ (x)= ( Y.y (x) )’ (22)

where ¥¢(x), ¢ =1, are &component columns. The inner product in R is defined as follows?,
(L) = (¥41, %) + (Vp,0r) s (0,) = [ WT00W G0ax. (23)

Later on, we shall see this construction of the inner product is Lorentz-invariant.
We realize all the operators in the following block-diagonal form?®,
X+ =z*hg, Po=prlie, Pr=—thds,
£* = bdiag (€%,8%), ¢ = bdiag (s, —Is) - (24)

Here, I1g and Iy are the 16 x 16 and 8 x 8 unit matrices, respectively, whereas I;:k are 8 X 8 matrices which
obey the equal-time commutation relations

2In what follows, we define the bilinear form (¥, @) as

oo = [ Wi
for vectors of any finite number of components.

3Here and in what follows we use the notation bdiag (4, B) = ( 61 1?,’ ) , where A and B are matrices,




3.2 Hamiltonian, first-class constraint and spin variables

Let us construct the operator which is a quantum version of the classical function Heg (19). We select it as
follows

Het — B = g Ao + £ = bdiag (FI+1,PI_1) , (25)

where Ag = bdiag (Aolomy I8, Aolyoo_, & ) Q= bd]a.g( le), Qg = Qplgoer » and

=g Aolgoce, I8 + Q¢ = (Cqdols + @0} p0zgr - (26)

We realize the operator T' corresponding to the first-class constraint T (12) by the prescription T =
T, ¢ ¢z and the classical bifermionic constant ¢ as a constant matrix 6 = bdiag (9 9) where § are 8 x 8

matrices. Thus, 7° has a block- diagonal structure,
. peges L PV . oo 1a
L=m|2i(E"=" + 56 | = bdiag (f,021), fr=m/|2i¢€ €% + 30) - (27)

We are going to use this operator to fix the gauge at the quantum level according to Dirac, ¥ € R, 7' ¥ = 0.
One can see this condition implies

The conservation of (28) in time is guaranteed by [f, H ] = (, which follows from the corresponding relation
of the classical theory, {T, Hem} Dlu) = 0. It is equivalent to

[Ec,fzc] =0. (29)

Now we postulate a manifest form for the operator Qg, subject to the relation {29). This form ensures
the hermiticity of the operator H with respect to the inner product (23), provides the gauge invariance under
U(1) transformations, and Lorentz invariance of the inner product (23). Here, we note that &4 cannot be
realized in analogy with the 3 41 dimensional case [2, 3], that is, in the form of the familiar one-particle Dirac
Hamiltonian, and with é’“ proportional to gamma-matrices. This is because fc contains the term é é2 which
would not commute with &g in such a reahzatlon In order to fulfill the condition {29}, and simultaneously
ensure that & corresponds to the classical wg, we select

. 0 m —7* (P + qAx)
= - ) 30
“0 (m+7‘°(pk+qu) 0 (30)
where 4%, k = 1,2, are any 4 x 4 matrices that obey the relation [ k,'y‘] = —28y;. In fact, we can consider

them as two matrices of a specific 4 ¥ 4 realization of gamma-matrices in 2 + 1 dimensions, [y*,v"] L =2
Moreaover, we can consider these matrices as a part of the complete set of gamma-matrices in 3 + 1 dimensions,
for which it is convenient to select the following representation [17]

3 ] ol
o_[ o 0 1_ [ ig 0 g —io 0 3 0 &I
T = ( 0 _0.3 ): Y= ( 0 —i0'2 ) » = ( 0 ’iCFl » 7= __1'2 0 ’ (31}

where o are the Pauli matrices, and I3 is the 2 x 2 unit matrix.
52
Then, the expression ! = bdiag (é)ﬁ,d)ﬁ) |$u= or where
0 m? + (Pr + gAr)” + %ﬁquryk’yi !

is consistent with the semiclassical limit (see Appendix A).
The realization of the operators £ , k = 1,2, and of the matrix &, corresponding to the classical quantity
@, is constrained by the relation (29). The latter relation is a constraint on I, and implies that £2£2 and 0

must commute with &. Additionally, we require the condition [.f’“, 5] = 0 in accordance with the classical

theory.




The above restraints are not sufficient to single out a representation, so we impose further restrictions to
the form of £'€? and 8. The matrix OfA5152 is chosen to be composed of blocks which are products of two
4 x 4 gamma-matrices, and the matrix ¢ is chosen to be diagonal with eigenvalues +7. The last restriction is
consistent with the relation §2 = /2, valid in the subspace of states satisfying the condition (28), where 62 can

JORPNL - PO
be identified with (4’5&152) = k2. Moreover, it is clear that £1£% cannot be the unit matrix, since this would

lead to a contradiction with the commutation relations for é". There is only one realization in the space of
8 x 8 matrices which fulfills all the aforementioned demands, viz.,

. 6v3 g sz RS 0O ER
9=ﬁ'(70 7023)1 51‘52:1(23 0 ): (33)

where 2% = 4v1+2, Then,

2t 0o 2 _tapf vt 0
5—25 (,.),1 0): ‘S—zh‘ 0 ,),2 . (34)

Taking into account the concrete realization of the operator fg, we can see that states W, that obey the

condition (28) have the following form

Wdﬁx%=§§(¢$$2§;)), (35)

where the factor 1/+/2 has been inserted for convenience.

3.3 Schridinger equation

" The Schrédinger equation

0. % = (H+AT) 2, (36)
with H given by (25), for vectors ¥ subject to T ¥ =0, has the form
iho: ¥ =H¥. (87)

‘Solutions of the above equation can be chosen as eigenstates of the matrix 6 = bdiag (é, é) Let us denote

eigenstates of é by ¥¢ g, which are subject to 5\11,.;9 = §R¥, o, with the eigenvalues § = +1. The latter implies
that these solutions have the specific structure

L Yelnx)
9= (i )

mﬂww:(ém“@),wqhm=( > ) (38)
: 0 ’ ’ Jl'q’JC (r,x) }’

where 1})&9) (7,x) are 2-component columns. We can see that, due to the constraint (28), these states obey the

eigenvalue equation —Qiéléz‘ygig = %9( U, . Consequently, the eigenvalues ¢ label different particle species.
Therefore, at the quantum level, we observe the noninvariance of the theory with respect to reflections of one
of the coordinate axes.

In components, and in terms of the physical time 2% = (7, the Schrédinger equation (37) implies

[v" (88, — gA,) — m] e 6 (¢2°,%) = 0. , (39)

By analogy with the 3+ 1 case, one can regard f as the charge-sign operator. Let us consider the states
W, with a definite charge g¢. These states satisfy the eigenvalue equation fic = (¥,. Therefore, states with
definite charge +¢ are represented by (22) with ¥y = 0. The wave functions ¥, are parameterized by the
physical time 7 = £20.

Tt is clear that {39) for ¢ = +1 is the Dirac equation in the four-spinor representation (lacking the third
spatial coordinate) for a particle with charge +g¢. The solutions of {39) with { = -1 can be brought into
correspondence with the Dirac equation in the four-spinor representation for a particle ¢° (mo) with charge




—q, by the rule 9° (z%) = v?¢p* | (-z°). In order to arrive at the two-spinor representation of the 2+ 1 Dirac
~ equations for particles with charge Xq, we shall use the decomposition (38) of the four-component column

. g into two-component columns d)ée). For { = +1, the equation {39) decomposes into

T4 (i88, — g4,) — m] @ (@) =0, ¥ @ (z) = ) (2°,x), (40)

where Ty are two inequivalent sets of gamma-matrices in 2 + 1 dimensions, given by (67). The analogous
equation for { = —1 has the form

[ (138, + qAu) — m] 9@ (z) = 0, 9@ (z) = %" (—20, %), (41)

which is the 2 + 1 Dirac equation in the two-spinor representation for a particle with charge —g.
‘Next, we define the z%-representation of states with definite f-eigenvalue in terms of the physical time z°,

v = (50 ) w5 (H0 ) o= (M0 )
Py (x) = ( ¢(+:)) {x) ) ¥ {(z)= ( olqp(i) () ), |
@ = () v (g ) )

The charge-conjugate components ¥§ (x) have been obtained by the rule

i@ =( 00 Ty )\1’1*_1,6 ("),
and the inner product (23) in the zC-representation is reformulated as
(g, Th) = (Tg, Uh) + (U5, T5) , (43)
The states Ty (z) satisfy the evolution equation
. kg (xo,x) =HT, (mD,x) , H = bdiag (I;T (zo) JHe (zo)) , (44)
where
B (") = gAols + 6o, ( ") = A (° [qﬁ_q = —qAols + 6§,

sestn (£ 7 ) 77)

The operator §) in the z"-representation has the form € = bdiag (&,&5), while the operator T in such a
representation reads

T = bdiag (£,1) , £ = 2i£1¢% + % (46)
Then, states in the z%-representation satisfy the condition
T¥, =0. (47)
We can also see that the inner product (43) reduces to the standard inner product between 2 + 1 spinors
(%o, ) = (@, 9@ ) + (9@°,42) (18)

Thus, in terms of ¥¢), treated as Dirac spinors, the inner product {43) is Lorentz-invariant.

We note that if one abandons condition (47), one gets a P-invariant QM, which can be obtained by
dimensional reduction of the 3 4+ 1 QM given by [2]. In the event that (47) is no longer valid, states with
distinct #-values are allowed to interfere.

We have considered a realization in which both species of particles are described in the same Hilbert
space. As we shall see in the Appendix B, this fact provides some advantages in studying questions related
to spin polarization. For this reason, we have introduced in (22) the space R of x-dependent 16-component
columns ¥(x). However, if one assumes a given value of the parameter ¢ fixed from the beginning, then one
can obtain a physically equivalent realization of the Hilbert space of vectors W, (x) in {22) as 4-component
columns. Accordingly, one should use the 2 x 2 gamma-matrices, instead of the 4 x 4 gamma-matrices, in the
representations (30) and (34) for the operators @y and £*. In such a realization, one immediately arrives at
the above-described two-spinor representation of Dirac spinors, thus avoiding the 1nterrned1ate descnptlon in
terms of four-spinors.




3.4 Physical sector

The preliminary state space contains an infinite number of negative-energy states. We restrict it to a physical
subspace Ry, where these negative-energy states are absent. Namely, taking into account the correspondence
principle, we demand that the operator (! be positive definite in Ry, The bases vectors of Rpy, at a given
instant of time, have the general structure (42), with the two-spinors being the solutions v,b @ (80) and ¢ 3)c
(81} of the stationary Dirac equation, corresponding to the energy elgenvalues eg_)n and e(g)c In addmon

we require that the basis vectors be eigenvectors of the charge operator qC , exactly as is done in QFT when
imposing the superselection rule (57). Thus, the basis vectors

0 0
1:E"(9‘+.:"-‘. = ( Hb+’n ) 3 §,+,cz = ( S+ ) 3 . (49)

are eigenvectors of the charge operator qf
ch':'ﬂ,-l-,n = q‘I’ﬁ‘,+,n: QC‘I’S,+,Q = _q‘Pg,-i-,a y
and of the Hamiltonian operator (44)
A 0= o o AW =eP00s,

The positivity of  can be easily established with respect to the basis vectors Wy, and ¥G, .,

(‘1’9,+,n 3 Q‘I'9,+,n) = (1!}-(:?",} (egf)n qAO) d)-((-g,)n) > 07
(2600 05 1) = (020, (£ 4 00 ) wE7) > 0. (50)
Thus, the physical subspace Rpyp is formed by the vectors of the form Wp .. and ¥y , , which are linear

combinations of the states Wg 4 ., and ¥g . . respectively. The vectors from Rpy satisfy the Schrédinger
equation with the Hamiltonian (44). The inner product (43) between charged states from R,y of the same

sign. is given by
(To o) = (Po+ Vo), (Lo, ¥5,)={%5, Vi), {51)

and it vanishes between charged states of different sign. And following (50), we see that the operator £ is
positive definite,

(\p“ ,ﬂ%,Q >0, (q:;ﬂL ,s‘m:g,+) >0, (52)
Let us introduce the conserved spin polarization operator S ,
&= _;u'e?d.
One can see (taking into account the relation (47)) that this is a conserved operator, whose eigenvetors are
¥y and T,
& h i T A e
STy = 59'1'9, STy = ““59@97 (53)

The interpretation of Sasa spin operator can be also extracted from the QFT, see Appendix B. One can note
that the operator {5 acts on the states Wy and ¥y as a particle specie operator,

C8Wy = ROW, , ESWE = HOWS .

Tn the present work, we do not exceed the limits of the one-particle consideration? within the constructed
QM. Thus, it is enough to study the overlaps of the type (51), as well as one-particle matrix elements for
functions of physical operators,

F (-Xn-kzpk:ék>ﬁ) = bd]ag (f (mk:ﬁk)ék:g (m(})) :fc ($k7ﬁkaék7ﬁc (1‘0))))
(@9,4- :-7:‘1':9,+) = (‘I’G.+ ,f‘l’b,+) ) (\I!§,+ a}-‘I’gt,+) = ( B+ :fclpgfﬁ) :

4However, a generalization to the many-particle theory can be made on the basis of the constructed one-particle representation,
and the existence of elgenvectors for the position operator X of QFT can be demonstrated. This will be presented elsewhere.

10




Since all matrix elements of odd-component products of the operators =* are zero and the dynamics of the
product of two operators Z* is trivial due to (53), it is possible to reduce the physical subspace Ry, of QM to an

effective physical subspace required o calculate matrix elements of the functions of operators F (X k Py, ﬂ)

Using the decomposition of the 16-component columns ¥y and ¥y in terms of two-component spinors (&

and %), we define the effective physical sector Rg‘;f as the space of states

(&) . 0
w{ = ( bt ) Wi = ( e ) (54)

where 1,[)5_6 ) and 'l,bf ) are the linear envelops of the spinors Tff’.(f,}n and 'qbf,)cf, respectively. The dynamics in this

representation is governed by the Hamiltonian

H® =bdiag (KO, hO%) | KO = 4o + 7§ [m + T} (b + g4s)], P2 = RO| . (55)
g——q
The operators f and 5‘, which act in the space Ry}, are reduced to the respective operators acting in the space
'Rgf]f .
. - i3
¢ = bdiag (I;,- L), §= Babdiag {lh,-I) . (56)

We can calculate the matrix elements qf F (X' k Py, I:I) using its representative
bdiag (f (:rk,ﬁk,, ftts) ,fc (.’I.‘k,‘ﬁk,ék, ]:L;))
in R‘ffﬁ as follows,
(Tor 7, ) = (6. F00) (%50, F ) = (w4, 7o)

4 Comparison with one-particle sector of QFT

- We shall now give an interpretation of the constructed QM by making a comparison with the dynamics of the
one-particle sector in the QFT of the Dirac field in 2+1 dimensions. To this end, we shall first demonstrate that
the one-particle sector (in case it can be consistently defined) may be formulated as a consistent relativistic
QM. Then, we shall demonstrate that this one-particle sector may be identified with the QM constructed in
the previcus section. Below, we malke use of the notions, results and notation presented in the Appendix B.

To begin with, we recall that the one-particle sector of QFT (as well as any sector with a definite particle
number) can be defined in an unique way for every moment of time only in the class of external backgrounds
which do not create particles from the vacuum [18, 19, 20, 21|, such as stationary magnetic fields and non-
critical Coulomb fields. For this reason, we simplify the present discussion teo this class of backgrounds. A
generalization to arbitrary backgrounds which do not viclate vacuum stability is possible.

Let us construct the Hilbert space of one-particle states as the disjoint union Rgf T o 'R,?DFT UR

R?DFT n RDQIFT == {0}, of the particle subspace R%FT and the antiparticle subspace RUQIFT,

@) = (Z Faa 10Y, 3 AabE |o>) € Ry 3 faal 0) €RFT, S AbTI0) € RS,
™ & ™ o

QFT
01

?

where f, and A, are arbitrary coefficients, and we assume 3| fnl2 < ooand } Aal? < c0. Therefore,
physical states |¥) belong either to the particle subspace R%FT or to the antiparticle subspace R(?IFT in
agreement with the superselection rule [22]. In other words, physical states |¥) are eigenstates of the charge
operator (85},

1

QUT L) = (q|T), ¢ ==l (57)

We note that the spectrum of HOFT in the one-particle sector reproduces that of particles and antiparticles
without an infinite number of negative-energy levels. A state vector of QFT in a given moment of time x” will
be denoted as |¥(z%)). This vector evolves in time according to the Schrédinger equation

it | ¥ (zo)) = HYT | (w0)) ,

Il




and remains in the one-particle sector due the fact that the Hamiltonian HOFT commutes with the particle
number operator (86). Consider the decompesitions

=P+ By, Bo=07,+ 0,

. . R . T
where W is the charge-conjugated Heisenberg operator of the field ¥, defined by ¥, = (lIlE";)Fz) , while
the plus and minus terms are given by

lil(—-) = Zan¢+,n: ‘i”(+J = sz¢~,a ) \i’E_) = Zbrx"{’)i,a 3 ‘i"(:+) = Za:{"pi,n'
" [+ 43 n

Let us consider a coordinate representation of the Fock space of time-dependent one-particle states |¥ ()},
given by the representatives

g () = 0 &y [T (0)), ¥ ()= (0T, [ (0)).

Since | ¥ (zg)) belongs either to the particle subspace R?OFT or to the antiparticle subspace R%FT, we can define
its four-component coordinate representation 4 (z) for each inequivalent representation of the gamma-matrices

i ve@ = (), v (gl ) ()

where 9 (z) = ¥%® (), and ¥° (z) = {®¢ (z) in the I'y representation. Using the projection operator to the
one-particle sector,

f (110) (0] & + &7 [0} (0] §) dc = I,

we can present the QFT inrer product {¥|¥') in terms of representatives,

A ¢+,%")f|.; H g=+1
= { s ¢

It is easy to see that the equations
AT W) = ein [Un), HET|WE) =5 4|92,
with |¥,} = a} 10} and |02} = b} |0), are written in the coordinate representation as follows
ﬁqj”hn =E4nPin, ﬁ"vbfl-,a = E?I-,a"f,)i,a »
so that for each inequivalent representation of the gamma-matrices the Hamiltonian A can be identified with

B = bdiag (A, Ff) , ' (50)

1’[)+,n: ( ’E[)Bs'"' ), ’lﬁj_,a = ( ’Q‘)-tic-)a ) : (60)

It is clear that in the coordinate representation the charge operator QQFT acts as the charge operator in

the space R;ﬁ of the QM,

and

o, (@) =, (2}, olos (z) =~ (), (61)

where ¢ is given by (56).
Thus, the states (60) form a basis in the coordinate representation of RS}F T, These states are eigenstates
of the QFT charge operator, and

(¢+,n7¢+,m) = (¢+,'ﬂ:¢+,M) H (Tpi,aawi,ﬁ) = (Tﬂbi,ar’d}i,ﬁ) ] (¢+,n7¢j—,u} = 0 (62)

We see that the Hamiltonian {59) in the coordinate representation of the cne-particle sector of the 241
QFT is precisely the Hamiltonian (55) for a fixed representation ¢ = -1 (or § = —1) of the gamma-matrices.
Moreover, the physical vector space (60) of QF'T in the one-particle sector coincides with (54). Thus, in
backgrounds which do not violate vacuum stability, the QM with an appropriate definition of the Hilbert
space can be identified with the one-particle sector of QFT.
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5 Discussion

In this paper, we have quantized a P- and T-noninvariant pseudoclassical model of a massive relativistic
spin-1/2 particle in 2 4 1 dimensions, on the background of an arbitrary U{1) gauge vector field. A peculiar
feature of the model at the classical level is that it contains a bifermionic first-class constraint, which does
not admit gauge-fixing. It is shown that this first-class constraint can be realized at the quantum level as a
bounded operater, which is imposed as a condition on the state vectors (by analogy with the Dirac quantization
method). This allows us to generalize the quantization scheme (1, 2, 3] in case there is a bifermionic first-class
constraint.

In doing so, we encounter the phenomenon of quantizing classical constants, characteristic of pseudoclassical
models. One ought to say that there are different viewpoints concerning the nature of classical constants in
pseudoclassical models and their quantization [5, 8, 8, 13, 23, 24], One of these viewpoints [8, 24] consists
of replacing the classical constants by dynamical variables, prior to quantization, thus modifying the action

We think this approach is unnecessary, and refer to [25] for a thorough discussion. Omne may point out
that the restraint on the range of values of a certain parameter is commonplace in quantum theory, and it is
related to the details of the quantization and operator ordering. There is no reason one cannot treat classical
constants in a similar manner, and restrict the range of their values at the classical level. In addition, one
can also expect that the nature of these constants should change in the passage to quantum theory, which
is the case for dynamical variables. In our model, on the classical level, # is a bifermionic constant. In
course of quantization it passes into a constant matrix, whose possible eigenvalues are defined by the quantum
dynamics. In any case, the role of classical constants, in particular the parameter ¢, may be better clarified
in the context of the semiclassical limit of the QM, the discussion of which is presented in the Appendix
A, Another viewpoint regarding the status of classical constants stems from the understanding that the sole
purpose of pseudoclassical models is to provide a quantum theory. Therefore, one could fix the values of the
parameters right at the beginning to be precisely those values which the QM dictates. In this sense, in the
present model, one could interpret the parameter # as s real number already in the pseudoclassical action.

‘We present a detailed construction of the Hilbert space and verify that the constructed QM possesses the
necessary symmetry properties. We show that the condition of preservation of the classical symmetries under
the restricted Lorentz transformations and the I7(1) transformations allows one to realize the operator algebra
in an unambiguous way. Within the construeted relativistic QM, we select a physical subspace which describes
the one-particle sector. The obtained realization of the operator algebra proves to be sufficiently different as
. compared to the quantization of a P-invariant pseudoclassical model of a massive relativistic spin-1/2 particle

in 2 4+ 1 dimensions. The physical sector of the QM contains both particles and antiparticles with positive-
energy € levels, and exactly reproduces the one-particle sector of the quantum theory of the 2 + 1 spinor
" field.

Acknowledgement R.F.,S.P.G. and P.Y.M are grateful to FAPESP. D.M.G. acknowledges the support
of FAPESP, CNPq and DAAD.

6 Appendix A. Semiclassical limit

Let us prove that the quantum Hamiltonian A (25) provides a consistent realization of its classical analogue
Herr- To this end, it is sufficient to show that the operator ) has a correct semiclassical limit. For simplicity,
we assume that only a magnetic field is present. The contribution of an electric field to the semiclassical limit
of the operator £ can be analyzed in complete analogy to the 3 + 1 case, studied in [2] (see the discussion of
the contributions j; and ga).

From the standard viewpoint accepted in quantum mechanics, the semiclassical behavior of a wave packet
corresponding to a particle takes place when the packet is sufficiently well-localized in the phase space of
coordinates and momenta. Accordingly, it can be characterized by the coordinates of the average position z*
and the average momenta B. At the same time, the mean square deviations Az* should be small in comparison
with the characteristic scale I of the system in question, Az* <« L, while the mean square deviations Apy
should be small as compared to |pe|, Apr < Ipr|. In accordance with these conditions, the external field should
be sufficiently homogeneous, and change with time sufficiently slowly, sc that it should not vary considerably
within distances commensurate with the size of a semiclassical wave packet (SWP), while the SWF should not
disperse within the time interval of the observation. Thus, it is sufficient to restrict the analysis to the case of
a time-independent field.
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To prove that Q = bdiag (Q.,_l, Q_l) is a consistent quantum realization of w (w = wq in the absence of
A2 . A .
an electric field), it suffices to show that the squared operator & = bdiag (0§, 43)| , given by (32), has

. . . . . . . . 15
a correct semiclassical limit, i.e., it has the same expectation value on semiclassical states ¥§" as the operator

al=(T

Q?, obtained by direct quantization of w,

0 = bdiag (3,3 ), &F = m? + (Bh + qAr)? — 2igFuété. (63)
Thus, we need to show that
~2 -5 -
(w10’ es) = (5'12°%5)., (64)

where the inner product is defined by {23).

In what follows, it is convenient to use the z°-representation. Thus, we pass from the vectors g;ﬂ to the
vectors 'I'gl. The SWP is a superposition of state vectors from the physical subspace Rpy, i.e., we have either
a particle SWP, or an antiparticle SWP. Let us consider the case of a particle SWP (for charge-conjugated
particles the consideration is analogous)

where cf:)n are the corresponding constant coefficients of the decomposition of the SWP in eigenvectors. The

coefficients are defined at the initial time instant z, = 0 by the given mean values of the coordinates s,
and momenta P;, characterizing the SWP. The component structure of semiclassical states ‘Ilﬁi is that of the
states Wy from the physical subspace Ry, (49),

‘I’d 1 '@bd
lPCl=( g),‘IJClz_( 68)’
0 RV AN

(+1)et 0
Qpii-:l = ( 'd) O )7 ’!;bifl = ( C}'l’lf)(_”d )a

@l () = 3 e pl) ().

n

where

As shown in Section 3, we can calculate the mean values of the function £ (}2 k Pk,ﬁxa) by using its rep-

resentative bdiag ( f (x’“, By ﬁg) Fe (:c’“, Bres fzg)) in the effective physical subspace T\’,‘;ﬁ. Thus, for example,

0

the mean values of x and- P at the time instant " can be expressed as follows,

%= (o (wﬂ),ﬁwzftz”)) = ($@%), xp (=)}
b= (U6, PO (") = (v, pp9 (")) .

These mean values depend on the parameter z°, as well as on the initial values of %, and Pir: ® = %(2°, Rin, Pin)
and p = p(z?, %, Bin). In accordance with the above definition, we obtain the semiclassical behavior of a
wave packet in case the equations of motion for the mean values to the leading order in the expansion obey
the classical equations of motion

dzk o o

@ = {‘7; 769(X:p)} »

d(pr + gAe(%))

4z = {Pr + qAr(%), €0 (%,P)}

where €g(X, D) is the mean value of the Hamiltonian (in a stationary background, it does not depend on the

time %)

co(%,B) = (5 ("), HEF (") ) = (#19"), AOpOI:0))
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Then we can see that thus determined SWP satisfies (with semiclassical accuracy) the evolution equation

ihdu @) (z) = g% (),
+ 669 ()_C) p)

aeﬂ(irf’) e =k
i Be0(B) (o _ ghy

@g = Eﬁ'(is p (ﬁk *ﬁk) + Bick
This spinor (with semiclassical accuracy) can be represented in the form
YO (@) = [[§é + T (ih8; — 04;(x)) + m| o0 (a),

where the function .
LS I
oO(e) = oxp { ~Se0a? oI,

obeys the squared Dirac equation {with semiclassical accuracy
[(g,,)” - D} P (x) =0, I = m? + (ih8 — qAx(x))? - 0ho®qB(x), Fy = B. (65)

Therefore, the explicit form of the mean energy reads

€a(%,B) = y/m? + (7 + aA;(R))® — 0K < 0 > qB(%) ,
where {o®) is the corresponding mean value of the matrix ¢*, which will be specified below. We can see that

a state with a given value of spin projection, and providing the necessary semiclassical limit, is obtained by
choosing the column ¢ (x) in the form

@(B)GI(X) — ( f(e):;(x) ) '

Then we finally have

5 = _ o2 =
(%, B) = \/m2 + (; + q4;(%))° - OgB(X).
It is exactly the function ¢(®%(z) which defines (to the leading order in the approximation) the form of the
SWP as a function of coordinates and momenta. This function can be represented as a well-localized wave
packet of solutions of the squared Dirac equation,

) ) (8
pO(w) = 3 lplnle),

with the same coefficients c(f,)n as those for 4% (z).
Using the SWP of a particle in a magnetic field, we have

(25,095} = «(x,B),
and, correspondingly,
(e, 020) = (eo(%,P))".

On the other hand, using the SWP we obtain the same result for the mean value of the operator 22 defined
by (63). This completes the proof of the fact that } has a correct semiclassical limit®.

To finish the semiclassical analysis, we find it useful to make a remark concerning the physical meaning
of a semiclassical spinning particle. It should be noted that the term Ao®gB(x), referred to as a quantum
correction, usually is not included into the expression for the classical energy. The reason for doing so is the
fact that in the homogeneous field (for a SWP) we have the term (B; + qA; (%))* .~ 2|gB|hn, with Landau
level number n 3 1. Therefore, the term hgB(x), giving a contribution commensurate with the difference

5Tt is easy to see that in the general case, when we have an electric feld satisfying the quasiclassical conditions {of being weak
and sufficiently homogeneous within the QWP), we obtain a similar resuls,

(w5, P0F) = (e0(%,B) — a0 (R)® = m® + (3 + 94;(R)? ~ 09 B(R).

Thus, the proof is also valid in the general case.
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of the energy levels in the first summand, is extremely small in the expression for the semiclassical energy
co(%, b} However, in a non-homogeneous field, without changing the conditions of semiclassics (i.e., within
the conditions that permit one to characterize motion by classical coordinates and momenta), one can see the
influence of spin magnetic moment on the classical trajectory. This can be observed from the equation

- — _l —_
U @) ()22 0, 2P0
x dz Azk 2¢5(X,P)
Here, the term containing the field gradient 8B(%)/8z* is much smaller than the preceding one. However, the
first term causes acceleration, which is always perpendicular to the velocity of the particle. At the same time,
the fluctuations of momenta or coordinates do not change anything in this respect, since the acceleration is
_simply a consequence of the structure of the minimal interaction (current-potential). The acceleration caused
by the second term, although small, is directed alongside the field gradient, i.e., its direction is not relaied to
the motion of the particle, and is not affected by the fluctuations of coordinates and momenta, because this is a
consequence of the structure of the interaction between the field and the magnetic momenta. Ia principle, this
permits one to separate the types of motion caused by different interactions. In the given case, the presence
of the second term affects the particle in the same way as a spinless particle is affected by a weak electric field
" directed alongside the gradient of a magnetic field. The possibility of observing the effect of the interaction
‘with the spin magnetic moment on a classical trajectory implies that one deals with a classical theory of a
spinning particle in the usual sense: one can describe motion using the concept of a trajectory.

7 Appendix B. Spinor field in 2 + 1 dimensions

7.1 General

Consider here some required notions of the theory of the spinor field # {z) = (¥u(z),a=1,2) in 2+1
dimensions, interacting with an external electromagnetic background (for convenience, we assume below i =
¢ = 1). We note that # (z) are regarded as the generating elements of an infinite-dimensional Grassmann
algebra. The action of the model may be written as

SFT:fde’ C:'@(F”Pp—m)?f), Pp={iau_un)7 Ju=07172? (66)

where ¢ is the algebraic charge, and I'* are the gamma-matrices in 2 + 1 dimensions, [[# T¥] 4+ = 29",
v =10,1,2, and ¢ = 44110,

Some remarks are in order. In 2+ 1 dimensions there exist two inequivalent representations for the gamma-
matrices, -
Pl =T = Pl =Tl =io?, 1% = 12 = ~io’, (67)
where o® are the Pauli matrices. Unless otherwise specified, we shall always assume I' = Ty, % = ACNEVESSTICR
and so on.

Returning to the action (66), we note that the corresponding Euler-Lagrange equation implies the Dirac
equation for the spinor field, )

dSpr

S = 60— AT — ] =0 o= idoy = b, (68)

where )
h=-TT* P, + T%m + g4, . (69}
With the choice of the Lagrangian density (66), the field 1 does not carry a time derivative. In this

connection, in order to quantize the model (66} it is convenient to apply the reduced Hamiltonization procedure
[11]. We introduce the velocity v = ¢ and regard % as a velocity. The first-order action reads

5 = fczasc EERICEIE /d%: (wd = 1Y), £% = Llyoy » HY =m0 — LY (70)
It implies the following equations of motion
&8v aLv e B P
So = Bu —m =" — 7 =0= ¢ = —ixl",
as¥ 8L 0 & _ e
v M+ (T4~ TP, +m) 9 = 0= v= —ihy).
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Thus, the velocities are expressed in terms of the coordinates and momenta. Substituting them into the function
‘HY, we obtain the Hamiltonian density H = —imky. Then the action (70) becomes the canonical Hamiltonian

action S§# = [dx ('m,b - H) for the phase space variables (¢, 7). It implies the canonical Hamilton equations

b= {0, BTY, b= (n BT, B = [don = [ thx . (71)
. The conserved charge reads

QT =g [ Phopdx (72)

7.2 Dirac eguation

In time-independent backgrounds the equation (68) is reduced to its stationary form

hip (x) = g9 (x), o (x) = exp (—iez) o (x) . (73)
‘We square this equation with the ansatz
P (x) = [[° (e — qdg) + TF (i8 — gAr) +m] v (x). (74)
Then ¢ (x) satisfies the equation
| [(e = a40)* - D] e () =0, (75)
where D = m? — P,P* + Z"'qFW [[#,T¥]. A pair {, ) is a solution of the above equation if it obeys either
g=qA0+ Ve Do =¢e—qdg >0, (76)
or
' £=gAg — ¢ 1Dp =g —qghp <O (77)

Let us denote by (€4 n, ¥+ ) solutions for positive values of £ — g4y, i.e., those for the upper branch of the
energy spectrum, and by (6_ ., ¢ ») solutions for negative values of & — ¢ Ao, i.e., those for the lower branch
of the energy spectrum. Here, n and « are guantum numbers which account for a possible asymmetry between
both branches of the energy spectrum.

Solutions %4 , and _ o of (73), constructed from ¢ , and p_ ., obey the orthogonality and completeness
relations

(¢+,n;'§[)+,m) = é-nm y ('lr")—,cz,'@[)—,ﬁ) = aaﬁ 3 (¢+,ﬂs¢—,a) = 0: (78)
3 [ @ 0L () + Yo @ ()] =5 (=), 20 = s, (79)
where _ . . .
i (@) = €T dhy o (%), oo (z) =€TET Y4 (x) (80)
A solution of the eigenvalue problem At (x) = £°9° (x) for the charge-conjugated Hamiltonian, he =
fﬂv,(q)l , can be analyzed in a similar manner, and
q——q
'lr[)i,a = Fz"n‘[}*—,a y T/)i,n = Pz'ﬂbi,n ) Ei,cx = €, Ec—,'n = =€t (81)

7.3 Quantization

In the passage to the quantum theory, the fields ¢ and = (¢ and ) become Heisenberg operators U and # (‘il
and 1) with equal-time anticommutation relations given by

= ilapd (X~ ¥). (82)

To=Yo

[ =), 75 )]

= i [Va (@), ¥} )]

To=Yo

+

Using the complete set {80), we can decompose the field operator ¥ () as

()= antpsnlz)+ > bIY_a(z). (83)
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From the commutation relations (82) and orthogonality conditions (78), we obtain
[nsaii] = [ben b ] = baps nsam)y = [basbsl, =0

which defines two sets of creation and annihilation operators, an, o) and by, bt.
- With the help of the expressions for the field operators (83) and for the classical Hamiltonian H¥T (71),
we construct the quantum field theory (QFT) Hamiltonian

FOFT _ f BHAY dx = 3 ey natan+ 365 Wb (84)

The QFT charge operator and the particle number operator have the following form

Q=1 / [\I’T xp] dx=gq (Z ata, - Zbﬂ; ) (®5)
= Zanan+ZbIba. (86}

We define the vacuum state |0} to be the zero vector of the annihilation operators: a, {0} = b, {0) = 0 for
every n and a. Then we construct the Hilbert space RUFT of QFT as a Fock space.

7.4 Spin operators in 2 + 1 dimensions

Let us consider the Lorentz vector .IET,
It = ;EW,\ f PO T pdx,
JHY = LAY 4 SHY LRV = —pPpY VR, SHY = [I"“ Y], p*=—d",

whose components in the absence of external fields correspond to the conserved Noether charges related to
the infinitesimal Lorentz transformations. Following the interpretation of spin projection in 2 + 1 dimensions
[26] as the projection to the x-axis, we may introduce the F'T spin operator S5 © as the spin part of jg‘ T In
the rest-frame, p! = p? = 0, only the term S'2 of the angular momentum component J*2 is non-vanishing.
Therefore,

- 7
S§T = [ ({513 ) ¥Oax =g [$O1o% e ax. )

The corresponding QFT spin operator S‘l?FT in the non-relativistic Hmit is proportional to the particle number
operator,

S8 = f OGO ; dx— N, (88)

(1), w0 (9).

The operator S§T is only conserved in the non-relativistic limit. That is why we need to find a conserved spin
operator to cIa.551fy relativistic states.

The spin polarization of a relativistic partmle can be “revealed” in a magnetic field, due to the fact that
the interaction of the spin magnetic moment with the magnetic field gives a contribution to the energy of the
particle. In 2+ 1 dimensions the energy spectrum in a magnetic field is determined by the squared Dirac

equation (75), where the corresponding spin contribution to the energy square operator reads ‘;qug [T, 1],
(¢ ) (e )

when

In conformity with the non-relativistic and semiclassical limits (see Appendix A), the salutions ¢y, and ¢

of (75) may be chosen as
. {9) 0
o ]
#n = ( i) ( Fih )

Then one can see that these solutions are eigenvectors of %qu; [I"“,l“’},
4 i
79Fk [T5, L8] 905?,) = —Bszlﬁof,)m 79k [T5,T5] 0¥, = 0aPne, .
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Therefore, one can expect that a conserved operator of spin polarization can be introduced.

It is natural to expect that in 2+ 1 dimensions a spin polarization operator is, in some sense, trivial, since,
in contrast to the 3 + 1 theory, it must have only one eigenvalue. Let us first examine the 3 4+ 1 case, where
the meaning of the corresponding operator is more transparent. Here, to characterize spin states, one can use
different spin polarization operators which are covariant and are integrals of motion [27]. The psendoclassical
model under consideration can be derived by a dimensional reduction from the pseudoclassical model [12]
describing the Weyl particle in 3 + 1 dimensions. Consequently, it is natural to obtain the conserved spin

_ polarization operator in 2 + 1 dimensions by a dimensional reduction of the (3 + 1)-dimensional theory of the
Weyl field. The 3+ 1 left/right massless charged particle is described by a four-spinor, qbgfy '(z), which obeys
the Dirac equaticn ' '

T Pagpl (@) =0, n=0,..3, (89)
and the Weyl! condition Weul
(v* =8}ty (@) =0, g=-+1{~1), (90)

with v* = —iv%yl9%+®. Here, we also assume that P; = if; (As(z) = 0) and &34, (z) = 0.

Dimensional reduction from 341 to 2+1 is a result of breaking the symmetry with respect to z-translations;
therefore, the corresponding momentum is constant, P; = m. Accordingly, we reduce the group of Lorentz
transformations eliminating the rotation generators which contain the z-component, in particular, the matrix
~*. Consider the following unitary transformation of the gamma-matrices

1
VIRV =~y VIRV =48 V= (14 0).

V2
Using this transformation, we can represent equations (89) and (90) in the form
(’YHPP- - m) 1/}(3) (:12) =0, (7573 - S) d’(s)(‘r) =0, (91)

* where 9, () = V‘li,b‘(’:’;yl (). Note that the matrix v>y? = ~°%5? in (91) is the matrix used in the realization

of the operator f in (33). Now, we can present the 241 QFT spin polarization operator
aqer _ 1 ot 053
S =3 ctp AN dPa, {92)

where % and 12}+ are the linear superpasitions of the quantized four-component Dirac fields ’l;’)(i) and {ba),
respectively. The operator (92) is a scalar under the 2 + 1 Lorentz transformations.
Thus, we arrive at QFT with hoth § = +1 and & = —1 species of fermions. The operator {92) is conserved

: 0
in any external field. In the representation (31) of the gamma-matrices, we have A ( % _I, )

Consequently, in order to be eigenvectors of this matrix, the fields ';j;(s) can be selected as follows,

N Di+1) N 0
1["(+1) = ( II,0 ) s Qp(Al) = ( o.l‘i,(vl) ) 3 (93)

where ¥{® is the two-component operator defined by {83) in the #-representation of the gamma-matrices (67).
Thus, we obtain

~ 1 - -
FT ET FT
SQ = 2—q (Q% - Q?& ) ' (94)
where Q?FT is the 2+ 1 charge operator (85) in the corresponding representation of the gamma-matrices. We
can see that this construction is trivial only if either particle species § = +1 or # = —1 is present. If this is

the case, then the conserved 241 QFT spin polarization operator is simply proportional to another conserved
QFT scalar, the charge.

One-particle states |¥) = 1‘1’“”) are eigenstates of the spin polarization operator {94),

GOFT 1@”) - 9% |@(9)> , (==l (95)

Despite negatively-charged § = —1 antiparticles and positively-charged ¢ = +1 particles being characterized
by the same value of spin polarization, they cannot be identified (in contrast to neutral particles), since
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they carry different charges. Thus, depending on the representation of the gamma-matrices {or, equivalently,
“depending on the sign of mass in the Dirac equation), the one-particle state is either a & = 41 particle or
a f = —1 particle. Since @ = +1 and @ = —1 particles cannot interact, in the general multiparticle case of
QFT the particle numbers of these different types are not correlated. In the multiparticle case, since the spin
polarization of particles of a given type is proportional to the total charge, the total spin is conserved in any
external field, i.e., particles of a given species are created and annihilated in pairs whose total spin is zero.
The species of a cne-particle state is uniquely determined by the operator $9F7T times the charge of the state.
- Thus, in the spaces of four- and two-spinors we find respectively two representations, (92) and (94), for
the conserved spin polarization operator. We can see that this operator is non-trivial in the 2 + 1 extended
(four-spinor} representation (92), since %% is not a unit matrix. The relation between the 2 + 1 extended
representation and the two-spinor representation of the Dirac QFT is similar to the relation between the
physical subspace Ry, and the effective physical subspace ’R,l‘ﬁ, discussed in Section 3. One can say that the
space of two-spinors is an effective space of the 2 + 1 Dirac theory.

In order to compare the operators of spin polarization in QM and in QFT, it is instructive to use the
four-spinor representation of QFT. By analogy with the results of Section 4, a coordinate representation of

the Fock space of time-dependent one-particle states "I'(g) (zg)> is given by the representatives

won @ = (P05 ), 8t 0= (4,0 )

1) (o 0

Piryy () = ( Vi 0( ) ) v P (®) = ( leg_-n () ) ,
(+1)e 0

v = (7O ) s @ = (e )

where 3 (m)f) and (m)f)c are two-component representatives defined by equation (58) for the #-representation
of the gamma-matrices. In this coordinate representation, the charge operator QFT acts as follows

KOy (2) = ¢ gy (), By, (v) = —qBp, (2), (96)

where ¢ = bdiag (s, —14).
In the coordinate representation, the equation (95) has the form
. 14 g 8-
3B gy, (z) = Q'I'(BH (z), 3B, (z)= —5‘1’(9)+ (=), 97)

where & = Lbdiag (y°23, —7°%3%).

In Subsection 3.4, we have defined the effective physical sector R°{ of the QM as the space of states
(54). Equivalently, we can realize the effective physical sector of the QM in the extended (eight-component)
representation R;fg as the space of states ®(5); and ®f,),. It is easy to see that the representation of the

operator § in (97) is a representative of the operator S in Rpp, namely,
(‘I'B’Jr ’g‘%'*) B (q){g)*’gq)l(”)*)’ (@;,Jr ,5‘111(9‘“;+) - ('I’fa)+:§‘I’E%)+).

Thus, we conclude that the physical subspace 'ﬁ.g{f of the QM is identical with the one-particle sector of the
2 + 1 spinor QFT in the four-spinor representation.

It should be roted that in the 241 QM the corresponding expression for the QFT spin polarization operator
arises in a natural way, without having recourse to the 3 + 1 theory and the subsequent reduction to the 2+ 1
theory. From the beginning, the 2 + 1 QM possesses the conserved spin polarization operator 8.
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